\(\int (A+B \cos (c+d x)) \sec ^{\frac {7}{2}}(c+d x) \, dx\) [690]

Optimal result
Mathematica [A] (verified)
Rubi [A] (verified)
Maple [B] (verified)
Fricas [C] (verification not implemented)
Sympy [F(-1)]
Maxima [F]
Giac [F]
Mupad [F(-1)]
Reduce [F]

Optimal result

Integrand size = 21, antiderivative size = 151 \[ \int (A+B \cos (c+d x)) \sec ^{\frac {7}{2}}(c+d x) \, dx=-\frac {6 A \sqrt {\cos (c+d x)} E\left (\left .\frac {1}{2} (c+d x)\right |2\right ) \sqrt {\sec (c+d x)}}{5 d}+\frac {2 B \sqrt {\cos (c+d x)} \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),2\right ) \sqrt {\sec (c+d x)}}{3 d}+\frac {6 A \sqrt {\sec (c+d x)} \sin (c+d x)}{5 d}+\frac {2 B \sec ^{\frac {3}{2}}(c+d x) \sin (c+d x)}{3 d}+\frac {2 A \sec ^{\frac {5}{2}}(c+d x) \sin (c+d x)}{5 d} \] Output:

-6/5*A*cos(d*x+c)^(1/2)*EllipticE(sin(1/2*d*x+1/2*c),2^(1/2))*sec(d*x+c)^( 
1/2)/d+2/3*B*cos(d*x+c)^(1/2)*InverseJacobiAM(1/2*d*x+1/2*c,2^(1/2))*sec(d 
*x+c)^(1/2)/d+6/5*A*sec(d*x+c)^(1/2)*sin(d*x+c)/d+2/3*B*sec(d*x+c)^(3/2)*s 
in(d*x+c)/d+2/5*A*sec(d*x+c)^(5/2)*sin(d*x+c)/d
 

Mathematica [A] (verified)

Time = 0.44 (sec) , antiderivative size = 97, normalized size of antiderivative = 0.64 \[ \int (A+B \cos (c+d x)) \sec ^{\frac {7}{2}}(c+d x) \, dx=\frac {\sec ^{\frac {5}{2}}(c+d x) \left (-36 A \cos ^{\frac {5}{2}}(c+d x) E\left (\left .\frac {1}{2} (c+d x)\right |2\right )+20 B \cos ^{\frac {5}{2}}(c+d x) \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),2\right )+21 A \sin (c+d x)+10 B \sin (2 (c+d x))+9 A \sin (3 (c+d x))\right )}{30 d} \] Input:

Integrate[(A + B*Cos[c + d*x])*Sec[c + d*x]^(7/2),x]
 

Output:

(Sec[c + d*x]^(5/2)*(-36*A*Cos[c + d*x]^(5/2)*EllipticE[(c + d*x)/2, 2] + 
20*B*Cos[c + d*x]^(5/2)*EllipticF[(c + d*x)/2, 2] + 21*A*Sin[c + d*x] + 10 
*B*Sin[2*(c + d*x)] + 9*A*Sin[3*(c + d*x)]))/(30*d)
 

Rubi [A] (verified)

Time = 0.71 (sec) , antiderivative size = 153, normalized size of antiderivative = 1.01, number of steps used = 13, number of rules used = 13, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.619, Rules used = {3042, 3717, 3042, 4274, 3042, 4255, 3042, 4255, 3042, 4258, 3042, 3119, 3120}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \sec ^{\frac {7}{2}}(c+d x) (A+B \cos (c+d x)) \, dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \csc \left (c+d x+\frac {\pi }{2}\right )^{7/2} \left (A+B \sin \left (c+d x+\frac {\pi }{2}\right )\right )dx\)

\(\Big \downarrow \) 3717

\(\displaystyle \int \sec ^{\frac {5}{2}}(c+d x) (A \sec (c+d x)+B)dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \csc \left (c+d x+\frac {\pi }{2}\right )^{5/2} \left (A \csc \left (c+d x+\frac {\pi }{2}\right )+B\right )dx\)

\(\Big \downarrow \) 4274

\(\displaystyle A \int \sec ^{\frac {7}{2}}(c+d x)dx+B \int \sec ^{\frac {5}{2}}(c+d x)dx\)

\(\Big \downarrow \) 3042

\(\displaystyle A \int \csc \left (c+d x+\frac {\pi }{2}\right )^{7/2}dx+B \int \csc \left (c+d x+\frac {\pi }{2}\right )^{5/2}dx\)

\(\Big \downarrow \) 4255

\(\displaystyle A \left (\frac {3}{5} \int \sec ^{\frac {3}{2}}(c+d x)dx+\frac {2 \sin (c+d x) \sec ^{\frac {5}{2}}(c+d x)}{5 d}\right )+B \left (\frac {1}{3} \int \sqrt {\sec (c+d x)}dx+\frac {2 \sin (c+d x) \sec ^{\frac {3}{2}}(c+d x)}{3 d}\right )\)

\(\Big \downarrow \) 3042

\(\displaystyle A \left (\frac {3}{5} \int \csc \left (c+d x+\frac {\pi }{2}\right )^{3/2}dx+\frac {2 \sin (c+d x) \sec ^{\frac {5}{2}}(c+d x)}{5 d}\right )+B \left (\frac {1}{3} \int \sqrt {\csc \left (c+d x+\frac {\pi }{2}\right )}dx+\frac {2 \sin (c+d x) \sec ^{\frac {3}{2}}(c+d x)}{3 d}\right )\)

\(\Big \downarrow \) 4255

\(\displaystyle A \left (\frac {3}{5} \left (\frac {2 \sin (c+d x) \sqrt {\sec (c+d x)}}{d}-\int \frac {1}{\sqrt {\sec (c+d x)}}dx\right )+\frac {2 \sin (c+d x) \sec ^{\frac {5}{2}}(c+d x)}{5 d}\right )+B \left (\frac {1}{3} \int \sqrt {\csc \left (c+d x+\frac {\pi }{2}\right )}dx+\frac {2 \sin (c+d x) \sec ^{\frac {3}{2}}(c+d x)}{3 d}\right )\)

\(\Big \downarrow \) 3042

\(\displaystyle A \left (\frac {3}{5} \left (\frac {2 \sin (c+d x) \sqrt {\sec (c+d x)}}{d}-\int \frac {1}{\sqrt {\csc \left (c+d x+\frac {\pi }{2}\right )}}dx\right )+\frac {2 \sin (c+d x) \sec ^{\frac {5}{2}}(c+d x)}{5 d}\right )+B \left (\frac {1}{3} \int \sqrt {\csc \left (c+d x+\frac {\pi }{2}\right )}dx+\frac {2 \sin (c+d x) \sec ^{\frac {3}{2}}(c+d x)}{3 d}\right )\)

\(\Big \downarrow \) 4258

\(\displaystyle A \left (\frac {3}{5} \left (\frac {2 \sin (c+d x) \sqrt {\sec (c+d x)}}{d}-\sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \int \sqrt {\cos (c+d x)}dx\right )+\frac {2 \sin (c+d x) \sec ^{\frac {5}{2}}(c+d x)}{5 d}\right )+B \left (\frac {1}{3} \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \int \frac {1}{\sqrt {\cos (c+d x)}}dx+\frac {2 \sin (c+d x) \sec ^{\frac {3}{2}}(c+d x)}{3 d}\right )\)

\(\Big \downarrow \) 3042

\(\displaystyle A \left (\frac {3}{5} \left (\frac {2 \sin (c+d x) \sqrt {\sec (c+d x)}}{d}-\sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \int \sqrt {\sin \left (c+d x+\frac {\pi }{2}\right )}dx\right )+\frac {2 \sin (c+d x) \sec ^{\frac {5}{2}}(c+d x)}{5 d}\right )+B \left (\frac {1}{3} \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \int \frac {1}{\sqrt {\sin \left (c+d x+\frac {\pi }{2}\right )}}dx+\frac {2 \sin (c+d x) \sec ^{\frac {3}{2}}(c+d x)}{3 d}\right )\)

\(\Big \downarrow \) 3119

\(\displaystyle B \left (\frac {1}{3} \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \int \frac {1}{\sqrt {\sin \left (c+d x+\frac {\pi }{2}\right )}}dx+\frac {2 \sin (c+d x) \sec ^{\frac {3}{2}}(c+d x)}{3 d}\right )+A \left (\frac {2 \sin (c+d x) \sec ^{\frac {5}{2}}(c+d x)}{5 d}+\frac {3}{5} \left (\frac {2 \sin (c+d x) \sqrt {\sec (c+d x)}}{d}-\frac {2 \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{d}\right )\right )\)

\(\Big \downarrow \) 3120

\(\displaystyle A \left (\frac {2 \sin (c+d x) \sec ^{\frac {5}{2}}(c+d x)}{5 d}+\frac {3}{5} \left (\frac {2 \sin (c+d x) \sqrt {\sec (c+d x)}}{d}-\frac {2 \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{d}\right )\right )+B \left (\frac {2 \sin (c+d x) \sec ^{\frac {3}{2}}(c+d x)}{3 d}+\frac {2 \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),2\right )}{3 d}\right )\)

Input:

Int[(A + B*Cos[c + d*x])*Sec[c + d*x]^(7/2),x]
 

Output:

B*((2*Sqrt[Cos[c + d*x]]*EllipticF[(c + d*x)/2, 2]*Sqrt[Sec[c + d*x]])/(3* 
d) + (2*Sec[c + d*x]^(3/2)*Sin[c + d*x])/(3*d)) + A*((2*Sec[c + d*x]^(5/2) 
*Sin[c + d*x])/(5*d) + (3*((-2*Sqrt[Cos[c + d*x]]*EllipticE[(c + d*x)/2, 2 
]*Sqrt[Sec[c + d*x]])/d + (2*Sqrt[Sec[c + d*x]]*Sin[c + d*x])/d))/5)
 

Defintions of rubi rules used

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 3119
Int[Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2/d)*EllipticE[(1/2)* 
(c - Pi/2 + d*x), 2], x] /; FreeQ[{c, d}, x]
 

rule 3120
Int[1/Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2/d)*EllipticF[(1/2 
)*(c - Pi/2 + d*x), 2], x] /; FreeQ[{c, d}, x]
 

rule 3717
Int[(csc[(e_.) + (f_.)*(x_)]*(d_.))^(m_)*((a_) + (b_.)*sin[(e_.) + (f_.)*(x 
_)]^(n_.))^(p_.), x_Symbol] :> Simp[d^(n*p)   Int[(d*Csc[e + f*x])^(m - n*p 
)*(b + a*Csc[e + f*x]^n)^p, x], x] /; FreeQ[{a, b, d, e, f, m, n, p}, x] && 
  !IntegerQ[m] && IntegersQ[n, p]
 

rule 4255
Int[(csc[(c_.) + (d_.)*(x_)]*(b_.))^(n_), x_Symbol] :> Simp[(-b)*Cos[c + d* 
x]*((b*Csc[c + d*x])^(n - 1)/(d*(n - 1))), x] + Simp[b^2*((n - 2)/(n - 1)) 
  Int[(b*Csc[c + d*x])^(n - 2), x], x] /; FreeQ[{b, c, d}, x] && GtQ[n, 1] 
&& IntegerQ[2*n]
 

rule 4258
Int[(csc[(c_.) + (d_.)*(x_)]*(b_.))^(n_), x_Symbol] :> Simp[(b*Csc[c + d*x] 
)^n*Sin[c + d*x]^n   Int[1/Sin[c + d*x]^n, x], x] /; FreeQ[{b, c, d}, x] && 
 EqQ[n^2, 1/4]
 

rule 4274
Int[(csc[(e_.) + (f_.)*(x_)]*(d_.))^(n_.)*(csc[(e_.) + (f_.)*(x_)]*(b_.) + 
(a_)), x_Symbol] :> Simp[a   Int[(d*Csc[e + f*x])^n, x], x] + Simp[b/d   In 
t[(d*Csc[e + f*x])^(n + 1), x], x] /; FreeQ[{a, b, d, e, f, n}, x]
 
Maple [B] (verified)

Leaf count of result is larger than twice the leaf count of optimal. \(501\) vs. \(2(130)=260\).

Time = 34.26 (sec) , antiderivative size = 502, normalized size of antiderivative = 3.32

method result size
default \(-\frac {\sqrt {-\left (-2 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}+1\right ) \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}}\, \left (\frac {2 A \left (24 \cos \left (\frac {d x}{2}+\frac {c}{2}\right ) \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{6}-12 \operatorname {EllipticE}\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right ) \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {2 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-1}\, \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{4}-24 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{4} \cos \left (\frac {d x}{2}+\frac {c}{2}\right )+12 \operatorname {EllipticE}\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right ) \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {2 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-1}\, \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}+8 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2} \cos \left (\frac {d x}{2}+\frac {c}{2}\right )-3 \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {2 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-1}\, \operatorname {EllipticE}\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right )\right ) \sqrt {-2 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{4}+\sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}}}{5 \left (8 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{6}-12 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{4}+6 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-1\right ) \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}}+2 B \left (-\frac {\cos \left (\frac {d x}{2}+\frac {c}{2}\right ) \sqrt {-2 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{4}+\sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}}}{6 \left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-\frac {1}{2}\right )^{2}}+\frac {\sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {-2 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}+1}\, \operatorname {EllipticF}\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right )}{3 \sqrt {-2 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{4}+\sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}}}\right )\right )}{\sin \left (\frac {d x}{2}+\frac {c}{2}\right ) \sqrt {2 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-1}\, d}\) \(502\)
parts \(-\frac {2 A \sqrt {-\left (-2 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}+1\right ) \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}}\, \left (24 \cos \left (\frac {d x}{2}+\frac {c}{2}\right ) \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{6}-12 \operatorname {EllipticE}\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right ) \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {2 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-1}\, \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{4}-24 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{4} \cos \left (\frac {d x}{2}+\frac {c}{2}\right )+12 \operatorname {EllipticE}\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right ) \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {2 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-1}\, \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}+8 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2} \cos \left (\frac {d x}{2}+\frac {c}{2}\right )-3 \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {2 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-1}\, \operatorname {EllipticE}\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right )\right ) \sqrt {-2 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{4}+\sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}}}{5 \left (8 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{6}-12 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{4}+6 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-1\right ) \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{3} \sqrt {2 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-1}\, d}-\frac {2 B \left (-2 \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {2 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-1}\, \operatorname {EllipticF}\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right ) \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-2 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2} \cos \left (\frac {d x}{2}+\frac {c}{2}\right )+\sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {2 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-1}\, \operatorname {EllipticF}\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right )\right ) \sqrt {\left (2 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-1\right ) \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}}}{3 \sqrt {-2 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{4}+\sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}}\, \left (2 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-1\right )^{\frac {3}{2}} \sin \left (\frac {d x}{2}+\frac {c}{2}\right ) d}\) \(573\)

Input:

int((A+B*cos(d*x+c))*sec(d*x+c)^(7/2),x,method=_RETURNVERBOSE)
 

Output:

-(-(-2*cos(1/2*d*x+1/2*c)^2+1)*sin(1/2*d*x+1/2*c)^2)^(1/2)*(2/5*A/(8*sin(1 
/2*d*x+1/2*c)^6-12*sin(1/2*d*x+1/2*c)^4+6*sin(1/2*d*x+1/2*c)^2-1)/sin(1/2* 
d*x+1/2*c)^2*(24*cos(1/2*d*x+1/2*c)*sin(1/2*d*x+1/2*c)^6-12*EllipticE(cos( 
1/2*d*x+1/2*c),2^(1/2))*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(2*sin(1/2*d*x+1/2*c) 
^2-1)^(1/2)*sin(1/2*d*x+1/2*c)^4-24*sin(1/2*d*x+1/2*c)^4*cos(1/2*d*x+1/2*c 
)+12*EllipticE(cos(1/2*d*x+1/2*c),2^(1/2))*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(2 
*sin(1/2*d*x+1/2*c)^2-1)^(1/2)*sin(1/2*d*x+1/2*c)^2+8*sin(1/2*d*x+1/2*c)^2 
*cos(1/2*d*x+1/2*c)-3*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(2*sin(1/2*d*x+1/2*c)^2 
-1)^(1/2)*EllipticE(cos(1/2*d*x+1/2*c),2^(1/2)))*(-2*sin(1/2*d*x+1/2*c)^4+ 
sin(1/2*d*x+1/2*c)^2)^(1/2)+2*B*(-1/6*cos(1/2*d*x+1/2*c)*(-2*sin(1/2*d*x+1 
/2*c)^4+sin(1/2*d*x+1/2*c)^2)^(1/2)/(cos(1/2*d*x+1/2*c)^2-1/2)^2+1/3*(sin( 
1/2*d*x+1/2*c)^2)^(1/2)*(-2*cos(1/2*d*x+1/2*c)^2+1)^(1/2)/(-2*sin(1/2*d*x+ 
1/2*c)^4+sin(1/2*d*x+1/2*c)^2)^(1/2)*EllipticF(cos(1/2*d*x+1/2*c),2^(1/2)) 
))/sin(1/2*d*x+1/2*c)/(2*cos(1/2*d*x+1/2*c)^2-1)^(1/2)/d
 

Fricas [C] (verification not implemented)

Result contains complex when optimal does not.

Time = 0.09 (sec) , antiderivative size = 188, normalized size of antiderivative = 1.25 \[ \int (A+B \cos (c+d x)) \sec ^{\frac {7}{2}}(c+d x) \, dx=\frac {-5 i \, \sqrt {2} B \cos \left (d x + c\right )^{2} {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) + i \, \sin \left (d x + c\right )\right ) + 5 i \, \sqrt {2} B \cos \left (d x + c\right )^{2} {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) - i \, \sin \left (d x + c\right )\right ) - 9 i \, \sqrt {2} A \cos \left (d x + c\right )^{2} {\rm weierstrassZeta}\left (-4, 0, {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) + i \, \sin \left (d x + c\right )\right )\right ) + 9 i \, \sqrt {2} A \cos \left (d x + c\right )^{2} {\rm weierstrassZeta}\left (-4, 0, {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) - i \, \sin \left (d x + c\right )\right )\right ) + \frac {2 \, {\left (9 \, A \cos \left (d x + c\right )^{2} + 5 \, B \cos \left (d x + c\right ) + 3 \, A\right )} \sin \left (d x + c\right )}{\sqrt {\cos \left (d x + c\right )}}}{15 \, d \cos \left (d x + c\right )^{2}} \] Input:

integrate((A+B*cos(d*x+c))*sec(d*x+c)^(7/2),x, algorithm="fricas")
 

Output:

1/15*(-5*I*sqrt(2)*B*cos(d*x + c)^2*weierstrassPInverse(-4, 0, cos(d*x + c 
) + I*sin(d*x + c)) + 5*I*sqrt(2)*B*cos(d*x + c)^2*weierstrassPInverse(-4, 
 0, cos(d*x + c) - I*sin(d*x + c)) - 9*I*sqrt(2)*A*cos(d*x + c)^2*weierstr 
assZeta(-4, 0, weierstrassPInverse(-4, 0, cos(d*x + c) + I*sin(d*x + c))) 
+ 9*I*sqrt(2)*A*cos(d*x + c)^2*weierstrassZeta(-4, 0, weierstrassPInverse( 
-4, 0, cos(d*x + c) - I*sin(d*x + c))) + 2*(9*A*cos(d*x + c)^2 + 5*B*cos(d 
*x + c) + 3*A)*sin(d*x + c)/sqrt(cos(d*x + c)))/(d*cos(d*x + c)^2)
 

Sympy [F(-1)]

Timed out. \[ \int (A+B \cos (c+d x)) \sec ^{\frac {7}{2}}(c+d x) \, dx=\text {Timed out} \] Input:

integrate((A+B*cos(d*x+c))*sec(d*x+c)**(7/2),x)
 

Output:

Timed out
 

Maxima [F]

\[ \int (A+B \cos (c+d x)) \sec ^{\frac {7}{2}}(c+d x) \, dx=\int { {\left (B \cos \left (d x + c\right ) + A\right )} \sec \left (d x + c\right )^{\frac {7}{2}} \,d x } \] Input:

integrate((A+B*cos(d*x+c))*sec(d*x+c)^(7/2),x, algorithm="maxima")
 

Output:

integrate((B*cos(d*x + c) + A)*sec(d*x + c)^(7/2), x)
 

Giac [F]

\[ \int (A+B \cos (c+d x)) \sec ^{\frac {7}{2}}(c+d x) \, dx=\int { {\left (B \cos \left (d x + c\right ) + A\right )} \sec \left (d x + c\right )^{\frac {7}{2}} \,d x } \] Input:

integrate((A+B*cos(d*x+c))*sec(d*x+c)^(7/2),x, algorithm="giac")
 

Output:

integrate((B*cos(d*x + c) + A)*sec(d*x + c)^(7/2), x)
 

Mupad [F(-1)]

Timed out. \[ \int (A+B \cos (c+d x)) \sec ^{\frac {7}{2}}(c+d x) \, dx=\int \left (A+B\,\cos \left (c+d\,x\right )\right )\,{\left (\frac {1}{\cos \left (c+d\,x\right )}\right )}^{7/2} \,d x \] Input:

int((A + B*cos(c + d*x))*(1/cos(c + d*x))^(7/2),x)
                                                                                    
                                                                                    
 

Output:

int((A + B*cos(c + d*x))*(1/cos(c + d*x))^(7/2), x)
 

Reduce [F]

\[ \int (A+B \cos (c+d x)) \sec ^{\frac {7}{2}}(c+d x) \, dx=\left (\int \sqrt {\sec \left (d x +c \right )}\, \cos \left (d x +c \right ) \sec \left (d x +c \right )^{3}d x \right ) b +\left (\int \sqrt {\sec \left (d x +c \right )}\, \sec \left (d x +c \right )^{3}d x \right ) a \] Input:

int((A+B*cos(d*x+c))*sec(d*x+c)^(7/2),x)
 

Output:

int(sqrt(sec(c + d*x))*cos(c + d*x)*sec(c + d*x)**3,x)*b + int(sqrt(sec(c 
+ d*x))*sec(c + d*x)**3,x)*a