\(\int \frac {\sqrt {\cos (c+d x)}}{(a+b \cos (c+d x))^{5/2}} \, dx\) [640]

Optimal result
Mathematica [C] (verified)
Rubi [A] (verified)
Maple [B] (verified)
Fricas [F]
Sympy [F]
Maxima [F]
Giac [F]
Mupad [F(-1)]
Reduce [F]

Optimal result

Integrand size = 25, antiderivative size = 359 \[ \int \frac {\sqrt {\cos (c+d x)}}{(a+b \cos (c+d x))^{5/2}} \, dx=-\frac {2 \left (3 a^2+b^2\right ) \cot (c+d x) E\left (\arcsin \left (\frac {\sqrt {a+b \cos (c+d x)}}{\sqrt {a+b} \sqrt {\cos (c+d x)}}\right )|-\frac {a+b}{a-b}\right ) \sqrt {\frac {a (1-\sec (c+d x))}{a+b}} \sqrt {\frac {a (1+\sec (c+d x))}{a-b}}}{3 a^2 (a-b) (a+b)^{3/2} d}+\frac {2 (3 a-b) \cot (c+d x) \operatorname {EllipticF}\left (\arcsin \left (\frac {\sqrt {a+b \cos (c+d x)}}{\sqrt {a+b} \sqrt {\cos (c+d x)}}\right ),-\frac {a+b}{a-b}\right ) \sqrt {\frac {a (1-\sec (c+d x))}{a+b}} \sqrt {\frac {a (1+\sec (c+d x))}{a-b}}}{3 a (a-b) (a+b)^{3/2} d}-\frac {2 b \sqrt {\cos (c+d x)} \sin (c+d x)}{3 \left (a^2-b^2\right ) d (a+b \cos (c+d x))^{3/2}}+\frac {2 \left (3 a^2+b^2\right ) \sin (c+d x)}{3 \left (a^2-b^2\right )^2 d \sqrt {\cos (c+d x)} \sqrt {a+b \cos (c+d x)}} \] Output:

-2/3*(3*a^2+b^2)*cot(d*x+c)*EllipticE((a+b*cos(d*x+c))^(1/2)/(a+b)^(1/2)/c 
os(d*x+c)^(1/2),(-(a+b)/(a-b))^(1/2))*(a*(1-sec(d*x+c))/(a+b))^(1/2)*(a*(1 
+sec(d*x+c))/(a-b))^(1/2)/a^2/(a-b)/(a+b)^(3/2)/d+2/3*(3*a-b)*cot(d*x+c)*E 
llipticF((a+b*cos(d*x+c))^(1/2)/(a+b)^(1/2)/cos(d*x+c)^(1/2),(-(a+b)/(a-b) 
)^(1/2))*(a*(1-sec(d*x+c))/(a+b))^(1/2)*(a*(1+sec(d*x+c))/(a-b))^(1/2)/a/( 
a-b)/(a+b)^(3/2)/d-2/3*b*cos(d*x+c)^(1/2)*sin(d*x+c)/(a^2-b^2)/d/(a+b*cos( 
d*x+c))^(3/2)+2/3*(3*a^2+b^2)*sin(d*x+c)/(a^2-b^2)^2/d/cos(d*x+c)^(1/2)/(a 
+b*cos(d*x+c))^(1/2)
 

Mathematica [C] (verified)

Result contains complex when optimal does not.

Time = 6.53 (sec) , antiderivative size = 1273, normalized size of antiderivative = 3.55 \[ \int \frac {\sqrt {\cos (c+d x)}}{(a+b \cos (c+d x))^{5/2}} \, dx =\text {Too large to display} \] Input:

Integrate[Sqrt[Cos[c + d*x]]/(a + b*Cos[c + d*x])^(5/2),x]
 

Output:

(Sqrt[Cos[c + d*x]]*Sqrt[a + b*Cos[c + d*x]]*((-2*b*Sin[c + d*x])/(3*(a^2 
- b^2)*(a + b*Cos[c + d*x])^2) - (2*(3*a^2*b*Sin[c + d*x] + b^3*Sin[c + d* 
x]))/(3*a*(a^2 - b^2)^2*(a + b*Cos[c + d*x]))))/d + ((-4*a*(-(a^2*b) + b^3 
)*Sqrt[((a + b)*Cot[(c + d*x)/2]^2)/(-a + b)]*Sqrt[-(((a + b)*Cos[c + d*x] 
*Csc[(c + d*x)/2]^2)/a)]*Sqrt[((a + b*Cos[c + d*x])*Csc[(c + d*x)/2]^2)/a] 
*Csc[c + d*x]*EllipticF[ArcSin[Sqrt[((a + b*Cos[c + d*x])*Csc[(c + d*x)/2] 
^2)/a]/Sqrt[2]], (-2*a)/(-a + b)]*Sin[(c + d*x)/2]^4)/((a + b)*Sqrt[Cos[c 
+ d*x]]*Sqrt[a + b*Cos[c + d*x]]) - 4*a*(3*a^3 + a*b^2)*((Sqrt[((a + b)*Co 
t[(c + d*x)/2]^2)/(-a + b)]*Sqrt[-(((a + b)*Cos[c + d*x]*Csc[(c + d*x)/2]^ 
2)/a)]*Sqrt[((a + b*Cos[c + d*x])*Csc[(c + d*x)/2]^2)/a]*Csc[c + d*x]*Elli 
pticF[ArcSin[Sqrt[((a + b*Cos[c + d*x])*Csc[(c + d*x)/2]^2)/a]/Sqrt[2]], ( 
-2*a)/(-a + b)]*Sin[(c + d*x)/2]^4)/((a + b)*Sqrt[Cos[c + d*x]]*Sqrt[a + b 
*Cos[c + d*x]]) - (Sqrt[((a + b)*Cot[(c + d*x)/2]^2)/(-a + b)]*Sqrt[-(((a 
+ b)*Cos[c + d*x]*Csc[(c + d*x)/2]^2)/a)]*Sqrt[((a + b*Cos[c + d*x])*Csc[( 
c + d*x)/2]^2)/a]*Csc[c + d*x]*EllipticPi[-(a/b), ArcSin[Sqrt[((a + b*Cos[ 
c + d*x])*Csc[(c + d*x)/2]^2)/a]/Sqrt[2]], (-2*a)/(-a + b)]*Sin[(c + d*x)/ 
2]^4)/(b*Sqrt[Cos[c + d*x]]*Sqrt[a + b*Cos[c + d*x]])) + 2*(3*a^2*b + b^3) 
*((I*Cos[(c + d*x)/2]*Sqrt[a + b*Cos[c + d*x]]*EllipticE[I*ArcSinh[Sin[(c 
+ d*x)/2]/Sqrt[Cos[c + d*x]]], (-2*a)/(-a - b)]*Sec[c + d*x])/(b*Sqrt[Cos[ 
(c + d*x)/2]^2*Sec[c + d*x]]*Sqrt[((a + b*Cos[c + d*x])*Sec[c + d*x])/(...
 

Rubi [A] (verified)

Time = 1.32 (sec) , antiderivative size = 378, normalized size of antiderivative = 1.05, number of steps used = 10, number of rules used = 10, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.400, Rules used = {3042, 3275, 27, 3042, 3472, 3042, 3477, 3042, 3295, 3473}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {\sqrt {\cos (c+d x)}}{(a+b \cos (c+d x))^{5/2}} \, dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \frac {\sqrt {\sin \left (c+d x+\frac {\pi }{2}\right )}}{\left (a+b \sin \left (c+d x+\frac {\pi }{2}\right )\right )^{5/2}}dx\)

\(\Big \downarrow \) 3275

\(\displaystyle -\frac {2 \int \frac {b-3 a \cos (c+d x)}{2 \sqrt {\cos (c+d x)} (a+b \cos (c+d x))^{3/2}}dx}{3 \left (a^2-b^2\right )}-\frac {2 b \sin (c+d x) \sqrt {\cos (c+d x)}}{3 d \left (a^2-b^2\right ) (a+b \cos (c+d x))^{3/2}}\)

\(\Big \downarrow \) 27

\(\displaystyle -\frac {\int \frac {b-3 a \cos (c+d x)}{\sqrt {\cos (c+d x)} (a+b \cos (c+d x))^{3/2}}dx}{3 \left (a^2-b^2\right )}-\frac {2 b \sin (c+d x) \sqrt {\cos (c+d x)}}{3 d \left (a^2-b^2\right ) (a+b \cos (c+d x))^{3/2}}\)

\(\Big \downarrow \) 3042

\(\displaystyle -\frac {\int \frac {b-3 a \sin \left (c+d x+\frac {\pi }{2}\right )}{\sqrt {\sin \left (c+d x+\frac {\pi }{2}\right )} \left (a+b \sin \left (c+d x+\frac {\pi }{2}\right )\right )^{3/2}}dx}{3 \left (a^2-b^2\right )}-\frac {2 b \sin (c+d x) \sqrt {\cos (c+d x)}}{3 d \left (a^2-b^2\right ) (a+b \cos (c+d x))^{3/2}}\)

\(\Big \downarrow \) 3472

\(\displaystyle -\frac {\frac {\int \frac {3 a^2+4 b \cos (c+d x) a+b^2}{\cos ^{\frac {3}{2}}(c+d x) \sqrt {a+b \cos (c+d x)}}dx}{a^2-b^2}-\frac {2 \left (3 a^2+b^2\right ) \sin (c+d x)}{d \left (a^2-b^2\right ) \sqrt {\cos (c+d x)} \sqrt {a+b \cos (c+d x)}}}{3 \left (a^2-b^2\right )}-\frac {2 b \sin (c+d x) \sqrt {\cos (c+d x)}}{3 d \left (a^2-b^2\right ) (a+b \cos (c+d x))^{3/2}}\)

\(\Big \downarrow \) 3042

\(\displaystyle -\frac {\frac {\int \frac {3 a^2+4 b \sin \left (c+d x+\frac {\pi }{2}\right ) a+b^2}{\sin \left (c+d x+\frac {\pi }{2}\right )^{3/2} \sqrt {a+b \sin \left (c+d x+\frac {\pi }{2}\right )}}dx}{a^2-b^2}-\frac {2 \left (3 a^2+b^2\right ) \sin (c+d x)}{d \left (a^2-b^2\right ) \sqrt {\cos (c+d x)} \sqrt {a+b \cos (c+d x)}}}{3 \left (a^2-b^2\right )}-\frac {2 b \sin (c+d x) \sqrt {\cos (c+d x)}}{3 d \left (a^2-b^2\right ) (a+b \cos (c+d x))^{3/2}}\)

\(\Big \downarrow \) 3477

\(\displaystyle -\frac {\frac {\left (3 a^2+b^2\right ) \int \frac {\cos (c+d x)+1}{\cos ^{\frac {3}{2}}(c+d x) \sqrt {a+b \cos (c+d x)}}dx-(a-b) (3 a-b) \int \frac {1}{\sqrt {\cos (c+d x)} \sqrt {a+b \cos (c+d x)}}dx}{a^2-b^2}-\frac {2 \left (3 a^2+b^2\right ) \sin (c+d x)}{d \left (a^2-b^2\right ) \sqrt {\cos (c+d x)} \sqrt {a+b \cos (c+d x)}}}{3 \left (a^2-b^2\right )}-\frac {2 b \sin (c+d x) \sqrt {\cos (c+d x)}}{3 d \left (a^2-b^2\right ) (a+b \cos (c+d x))^{3/2}}\)

\(\Big \downarrow \) 3042

\(\displaystyle -\frac {\frac {\left (3 a^2+b^2\right ) \int \frac {\sin \left (c+d x+\frac {\pi }{2}\right )+1}{\sin \left (c+d x+\frac {\pi }{2}\right )^{3/2} \sqrt {a+b \sin \left (c+d x+\frac {\pi }{2}\right )}}dx-(a-b) (3 a-b) \int \frac {1}{\sqrt {\sin \left (c+d x+\frac {\pi }{2}\right )} \sqrt {a+b \sin \left (c+d x+\frac {\pi }{2}\right )}}dx}{a^2-b^2}-\frac {2 \left (3 a^2+b^2\right ) \sin (c+d x)}{d \left (a^2-b^2\right ) \sqrt {\cos (c+d x)} \sqrt {a+b \cos (c+d x)}}}{3 \left (a^2-b^2\right )}-\frac {2 b \sin (c+d x) \sqrt {\cos (c+d x)}}{3 d \left (a^2-b^2\right ) (a+b \cos (c+d x))^{3/2}}\)

\(\Big \downarrow \) 3295

\(\displaystyle -\frac {\frac {\left (3 a^2+b^2\right ) \int \frac {\sin \left (c+d x+\frac {\pi }{2}\right )+1}{\sin \left (c+d x+\frac {\pi }{2}\right )^{3/2} \sqrt {a+b \sin \left (c+d x+\frac {\pi }{2}\right )}}dx-\frac {2 (a-b) (3 a-b) \sqrt {a+b} \cot (c+d x) \sqrt {\frac {a (1-\sec (c+d x))}{a+b}} \sqrt {\frac {a (\sec (c+d x)+1)}{a-b}} \operatorname {EllipticF}\left (\arcsin \left (\frac {\sqrt {a+b \cos (c+d x)}}{\sqrt {a+b} \sqrt {\cos (c+d x)}}\right ),-\frac {a+b}{a-b}\right )}{a d}}{a^2-b^2}-\frac {2 \left (3 a^2+b^2\right ) \sin (c+d x)}{d \left (a^2-b^2\right ) \sqrt {\cos (c+d x)} \sqrt {a+b \cos (c+d x)}}}{3 \left (a^2-b^2\right )}-\frac {2 b \sin (c+d x) \sqrt {\cos (c+d x)}}{3 d \left (a^2-b^2\right ) (a+b \cos (c+d x))^{3/2}}\)

\(\Big \downarrow \) 3473

\(\displaystyle -\frac {\frac {\frac {2 (a-b) \sqrt {a+b} \left (3 a^2+b^2\right ) \cot (c+d x) \sqrt {\frac {a (1-\sec (c+d x))}{a+b}} \sqrt {\frac {a (\sec (c+d x)+1)}{a-b}} E\left (\arcsin \left (\frac {\sqrt {a+b \cos (c+d x)}}{\sqrt {a+b} \sqrt {\cos (c+d x)}}\right )|-\frac {a+b}{a-b}\right )}{a^2 d}-\frac {2 (a-b) (3 a-b) \sqrt {a+b} \cot (c+d x) \sqrt {\frac {a (1-\sec (c+d x))}{a+b}} \sqrt {\frac {a (\sec (c+d x)+1)}{a-b}} \operatorname {EllipticF}\left (\arcsin \left (\frac {\sqrt {a+b \cos (c+d x)}}{\sqrt {a+b} \sqrt {\cos (c+d x)}}\right ),-\frac {a+b}{a-b}\right )}{a d}}{a^2-b^2}-\frac {2 \left (3 a^2+b^2\right ) \sin (c+d x)}{d \left (a^2-b^2\right ) \sqrt {\cos (c+d x)} \sqrt {a+b \cos (c+d x)}}}{3 \left (a^2-b^2\right )}-\frac {2 b \sin (c+d x) \sqrt {\cos (c+d x)}}{3 d \left (a^2-b^2\right ) (a+b \cos (c+d x))^{3/2}}\)

Input:

Int[Sqrt[Cos[c + d*x]]/(a + b*Cos[c + d*x])^(5/2),x]
 

Output:

(-2*b*Sqrt[Cos[c + d*x]]*Sin[c + d*x])/(3*(a^2 - b^2)*d*(a + b*Cos[c + d*x 
])^(3/2)) - (((2*(a - b)*Sqrt[a + b]*(3*a^2 + b^2)*Cot[c + d*x]*EllipticE[ 
ArcSin[Sqrt[a + b*Cos[c + d*x]]/(Sqrt[a + b]*Sqrt[Cos[c + d*x]])], -((a + 
b)/(a - b))]*Sqrt[(a*(1 - Sec[c + d*x]))/(a + b)]*Sqrt[(a*(1 + Sec[c + d*x 
]))/(a - b)])/(a^2*d) - (2*(a - b)*(3*a - b)*Sqrt[a + b]*Cot[c + d*x]*Elli 
pticF[ArcSin[Sqrt[a + b*Cos[c + d*x]]/(Sqrt[a + b]*Sqrt[Cos[c + d*x]])], - 
((a + b)/(a - b))]*Sqrt[(a*(1 - Sec[c + d*x]))/(a + b)]*Sqrt[(a*(1 + Sec[c 
 + d*x]))/(a - b)])/(a*d))/(a^2 - b^2) - (2*(3*a^2 + b^2)*Sin[c + d*x])/(( 
a^2 - b^2)*d*Sqrt[Cos[c + d*x]]*Sqrt[a + b*Cos[c + d*x]]))/(3*(a^2 - b^2))
 

Defintions of rubi rules used

rule 27
Int[(a_)*(Fx_), x_Symbol] :> Simp[a   Int[Fx, x], x] /; FreeQ[a, x] &&  !Ma 
tchQ[Fx, (b_)*(Gx_) /; FreeQ[b, x]]
 

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 3275
Int[((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((c_.) + (d_.)*sin[(e_.) + 
 (f_.)*(x_)])^(n_), x_Symbol] :> Simp[(-b)*Cos[e + f*x]*(a + b*Sin[e + f*x] 
)^(m + 1)*((c + d*Sin[e + f*x])^n/(f*(m + 1)*(a^2 - b^2))), x] + Simp[1/((m 
 + 1)*(a^2 - b^2))   Int[(a + b*Sin[e + f*x])^(m + 1)*(c + d*Sin[e + f*x])^ 
(n - 1)*Simp[a*c*(m + 1) + b*d*n + (a*d*(m + 1) - b*c*(m + 2))*Sin[e + f*x] 
 - b*d*(m + n + 2)*Sin[e + f*x]^2, x], x], x] /; FreeQ[{a, b, c, d, e, f}, 
x] && NeQ[b*c - a*d, 0] && NeQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0] && LtQ[m, 
 -1] && LtQ[0, n, 1] && IntegersQ[2*m, 2*n]
 

rule 3295
Int[1/(Sqrt[(d_.)*sin[(e_.) + (f_.)*(x_)]]*Sqrt[(a_) + (b_.)*sin[(e_.) + (f 
_.)*(x_)]]), x_Symbol] :> Simp[-2*(Tan[e + f*x]/(a*f))*Rt[(a + b)/d, 2]*Sqr 
t[a*((1 - Csc[e + f*x])/(a + b))]*Sqrt[a*((1 + Csc[e + f*x])/(a - b))]*Elli 
pticF[ArcSin[Sqrt[a + b*Sin[e + f*x]]/Sqrt[d*Sin[e + f*x]]/Rt[(a + b)/d, 2] 
], -(a + b)/(a - b)], x] /; FreeQ[{a, b, d, e, f}, x] && NeQ[a^2 - b^2, 0] 
&& PosQ[(a + b)/d]
 

rule 3472
Int[((A_.) + (B_.)*sin[(e_.) + (f_.)*(x_)])/(Sqrt[(d_.)*sin[(e_.) + (f_.)*( 
x_)]]*((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(3/2)), x_Symbol] :> Simp[2*(A 
*b - a*B)*(Cos[e + f*x]/(f*(a^2 - b^2)*Sqrt[a + b*Sin[e + f*x]]*Sqrt[d*Sin[ 
e + f*x]])), x] + Simp[d/(a^2 - b^2)   Int[(A*b - a*B + (a*A - b*B)*Sin[e + 
 f*x])/(Sqrt[a + b*Sin[e + f*x]]*(d*Sin[e + f*x])^(3/2)), x], x] /; FreeQ[{ 
a, b, d, e, f, A, B}, x] && NeQ[a^2 - b^2, 0]
 

rule 3473
Int[((A_) + (B_.)*sin[(e_.) + (f_.)*(x_)])/(((b_.)*sin[(e_.) + (f_.)*(x_)]) 
^(3/2)*Sqrt[(c_) + (d_.)*sin[(e_.) + (f_.)*(x_)]]), x_Symbol] :> Simp[-2*A* 
(c - d)*(Tan[e + f*x]/(f*b*c^2))*Rt[(c + d)/b, 2]*Sqrt[c*((1 + Csc[e + f*x] 
)/(c - d))]*Sqrt[c*((1 - Csc[e + f*x])/(c + d))]*EllipticE[ArcSin[Sqrt[c + 
d*Sin[e + f*x]]/Sqrt[b*Sin[e + f*x]]/Rt[(c + d)/b, 2]], -(c + d)/(c - d)], 
x] /; FreeQ[{b, c, d, e, f, A, B}, x] && NeQ[c^2 - d^2, 0] && EqQ[A, B] && 
PosQ[(c + d)/b]
 

rule 3477
Int[((A_.) + (B_.)*sin[(e_.) + (f_.)*(x_)])/(((a_.) + (b_.)*sin[(e_.) + (f_ 
.)*(x_)])^(3/2)*Sqrt[(c_) + (d_.)*sin[(e_.) + (f_.)*(x_)]]), x_Symbol] :> S 
imp[(A - B)/(a - b)   Int[1/(Sqrt[a + b*Sin[e + f*x]]*Sqrt[c + d*Sin[e + f* 
x]]), x], x] - Simp[(A*b - a*B)/(a - b)   Int[(1 + Sin[e + f*x])/((a + b*Si 
n[e + f*x])^(3/2)*Sqrt[c + d*Sin[e + f*x]]), x], x] /; FreeQ[{a, b, c, d, e 
, f, A, B}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 
0] && NeQ[A, B]
 
Maple [B] (verified)

Leaf count of result is larger than twice the leaf count of optimal. \(1187\) vs. \(2(321)=642\).

Time = 12.77 (sec) , antiderivative size = 1188, normalized size of antiderivative = 3.31

method result size
default \(\text {Expression too large to display}\) \(1188\)

Input:

int(cos(d*x+c)^(1/2)/(a+cos(d*x+c)*b)^(5/2),x,method=_RETURNVERBOSE)
 

Output:

-2/3/d*((3*cos(d*x+c)^2+6*cos(d*x+c)+3)*(cos(d*x+c)/(cos(d*x+c)+1))^(1/2)* 
((a+cos(d*x+c)*b)/(cos(d*x+c)+1)/(a+b))^(1/2)*a^4*EllipticE(cot(d*x+c)-csc 
(d*x+c),(-(a-b)/(a+b))^(1/2))+(3*cos(d*x+c)^3+9*cos(d*x+c)^2+9*cos(d*x+c)+ 
3)*(cos(d*x+c)/(cos(d*x+c)+1))^(1/2)*((a+cos(d*x+c)*b)/(cos(d*x+c)+1)/(a+b 
))^(1/2)*a^3*b*EllipticE(cot(d*x+c)-csc(d*x+c),(-(a-b)/(a+b))^(1/2))+(3*co 
s(d*x+c)^3+7*cos(d*x+c)^2+5*cos(d*x+c)+1)*(cos(d*x+c)/(cos(d*x+c)+1))^(1/2 
)*((a+cos(d*x+c)*b)/(cos(d*x+c)+1)/(a+b))^(1/2)*a^2*b^2*EllipticE(cot(d*x+ 
c)-csc(d*x+c),(-(a-b)/(a+b))^(1/2))+(cos(d*x+c)^3+3*cos(d*x+c)^2+3*cos(d*x 
+c)+1)*(cos(d*x+c)/(cos(d*x+c)+1))^(1/2)*((a+cos(d*x+c)*b)/(cos(d*x+c)+1)/ 
(a+b))^(1/2)*a*b^3*EllipticE(cot(d*x+c)-csc(d*x+c),(-(a-b)/(a+b))^(1/2))+( 
cos(d*x+c)/(cos(d*x+c)+1))^(1/2)*((a+cos(d*x+c)*b)/(cos(d*x+c)+1)/(a+b))^( 
1/2)*b^4*EllipticE(cot(d*x+c)-csc(d*x+c),(-(a-b)/(a+b))^(1/2))*(cos(d*x+c) 
^3+2*cos(d*x+c)^2+cos(d*x+c))+(-3*cos(d*x+c)^2-6*cos(d*x+c)-3)*(cos(d*x+c) 
/(cos(d*x+c)+1))^(1/2)*((a+cos(d*x+c)*b)/(cos(d*x+c)+1)/(a+b))^(1/2)*a^4*E 
llipticF(cot(d*x+c)-csc(d*x+c),(-(a-b)/(a+b))^(1/2))+(-3*cos(d*x+c)^3-10*c 
os(d*x+c)^2-11*cos(d*x+c)-4)*(cos(d*x+c)/(cos(d*x+c)+1))^(1/2)*((a+cos(d*x 
+c)*b)/(cos(d*x+c)+1)/(a+b))^(1/2)*a^3*b*EllipticF(cot(d*x+c)-csc(d*x+c),( 
-(a-b)/(a+b))^(1/2))+(-4*cos(d*x+c)^3-9*cos(d*x+c)^2-6*cos(d*x+c)-1)*(cos( 
d*x+c)/(cos(d*x+c)+1))^(1/2)*((a+cos(d*x+c)*b)/(cos(d*x+c)+1)/(a+b))^(1/2) 
*a^2*b^2*EllipticF(cot(d*x+c)-csc(d*x+c),(-(a-b)/(a+b))^(1/2))+(cos(d*x...
 

Fricas [F]

\[ \int \frac {\sqrt {\cos (c+d x)}}{(a+b \cos (c+d x))^{5/2}} \, dx=\int { \frac {\sqrt {\cos \left (d x + c\right )}}{{\left (b \cos \left (d x + c\right ) + a\right )}^{\frac {5}{2}}} \,d x } \] Input:

integrate(cos(d*x+c)^(1/2)/(a+b*cos(d*x+c))^(5/2),x, algorithm="fricas")
 

Output:

integral(sqrt(b*cos(d*x + c) + a)*sqrt(cos(d*x + c))/(b^3*cos(d*x + c)^3 + 
 3*a*b^2*cos(d*x + c)^2 + 3*a^2*b*cos(d*x + c) + a^3), x)
 

Sympy [F]

\[ \int \frac {\sqrt {\cos (c+d x)}}{(a+b \cos (c+d x))^{5/2}} \, dx=\int \frac {\sqrt {\cos {\left (c + d x \right )}}}{\left (a + b \cos {\left (c + d x \right )}\right )^{\frac {5}{2}}}\, dx \] Input:

integrate(cos(d*x+c)**(1/2)/(a+b*cos(d*x+c))**(5/2),x)
 

Output:

Integral(sqrt(cos(c + d*x))/(a + b*cos(c + d*x))**(5/2), x)
 

Maxima [F]

\[ \int \frac {\sqrt {\cos (c+d x)}}{(a+b \cos (c+d x))^{5/2}} \, dx=\int { \frac {\sqrt {\cos \left (d x + c\right )}}{{\left (b \cos \left (d x + c\right ) + a\right )}^{\frac {5}{2}}} \,d x } \] Input:

integrate(cos(d*x+c)^(1/2)/(a+b*cos(d*x+c))^(5/2),x, algorithm="maxima")
 

Output:

integrate(sqrt(cos(d*x + c))/(b*cos(d*x + c) + a)^(5/2), x)
 

Giac [F]

\[ \int \frac {\sqrt {\cos (c+d x)}}{(a+b \cos (c+d x))^{5/2}} \, dx=\int { \frac {\sqrt {\cos \left (d x + c\right )}}{{\left (b \cos \left (d x + c\right ) + a\right )}^{\frac {5}{2}}} \,d x } \] Input:

integrate(cos(d*x+c)^(1/2)/(a+b*cos(d*x+c))^(5/2),x, algorithm="giac")
 

Output:

integrate(sqrt(cos(d*x + c))/(b*cos(d*x + c) + a)^(5/2), x)
 

Mupad [F(-1)]

Timed out. \[ \int \frac {\sqrt {\cos (c+d x)}}{(a+b \cos (c+d x))^{5/2}} \, dx=\int \frac {\sqrt {\cos \left (c+d\,x\right )}}{{\left (a+b\,\cos \left (c+d\,x\right )\right )}^{5/2}} \,d x \] Input:

int(cos(c + d*x)^(1/2)/(a + b*cos(c + d*x))^(5/2),x)
 

Output:

int(cos(c + d*x)^(1/2)/(a + b*cos(c + d*x))^(5/2), x)
 

Reduce [F]

\[ \int \frac {\sqrt {\cos (c+d x)}}{(a+b \cos (c+d x))^{5/2}} \, dx=\int \frac {\sqrt {\cos \left (d x +c \right ) b +a}\, \sqrt {\cos \left (d x +c \right )}}{\cos \left (d x +c \right )^{3} b^{3}+3 \cos \left (d x +c \right )^{2} a \,b^{2}+3 \cos \left (d x +c \right ) a^{2} b +a^{3}}d x \] Input:

int(cos(d*x+c)^(1/2)/(a+b*cos(d*x+c))^(5/2),x)
 

Output:

int((sqrt(cos(c + d*x)*b + a)*sqrt(cos(c + d*x)))/(cos(c + d*x)**3*b**3 + 
3*cos(c + d*x)**2*a*b**2 + 3*cos(c + d*x)*a**2*b + a**3),x)