\(\int \frac {\sqrt {-\cos (c+d x)}}{\sqrt {3+2 \cos (c+d x)}} \, dx\) [672]

Optimal result
Mathematica [C] (warning: unable to verify)
Rubi [A] (verified)
Maple [A] (verified)
Fricas [F]
Sympy [F]
Maxima [F]
Giac [F]
Mupad [F(-1)]
Reduce [F]

Optimal result

Integrand size = 27, antiderivative size = 95 \[ \int \frac {\sqrt {-\cos (c+d x)}}{\sqrt {3+2 \cos (c+d x)}} \, dx=-\frac {3 \sqrt {-\cos (c+d x)} \sqrt {\cos (c+d x)} \csc (c+d x) \operatorname {EllipticPi}\left (\frac {5}{2},\arcsin \left (\frac {\sqrt {3+2 \cos (c+d x)}}{\sqrt {5} \sqrt {\cos (c+d x)}}\right ),-5\right ) \sqrt {1-\sec (c+d x)} \sqrt {1+\sec (c+d x)}}{d} \] Output:

-3*(-cos(d*x+c))^(1/2)*cos(d*x+c)^(1/2)*csc(d*x+c)*EllipticPi(1/5*(3+2*cos 
(d*x+c))^(1/2)*5^(1/2)/cos(d*x+c)^(1/2),5/2,I*5^(1/2))*(1-sec(d*x+c))^(1/2 
)*(1+sec(d*x+c))^(1/2)/d
 

Mathematica [C] (warning: unable to verify)

Result contains complex when optimal does not.

Time = 0.39 (sec) , antiderivative size = 130, normalized size of antiderivative = 1.37 \[ \int \frac {\sqrt {-\cos (c+d x)}}{\sqrt {3+2 \cos (c+d x)}} \, dx=\frac {2 i \sqrt {-\cos (c+d x)} \sqrt {3+2 \cos (c+d x)} \left (\operatorname {EllipticF}\left (i \text {arcsinh}\left (\frac {\tan \left (\frac {1}{2} (c+d x)\right )}{\sqrt {5}}\right ),-5\right )-2 \operatorname {EllipticPi}\left (5,i \text {arcsinh}\left (\frac {\tan \left (\frac {1}{2} (c+d x)\right )}{\sqrt {5}}\right ),-5\right )\right ) \sec ^2\left (\frac {1}{2} (c+d x)\right )}{d \sqrt {(1+3 \cos (c+d x)+\cos (2 (c+d x))) \sec ^4\left (\frac {1}{2} (c+d x)\right )}} \] Input:

Integrate[Sqrt[-Cos[c + d*x]]/Sqrt[3 + 2*Cos[c + d*x]],x]
 

Output:

((2*I)*Sqrt[-Cos[c + d*x]]*Sqrt[3 + 2*Cos[c + d*x]]*(EllipticF[I*ArcSinh[T 
an[(c + d*x)/2]/Sqrt[5]], -5] - 2*EllipticPi[5, I*ArcSinh[Tan[(c + d*x)/2] 
/Sqrt[5]], -5])*Sec[(c + d*x)/2]^2)/(d*Sqrt[(1 + 3*Cos[c + d*x] + Cos[2*(c 
 + d*x)])*Sec[(c + d*x)/2]^4])
 

Rubi [A] (verified)

Time = 0.34 (sec) , antiderivative size = 95, normalized size of antiderivative = 1.00, number of steps used = 4, number of rules used = 4, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.148, Rules used = {3042, 3289, 3042, 3287}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {\sqrt {-\cos (c+d x)}}{\sqrt {2 \cos (c+d x)+3}} \, dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \frac {\sqrt {-\sin \left (c+d x+\frac {\pi }{2}\right )}}{\sqrt {2 \sin \left (c+d x+\frac {\pi }{2}\right )+3}}dx\)

\(\Big \downarrow \) 3289

\(\displaystyle \frac {\sqrt {-\cos (c+d x)} \int \frac {\sqrt {\cos (c+d x)}}{\sqrt {2 \cos (c+d x)+3}}dx}{\sqrt {\cos (c+d x)}}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {\sqrt {-\cos (c+d x)} \int \frac {\sqrt {\sin \left (c+d x+\frac {\pi }{2}\right )}}{\sqrt {2 \sin \left (c+d x+\frac {\pi }{2}\right )+3}}dx}{\sqrt {\cos (c+d x)}}\)

\(\Big \downarrow \) 3287

\(\displaystyle -\frac {3 \sqrt {-\cos (c+d x)} \sqrt {\cos (c+d x)} \csc (c+d x) \sqrt {1-\sec (c+d x)} \sqrt {\sec (c+d x)+1} \operatorname {EllipticPi}\left (\frac {5}{2},\arcsin \left (\frac {\sqrt {2 \cos (c+d x)+3}}{\sqrt {5} \sqrt {\cos (c+d x)}}\right ),-5\right )}{d}\)

Input:

Int[Sqrt[-Cos[c + d*x]]/Sqrt[3 + 2*Cos[c + d*x]],x]
 

Output:

(-3*Sqrt[-Cos[c + d*x]]*Sqrt[Cos[c + d*x]]*Csc[c + d*x]*EllipticPi[5/2, Ar 
cSin[Sqrt[3 + 2*Cos[c + d*x]]/(Sqrt[5]*Sqrt[Cos[c + d*x]])], -5]*Sqrt[1 - 
Sec[c + d*x]]*Sqrt[1 + Sec[c + d*x]])/d
 

Defintions of rubi rules used

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 3287
Int[Sqrt[(b_.)*sin[(e_.) + (f_.)*(x_)]]/Sqrt[(c_) + (d_.)*sin[(e_.) + (f_.) 
*(x_)]], x_Symbol] :> Simp[2*c*Rt[b*(c + d), 2]*Tan[e + f*x]*Sqrt[1 + Csc[e 
 + f*x]]*(Sqrt[1 - Csc[e + f*x]]/(d*f*Sqrt[c^2 - d^2]))*EllipticPi[(c + d)/ 
d, ArcSin[Sqrt[c + d*Sin[e + f*x]]/Sqrt[b*Sin[e + f*x]]/Rt[(c + d)/b, 2]], 
-(c + d)/(c - d)], x] /; FreeQ[{b, c, d, e, f}, x] && GtQ[c^2 - d^2, 0] && 
PosQ[(c + d)/b] && GtQ[c^2, 0]
 

rule 3289
Int[Sqrt[(b_.)*sin[(e_.) + (f_.)*(x_)]]/Sqrt[(c_) + (d_.)*sin[(e_.) + (f_.) 
*(x_)]], x_Symbol] :> Simp[Sqrt[b*Sin[e + f*x]]/Sqrt[(-b)*Sin[e + f*x]]   I 
nt[Sqrt[(-b)*Sin[e + f*x]]/Sqrt[c + d*Sin[e + f*x]], x], x] /; FreeQ[{b, c, 
 d, e, f}, x] && NeQ[c^2 - d^2, 0] && NegQ[(c + d)/b]
 
Maple [A] (verified)

Time = 9.67 (sec) , antiderivative size = 148, normalized size of antiderivative = 1.56

method result size
default \(\frac {i \sqrt {-\cos \left (d x +c \right )}\, \sqrt {10}\, \sqrt {\frac {3+2 \cos \left (d x +c \right )}{\cos \left (d x +c \right )+1}}\, \sqrt {2}\, \sqrt {\frac {\cos \left (d x +c \right )}{\cos \left (d x +c \right )+1}}\, \left (\operatorname {EllipticF}\left (\frac {i \left (\csc \left (d x +c \right )-\cot \left (d x +c \right )\right ) \sqrt {5}}{5}, i \sqrt {5}\right )-2 \operatorname {EllipticPi}\left (\frac {i \left (\csc \left (d x +c \right )-\cot \left (d x +c \right )\right ) \sqrt {5}}{5}, 5, i \sqrt {5}\right )\right ) \left (1+\sec \left (d x +c \right )\right ) \sqrt {5}}{5 d \sqrt {3+2 \cos \left (d x +c \right )}}\) \(148\)

Input:

int((-cos(d*x+c))^(1/2)/(3+2*cos(d*x+c))^(1/2),x,method=_RETURNVERBOSE)
 

Output:

1/5*I/d*(-cos(d*x+c))^(1/2)/(3+2*cos(d*x+c))^(1/2)*10^(1/2)*((3+2*cos(d*x+ 
c))/(cos(d*x+c)+1))^(1/2)*2^(1/2)*(cos(d*x+c)/(cos(d*x+c)+1))^(1/2)*(Ellip 
ticF(1/5*I*(csc(d*x+c)-cot(d*x+c))*5^(1/2),I*5^(1/2))-2*EllipticPi(1/5*I*( 
csc(d*x+c)-cot(d*x+c))*5^(1/2),5,I*5^(1/2)))*(1+sec(d*x+c))*5^(1/2)
 

Fricas [F]

\[ \int \frac {\sqrt {-\cos (c+d x)}}{\sqrt {3+2 \cos (c+d x)}} \, dx=\int { \frac {\sqrt {-\cos \left (d x + c\right )}}{\sqrt {2 \, \cos \left (d x + c\right ) + 3}} \,d x } \] Input:

integrate((-cos(d*x+c))^(1/2)/(3+2*cos(d*x+c))^(1/2),x, algorithm="fricas" 
)
 

Output:

integral(sqrt(-cos(d*x + c))/sqrt(2*cos(d*x + c) + 3), x)
 

Sympy [F]

\[ \int \frac {\sqrt {-\cos (c+d x)}}{\sqrt {3+2 \cos (c+d x)}} \, dx=\int \frac {\sqrt {- \cos {\left (c + d x \right )}}}{\sqrt {2 \cos {\left (c + d x \right )} + 3}}\, dx \] Input:

integrate((-cos(d*x+c))**(1/2)/(3+2*cos(d*x+c))**(1/2),x)
 

Output:

Integral(sqrt(-cos(c + d*x))/sqrt(2*cos(c + d*x) + 3), x)
 

Maxima [F]

\[ \int \frac {\sqrt {-\cos (c+d x)}}{\sqrt {3+2 \cos (c+d x)}} \, dx=\int { \frac {\sqrt {-\cos \left (d x + c\right )}}{\sqrt {2 \, \cos \left (d x + c\right ) + 3}} \,d x } \] Input:

integrate((-cos(d*x+c))^(1/2)/(3+2*cos(d*x+c))^(1/2),x, algorithm="maxima" 
)
 

Output:

integrate(sqrt(-cos(d*x + c))/sqrt(2*cos(d*x + c) + 3), x)
 

Giac [F]

\[ \int \frac {\sqrt {-\cos (c+d x)}}{\sqrt {3+2 \cos (c+d x)}} \, dx=\int { \frac {\sqrt {-\cos \left (d x + c\right )}}{\sqrt {2 \, \cos \left (d x + c\right ) + 3}} \,d x } \] Input:

integrate((-cos(d*x+c))^(1/2)/(3+2*cos(d*x+c))^(1/2),x, algorithm="giac")
 

Output:

integrate(sqrt(-cos(d*x + c))/sqrt(2*cos(d*x + c) + 3), x)
 

Mupad [F(-1)]

Timed out. \[ \int \frac {\sqrt {-\cos (c+d x)}}{\sqrt {3+2 \cos (c+d x)}} \, dx=\int \frac {\sqrt {-\cos \left (c+d\,x\right )}}{\sqrt {2\,\cos \left (c+d\,x\right )+3}} \,d x \] Input:

int((-cos(c + d*x))^(1/2)/(2*cos(c + d*x) + 3)^(1/2),x)
 

Output:

int((-cos(c + d*x))^(1/2)/(2*cos(c + d*x) + 3)^(1/2), x)
 

Reduce [F]

\[ \int \frac {\sqrt {-\cos (c+d x)}}{\sqrt {3+2 \cos (c+d x)}} \, dx=\left (\int \frac {\sqrt {2 \cos \left (d x +c \right )+3}\, \sqrt {\cos \left (d x +c \right )}}{2 \cos \left (d x +c \right )+3}d x \right ) i \] Input:

int((-cos(d*x+c))^(1/2)/(3+2*cos(d*x+c))^(1/2),x)
 

Output:

int((sqrt(2*cos(c + d*x) + 3)*sqrt(cos(c + d*x)))/(2*cos(c + d*x) + 3),x)* 
i