\(\int (a+b \cos (c+d x))^2 \sec ^{\frac {7}{2}}(c+d x) \, dx\) [698]

Optimal result
Mathematica [A] (verified)
Rubi [A] (verified)
Maple [B] (verified)
Fricas [C] (verification not implemented)
Sympy [F(-1)]
Maxima [F]
Giac [F]
Mupad [F(-1)]
Reduce [F]

Optimal result

Integrand size = 23, antiderivative size = 175 \[ \int (a+b \cos (c+d x))^2 \sec ^{\frac {7}{2}}(c+d x) \, dx=-\frac {2 \left (3 a^2+5 b^2\right ) \sqrt {\cos (c+d x)} E\left (\left .\frac {1}{2} (c+d x)\right |2\right ) \sqrt {\sec (c+d x)}}{5 d}+\frac {4 a b \sqrt {\cos (c+d x)} \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),2\right ) \sqrt {\sec (c+d x)}}{3 d}+\frac {2 \left (3 a^2+5 b^2\right ) \sqrt {\sec (c+d x)} \sin (c+d x)}{5 d}+\frac {4 a b \sec ^{\frac {3}{2}}(c+d x) \sin (c+d x)}{3 d}+\frac {2 a^2 \sec ^{\frac {5}{2}}(c+d x) \sin (c+d x)}{5 d} \] Output:

-2/5*(3*a^2+5*b^2)*cos(d*x+c)^(1/2)*EllipticE(sin(1/2*d*x+1/2*c),2^(1/2))* 
sec(d*x+c)^(1/2)/d+4/3*a*b*cos(d*x+c)^(1/2)*InverseJacobiAM(1/2*d*x+1/2*c, 
2^(1/2))*sec(d*x+c)^(1/2)/d+2/5*(3*a^2+5*b^2)*sec(d*x+c)^(1/2)*sin(d*x+c)/ 
d+4/3*a*b*sec(d*x+c)^(3/2)*sin(d*x+c)/d+2/5*a^2*sec(d*x+c)^(5/2)*sin(d*x+c 
)/d
 

Mathematica [A] (verified)

Time = 1.26 (sec) , antiderivative size = 126, normalized size of antiderivative = 0.72 \[ \int (a+b \cos (c+d x))^2 \sec ^{\frac {7}{2}}(c+d x) \, dx=\frac {\sec ^{\frac {5}{2}}(c+d x) \left (-12 \left (3 a^2+5 b^2\right ) \cos ^{\frac {5}{2}}(c+d x) E\left (\left .\frac {1}{2} (c+d x)\right |2\right )+40 a b \cos ^{\frac {5}{2}}(c+d x) \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),2\right )+2 \left (15 \left (a^2+b^2\right )+20 a b \cos (c+d x)+3 \left (3 a^2+5 b^2\right ) \cos (2 (c+d x))\right ) \sin (c+d x)\right )}{30 d} \] Input:

Integrate[(a + b*Cos[c + d*x])^2*Sec[c + d*x]^(7/2),x]
 

Output:

(Sec[c + d*x]^(5/2)*(-12*(3*a^2 + 5*b^2)*Cos[c + d*x]^(5/2)*EllipticE[(c + 
 d*x)/2, 2] + 40*a*b*Cos[c + d*x]^(5/2)*EllipticF[(c + d*x)/2, 2] + 2*(15* 
(a^2 + b^2) + 20*a*b*Cos[c + d*x] + 3*(3*a^2 + 5*b^2)*Cos[2*(c + d*x)])*Si 
n[c + d*x]))/(30*d)
 

Rubi [A] (verified)

Time = 0.99 (sec) , antiderivative size = 166, normalized size of antiderivative = 0.95, number of steps used = 17, number of rules used = 17, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.739, Rules used = {3042, 3717, 3042, 4275, 3042, 4255, 3042, 4258, 3042, 3120, 4534, 3042, 4255, 3042, 4258, 3042, 3119}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \sec ^{\frac {7}{2}}(c+d x) (a+b \cos (c+d x))^2 \, dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \csc \left (c+d x+\frac {\pi }{2}\right )^{7/2} \left (a+b \sin \left (c+d x+\frac {\pi }{2}\right )\right )^2dx\)

\(\Big \downarrow \) 3717

\(\displaystyle \int \sec ^{\frac {3}{2}}(c+d x) (a \sec (c+d x)+b)^2dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \csc \left (c+d x+\frac {\pi }{2}\right )^{3/2} \left (a \csc \left (c+d x+\frac {\pi }{2}\right )+b\right )^2dx\)

\(\Big \downarrow \) 4275

\(\displaystyle \int \sec ^{\frac {3}{2}}(c+d x) \left (b^2+a^2 \sec ^2(c+d x)\right )dx+2 a b \int \sec ^{\frac {5}{2}}(c+d x)dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \csc \left (c+d x+\frac {\pi }{2}\right )^{3/2} \left (b^2+a^2 \csc \left (c+d x+\frac {\pi }{2}\right )^2\right )dx+2 a b \int \csc \left (c+d x+\frac {\pi }{2}\right )^{5/2}dx\)

\(\Big \downarrow \) 4255

\(\displaystyle \int \csc \left (c+d x+\frac {\pi }{2}\right )^{3/2} \left (b^2+a^2 \csc \left (c+d x+\frac {\pi }{2}\right )^2\right )dx+2 a b \left (\frac {1}{3} \int \sqrt {\sec (c+d x)}dx+\frac {2 \sin (c+d x) \sec ^{\frac {3}{2}}(c+d x)}{3 d}\right )\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \csc \left (c+d x+\frac {\pi }{2}\right )^{3/2} \left (b^2+a^2 \csc \left (c+d x+\frac {\pi }{2}\right )^2\right )dx+2 a b \left (\frac {1}{3} \int \sqrt {\csc \left (c+d x+\frac {\pi }{2}\right )}dx+\frac {2 \sin (c+d x) \sec ^{\frac {3}{2}}(c+d x)}{3 d}\right )\)

\(\Big \downarrow \) 4258

\(\displaystyle \int \csc \left (c+d x+\frac {\pi }{2}\right )^{3/2} \left (b^2+a^2 \csc \left (c+d x+\frac {\pi }{2}\right )^2\right )dx+2 a b \left (\frac {1}{3} \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \int \frac {1}{\sqrt {\cos (c+d x)}}dx+\frac {2 \sin (c+d x) \sec ^{\frac {3}{2}}(c+d x)}{3 d}\right )\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \csc \left (c+d x+\frac {\pi }{2}\right )^{3/2} \left (b^2+a^2 \csc \left (c+d x+\frac {\pi }{2}\right )^2\right )dx+2 a b \left (\frac {1}{3} \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \int \frac {1}{\sqrt {\sin \left (c+d x+\frac {\pi }{2}\right )}}dx+\frac {2 \sin (c+d x) \sec ^{\frac {3}{2}}(c+d x)}{3 d}\right )\)

\(\Big \downarrow \) 3120

\(\displaystyle \int \csc \left (c+d x+\frac {\pi }{2}\right )^{3/2} \left (b^2+a^2 \csc \left (c+d x+\frac {\pi }{2}\right )^2\right )dx+2 a b \left (\frac {2 \sin (c+d x) \sec ^{\frac {3}{2}}(c+d x)}{3 d}+\frac {2 \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),2\right )}{3 d}\right )\)

\(\Big \downarrow \) 4534

\(\displaystyle \frac {1}{5} \left (3 a^2+5 b^2\right ) \int \sec ^{\frac {3}{2}}(c+d x)dx+\frac {2 a^2 \sin (c+d x) \sec ^{\frac {5}{2}}(c+d x)}{5 d}+2 a b \left (\frac {2 \sin (c+d x) \sec ^{\frac {3}{2}}(c+d x)}{3 d}+\frac {2 \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),2\right )}{3 d}\right )\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {1}{5} \left (3 a^2+5 b^2\right ) \int \csc \left (c+d x+\frac {\pi }{2}\right )^{3/2}dx+\frac {2 a^2 \sin (c+d x) \sec ^{\frac {5}{2}}(c+d x)}{5 d}+2 a b \left (\frac {2 \sin (c+d x) \sec ^{\frac {3}{2}}(c+d x)}{3 d}+\frac {2 \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),2\right )}{3 d}\right )\)

\(\Big \downarrow \) 4255

\(\displaystyle \frac {1}{5} \left (3 a^2+5 b^2\right ) \left (\frac {2 \sin (c+d x) \sqrt {\sec (c+d x)}}{d}-\int \frac {1}{\sqrt {\sec (c+d x)}}dx\right )+\frac {2 a^2 \sin (c+d x) \sec ^{\frac {5}{2}}(c+d x)}{5 d}+2 a b \left (\frac {2 \sin (c+d x) \sec ^{\frac {3}{2}}(c+d x)}{3 d}+\frac {2 \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),2\right )}{3 d}\right )\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {1}{5} \left (3 a^2+5 b^2\right ) \left (\frac {2 \sin (c+d x) \sqrt {\sec (c+d x)}}{d}-\int \frac {1}{\sqrt {\csc \left (c+d x+\frac {\pi }{2}\right )}}dx\right )+\frac {2 a^2 \sin (c+d x) \sec ^{\frac {5}{2}}(c+d x)}{5 d}+2 a b \left (\frac {2 \sin (c+d x) \sec ^{\frac {3}{2}}(c+d x)}{3 d}+\frac {2 \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),2\right )}{3 d}\right )\)

\(\Big \downarrow \) 4258

\(\displaystyle \frac {1}{5} \left (3 a^2+5 b^2\right ) \left (\frac {2 \sin (c+d x) \sqrt {\sec (c+d x)}}{d}-\sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \int \sqrt {\cos (c+d x)}dx\right )+\frac {2 a^2 \sin (c+d x) \sec ^{\frac {5}{2}}(c+d x)}{5 d}+2 a b \left (\frac {2 \sin (c+d x) \sec ^{\frac {3}{2}}(c+d x)}{3 d}+\frac {2 \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),2\right )}{3 d}\right )\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {1}{5} \left (3 a^2+5 b^2\right ) \left (\frac {2 \sin (c+d x) \sqrt {\sec (c+d x)}}{d}-\sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \int \sqrt {\sin \left (c+d x+\frac {\pi }{2}\right )}dx\right )+\frac {2 a^2 \sin (c+d x) \sec ^{\frac {5}{2}}(c+d x)}{5 d}+2 a b \left (\frac {2 \sin (c+d x) \sec ^{\frac {3}{2}}(c+d x)}{3 d}+\frac {2 \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),2\right )}{3 d}\right )\)

\(\Big \downarrow \) 3119

\(\displaystyle \frac {1}{5} \left (3 a^2+5 b^2\right ) \left (\frac {2 \sin (c+d x) \sqrt {\sec (c+d x)}}{d}-\frac {2 \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{d}\right )+\frac {2 a^2 \sin (c+d x) \sec ^{\frac {5}{2}}(c+d x)}{5 d}+2 a b \left (\frac {2 \sin (c+d x) \sec ^{\frac {3}{2}}(c+d x)}{3 d}+\frac {2 \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),2\right )}{3 d}\right )\)

Input:

Int[(a + b*Cos[c + d*x])^2*Sec[c + d*x]^(7/2),x]
 

Output:

(2*a^2*Sec[c + d*x]^(5/2)*Sin[c + d*x])/(5*d) + ((3*a^2 + 5*b^2)*((-2*Sqrt 
[Cos[c + d*x]]*EllipticE[(c + d*x)/2, 2]*Sqrt[Sec[c + d*x]])/d + (2*Sqrt[S 
ec[c + d*x]]*Sin[c + d*x])/d))/5 + 2*a*b*((2*Sqrt[Cos[c + d*x]]*EllipticF[ 
(c + d*x)/2, 2]*Sqrt[Sec[c + d*x]])/(3*d) + (2*Sec[c + d*x]^(3/2)*Sin[c + 
d*x])/(3*d))
 

Defintions of rubi rules used

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 3119
Int[Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2/d)*EllipticE[(1/2)* 
(c - Pi/2 + d*x), 2], x] /; FreeQ[{c, d}, x]
 

rule 3120
Int[1/Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2/d)*EllipticF[(1/2 
)*(c - Pi/2 + d*x), 2], x] /; FreeQ[{c, d}, x]
 

rule 3717
Int[(csc[(e_.) + (f_.)*(x_)]*(d_.))^(m_)*((a_) + (b_.)*sin[(e_.) + (f_.)*(x 
_)]^(n_.))^(p_.), x_Symbol] :> Simp[d^(n*p)   Int[(d*Csc[e + f*x])^(m - n*p 
)*(b + a*Csc[e + f*x]^n)^p, x], x] /; FreeQ[{a, b, d, e, f, m, n, p}, x] && 
  !IntegerQ[m] && IntegersQ[n, p]
 

rule 4255
Int[(csc[(c_.) + (d_.)*(x_)]*(b_.))^(n_), x_Symbol] :> Simp[(-b)*Cos[c + d* 
x]*((b*Csc[c + d*x])^(n - 1)/(d*(n - 1))), x] + Simp[b^2*((n - 2)/(n - 1)) 
  Int[(b*Csc[c + d*x])^(n - 2), x], x] /; FreeQ[{b, c, d}, x] && GtQ[n, 1] 
&& IntegerQ[2*n]
 

rule 4258
Int[(csc[(c_.) + (d_.)*(x_)]*(b_.))^(n_), x_Symbol] :> Simp[(b*Csc[c + d*x] 
)^n*Sin[c + d*x]^n   Int[1/Sin[c + d*x]^n, x], x] /; FreeQ[{b, c, d}, x] && 
 EqQ[n^2, 1/4]
 

rule 4275
Int[(csc[(e_.) + (f_.)*(x_)]*(d_.))^(n_.)*(csc[(e_.) + (f_.)*(x_)]*(b_.) + 
(a_))^2, x_Symbol] :> Simp[2*a*(b/d)   Int[(d*Csc[e + f*x])^(n + 1), x], x] 
 + Int[(d*Csc[e + f*x])^n*(a^2 + b^2*Csc[e + f*x]^2), x] /; FreeQ[{a, b, d, 
 e, f, n}, x]
 

rule 4534
Int[(csc[(e_.) + (f_.)*(x_)]*(b_.))^(m_.)*(csc[(e_.) + (f_.)*(x_)]^2*(C_.) 
+ (A_)), x_Symbol] :> Simp[(-C)*Cot[e + f*x]*((b*Csc[e + f*x])^m/(f*(m + 1) 
)), x] + Simp[(C*m + A*(m + 1))/(m + 1)   Int[(b*Csc[e + f*x])^m, x], x] /; 
 FreeQ[{b, e, f, A, C, m}, x] && NeQ[C*m + A*(m + 1), 0] &&  !LeQ[m, -1]
 
Maple [B] (verified)

Leaf count of result is larger than twice the leaf count of optimal. \(632\) vs. \(2(154)=308\).

Time = 190.84 (sec) , antiderivative size = 633, normalized size of antiderivative = 3.62

method result size
default \(-\frac {\sqrt {-\left (-2 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}+1\right ) \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}}\, \left (\frac {2 a^{2} \left (24 \cos \left (\frac {d x}{2}+\frac {c}{2}\right ) \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{6}-12 \operatorname {EllipticE}\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right ) \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {2 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-1}\, \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{4}-24 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{4} \cos \left (\frac {d x}{2}+\frac {c}{2}\right )+12 \operatorname {EllipticE}\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right ) \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {2 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-1}\, \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}+8 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2} \cos \left (\frac {d x}{2}+\frac {c}{2}\right )-3 \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {2 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-1}\, \operatorname {EllipticE}\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right )\right ) \sqrt {-2 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{4}+\sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}}}{5 \left (8 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{6}-12 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{4}+6 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-1\right ) \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}}+\frac {2 b^{2} \sqrt {-2 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{4}+\sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}}\, \left (2 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2} \cos \left (\frac {d x}{2}+\frac {c}{2}\right )-\sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {2 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-1}\, \operatorname {EllipticE}\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right )\right )}{\sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2} \left (2 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-1\right )}+4 a b \left (-\frac {\cos \left (\frac {d x}{2}+\frac {c}{2}\right ) \sqrt {-2 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{4}+\sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}}}{6 \left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-\frac {1}{2}\right )^{2}}+\frac {\sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {-2 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}+1}\, \operatorname {EllipticF}\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right )}{3 \sqrt {-2 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{4}+\sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}}}\right )\right )}{\sin \left (\frac {d x}{2}+\frac {c}{2}\right ) \sqrt {2 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-1}\, d}\) \(633\)
parts \(\text {Expression too large to display}\) \(760\)

Input:

int((a+cos(d*x+c)*b)^2*sec(d*x+c)^(7/2),x,method=_RETURNVERBOSE)
 

Output:

-(-(-2*cos(1/2*d*x+1/2*c)^2+1)*sin(1/2*d*x+1/2*c)^2)^(1/2)*(2/5*a^2/(8*sin 
(1/2*d*x+1/2*c)^6-12*sin(1/2*d*x+1/2*c)^4+6*sin(1/2*d*x+1/2*c)^2-1)/sin(1/ 
2*d*x+1/2*c)^2*(24*cos(1/2*d*x+1/2*c)*sin(1/2*d*x+1/2*c)^6-12*EllipticE(co 
s(1/2*d*x+1/2*c),2^(1/2))*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(2*sin(1/2*d*x+1/2* 
c)^2-1)^(1/2)*sin(1/2*d*x+1/2*c)^4-24*sin(1/2*d*x+1/2*c)^4*cos(1/2*d*x+1/2 
*c)+12*EllipticE(cos(1/2*d*x+1/2*c),2^(1/2))*(sin(1/2*d*x+1/2*c)^2)^(1/2)* 
(2*sin(1/2*d*x+1/2*c)^2-1)^(1/2)*sin(1/2*d*x+1/2*c)^2+8*sin(1/2*d*x+1/2*c) 
^2*cos(1/2*d*x+1/2*c)-3*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(2*sin(1/2*d*x+1/2*c) 
^2-1)^(1/2)*EllipticE(cos(1/2*d*x+1/2*c),2^(1/2)))*(-2*sin(1/2*d*x+1/2*c)^ 
4+sin(1/2*d*x+1/2*c)^2)^(1/2)+2*b^2/sin(1/2*d*x+1/2*c)^2/(2*sin(1/2*d*x+1/ 
2*c)^2-1)*(-2*sin(1/2*d*x+1/2*c)^4+sin(1/2*d*x+1/2*c)^2)^(1/2)*(2*sin(1/2* 
d*x+1/2*c)^2*cos(1/2*d*x+1/2*c)-(sin(1/2*d*x+1/2*c)^2)^(1/2)*(2*sin(1/2*d* 
x+1/2*c)^2-1)^(1/2)*EllipticE(cos(1/2*d*x+1/2*c),2^(1/2)))+4*a*b*(-1/6*cos 
(1/2*d*x+1/2*c)*(-2*sin(1/2*d*x+1/2*c)^4+sin(1/2*d*x+1/2*c)^2)^(1/2)/(cos( 
1/2*d*x+1/2*c)^2-1/2)^2+1/3*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(-2*cos(1/2*d*x+1 
/2*c)^2+1)^(1/2)/(-2*sin(1/2*d*x+1/2*c)^4+sin(1/2*d*x+1/2*c)^2)^(1/2)*Elli 
pticF(cos(1/2*d*x+1/2*c),2^(1/2))))/sin(1/2*d*x+1/2*c)/(2*cos(1/2*d*x+1/2* 
c)^2-1)^(1/2)/d
 

Fricas [C] (verification not implemented)

Result contains complex when optimal does not.

Time = 0.10 (sec) , antiderivative size = 223, normalized size of antiderivative = 1.27 \[ \int (a+b \cos (c+d x))^2 \sec ^{\frac {7}{2}}(c+d x) \, dx=\frac {-10 i \, \sqrt {2} a b \cos \left (d x + c\right )^{2} {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) + i \, \sin \left (d x + c\right )\right ) + 10 i \, \sqrt {2} a b \cos \left (d x + c\right )^{2} {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) - i \, \sin \left (d x + c\right )\right ) - 3 \, \sqrt {2} {\left (3 i \, a^{2} + 5 i \, b^{2}\right )} \cos \left (d x + c\right )^{2} {\rm weierstrassZeta}\left (-4, 0, {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) + i \, \sin \left (d x + c\right )\right )\right ) - 3 \, \sqrt {2} {\left (-3 i \, a^{2} - 5 i \, b^{2}\right )} \cos \left (d x + c\right )^{2} {\rm weierstrassZeta}\left (-4, 0, {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) - i \, \sin \left (d x + c\right )\right )\right ) + \frac {2 \, {\left (10 \, a b \cos \left (d x + c\right ) + 3 \, {\left (3 \, a^{2} + 5 \, b^{2}\right )} \cos \left (d x + c\right )^{2} + 3 \, a^{2}\right )} \sin \left (d x + c\right )}{\sqrt {\cos \left (d x + c\right )}}}{15 \, d \cos \left (d x + c\right )^{2}} \] Input:

integrate((a+b*cos(d*x+c))^2*sec(d*x+c)^(7/2),x, algorithm="fricas")
 

Output:

1/15*(-10*I*sqrt(2)*a*b*cos(d*x + c)^2*weierstrassPInverse(-4, 0, cos(d*x 
+ c) + I*sin(d*x + c)) + 10*I*sqrt(2)*a*b*cos(d*x + c)^2*weierstrassPInver 
se(-4, 0, cos(d*x + c) - I*sin(d*x + c)) - 3*sqrt(2)*(3*I*a^2 + 5*I*b^2)*c 
os(d*x + c)^2*weierstrassZeta(-4, 0, weierstrassPInverse(-4, 0, cos(d*x + 
c) + I*sin(d*x + c))) - 3*sqrt(2)*(-3*I*a^2 - 5*I*b^2)*cos(d*x + c)^2*weie 
rstrassZeta(-4, 0, weierstrassPInverse(-4, 0, cos(d*x + c) - I*sin(d*x + c 
))) + 2*(10*a*b*cos(d*x + c) + 3*(3*a^2 + 5*b^2)*cos(d*x + c)^2 + 3*a^2)*s 
in(d*x + c)/sqrt(cos(d*x + c)))/(d*cos(d*x + c)^2)
 

Sympy [F(-1)]

Timed out. \[ \int (a+b \cos (c+d x))^2 \sec ^{\frac {7}{2}}(c+d x) \, dx=\text {Timed out} \] Input:

integrate((a+b*cos(d*x+c))**2*sec(d*x+c)**(7/2),x)
 

Output:

Timed out
 

Maxima [F]

\[ \int (a+b \cos (c+d x))^2 \sec ^{\frac {7}{2}}(c+d x) \, dx=\int { {\left (b \cos \left (d x + c\right ) + a\right )}^{2} \sec \left (d x + c\right )^{\frac {7}{2}} \,d x } \] Input:

integrate((a+b*cos(d*x+c))^2*sec(d*x+c)^(7/2),x, algorithm="maxima")
 

Output:

integrate((b*cos(d*x + c) + a)^2*sec(d*x + c)^(7/2), x)
 

Giac [F]

\[ \int (a+b \cos (c+d x))^2 \sec ^{\frac {7}{2}}(c+d x) \, dx=\int { {\left (b \cos \left (d x + c\right ) + a\right )}^{2} \sec \left (d x + c\right )^{\frac {7}{2}} \,d x } \] Input:

integrate((a+b*cos(d*x+c))^2*sec(d*x+c)^(7/2),x, algorithm="giac")
 

Output:

integrate((b*cos(d*x + c) + a)^2*sec(d*x + c)^(7/2), x)
 

Mupad [F(-1)]

Timed out. \[ \int (a+b \cos (c+d x))^2 \sec ^{\frac {7}{2}}(c+d x) \, dx=\int {\left (\frac {1}{\cos \left (c+d\,x\right )}\right )}^{7/2}\,{\left (a+b\,\cos \left (c+d\,x\right )\right )}^2 \,d x \] Input:

int((1/cos(c + d*x))^(7/2)*(a + b*cos(c + d*x))^2,x)
 

Output:

int((1/cos(c + d*x))^(7/2)*(a + b*cos(c + d*x))^2, x)
 

Reduce [F]

\[ \int (a+b \cos (c+d x))^2 \sec ^{\frac {7}{2}}(c+d x) \, dx=2 \left (\int \sqrt {\sec \left (d x +c \right )}\, \cos \left (d x +c \right ) \sec \left (d x +c \right )^{3}d x \right ) a b +\left (\int \sqrt {\sec \left (d x +c \right )}\, \cos \left (d x +c \right )^{2} \sec \left (d x +c \right )^{3}d x \right ) b^{2}+\left (\int \sqrt {\sec \left (d x +c \right )}\, \sec \left (d x +c \right )^{3}d x \right ) a^{2} \] Input:

int((a+b*cos(d*x+c))^2*sec(d*x+c)^(7/2),x)
 

Output:

2*int(sqrt(sec(c + d*x))*cos(c + d*x)*sec(c + d*x)**3,x)*a*b + int(sqrt(se 
c(c + d*x))*cos(c + d*x)**2*sec(c + d*x)**3,x)*b**2 + int(sqrt(sec(c + d*x 
))*sec(c + d*x)**3,x)*a**2