\(\int \frac {(a+b \cos (c+d x))^2}{\sec ^{\frac {3}{2}}(c+d x)} \, dx\) [703]

Optimal result
Mathematica [A] (verified)
Rubi [A] (verified)
Maple [B] (verified)
Fricas [C] (verification not implemented)
Sympy [F]
Maxima [F]
Giac [F]
Mupad [F(-1)]
Reduce [F]

Optimal result

Integrand size = 23, antiderivative size = 175 \[ \int \frac {(a+b \cos (c+d x))^2}{\sec ^{\frac {3}{2}}(c+d x)} \, dx=\frac {12 a b \sqrt {\cos (c+d x)} E\left (\left .\frac {1}{2} (c+d x)\right |2\right ) \sqrt {\sec (c+d x)}}{5 d}+\frac {2 \left (7 a^2+5 b^2\right ) \sqrt {\cos (c+d x)} \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),2\right ) \sqrt {\sec (c+d x)}}{21 d}+\frac {2 b^2 \sin (c+d x)}{7 d \sec ^{\frac {5}{2}}(c+d x)}+\frac {4 a b \sin (c+d x)}{5 d \sec ^{\frac {3}{2}}(c+d x)}+\frac {2 \left (7 a^2+5 b^2\right ) \sin (c+d x)}{21 d \sqrt {\sec (c+d x)}} \] Output:

12/5*a*b*cos(d*x+c)^(1/2)*EllipticE(sin(1/2*d*x+1/2*c),2^(1/2))*sec(d*x+c) 
^(1/2)/d+2/21*(7*a^2+5*b^2)*cos(d*x+c)^(1/2)*InverseJacobiAM(1/2*d*x+1/2*c 
,2^(1/2))*sec(d*x+c)^(1/2)/d+2/7*b^2*sin(d*x+c)/d/sec(d*x+c)^(5/2)+4/5*a*b 
*sin(d*x+c)/d/sec(d*x+c)^(3/2)+2/21*(7*a^2+5*b^2)*sin(d*x+c)/d/sec(d*x+c)^ 
(1/2)
                                                                                    
                                                                                    
 

Mathematica [A] (verified)

Time = 1.15 (sec) , antiderivative size = 120, normalized size of antiderivative = 0.69 \[ \int \frac {(a+b \cos (c+d x))^2}{\sec ^{\frac {3}{2}}(c+d x)} \, dx=\frac {\sqrt {\sec (c+d x)} \left (504 a b \sqrt {\cos (c+d x)} E\left (\left .\frac {1}{2} (c+d x)\right |2\right )+20 \left (7 a^2+5 b^2\right ) \sqrt {\cos (c+d x)} \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),2\right )+\left (70 a^2+65 b^2+84 a b \cos (c+d x)+15 b^2 \cos (2 (c+d x))\right ) \sin (2 (c+d x))\right )}{210 d} \] Input:

Integrate[(a + b*Cos[c + d*x])^2/Sec[c + d*x]^(3/2),x]
 

Output:

(Sqrt[Sec[c + d*x]]*(504*a*b*Sqrt[Cos[c + d*x]]*EllipticE[(c + d*x)/2, 2] 
+ 20*(7*a^2 + 5*b^2)*Sqrt[Cos[c + d*x]]*EllipticF[(c + d*x)/2, 2] + (70*a^ 
2 + 65*b^2 + 84*a*b*Cos[c + d*x] + 15*b^2*Cos[2*(c + d*x)])*Sin[2*(c + d*x 
)]))/(210*d)
 

Rubi [A] (verified)

Time = 1.01 (sec) , antiderivative size = 170, normalized size of antiderivative = 0.97, number of steps used = 17, number of rules used = 17, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.739, Rules used = {3042, 3717, 3042, 4275, 3042, 4256, 3042, 4258, 3042, 3119, 4533, 3042, 4256, 3042, 4258, 3042, 3120}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {(a+b \cos (c+d x))^2}{\sec ^{\frac {3}{2}}(c+d x)} \, dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \frac {\left (a+b \sin \left (c+d x+\frac {\pi }{2}\right )\right )^2}{\csc \left (c+d x+\frac {\pi }{2}\right )^{3/2}}dx\)

\(\Big \downarrow \) 3717

\(\displaystyle \int \frac {(a \sec (c+d x)+b)^2}{\sec ^{\frac {7}{2}}(c+d x)}dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \frac {\left (a \csc \left (c+d x+\frac {\pi }{2}\right )+b\right )^2}{\csc \left (c+d x+\frac {\pi }{2}\right )^{7/2}}dx\)

\(\Big \downarrow \) 4275

\(\displaystyle \int \frac {b^2+a^2 \sec ^2(c+d x)}{\sec ^{\frac {7}{2}}(c+d x)}dx+2 a b \int \frac {1}{\sec ^{\frac {5}{2}}(c+d x)}dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \frac {b^2+a^2 \csc \left (c+d x+\frac {\pi }{2}\right )^2}{\csc \left (c+d x+\frac {\pi }{2}\right )^{7/2}}dx+2 a b \int \frac {1}{\csc \left (c+d x+\frac {\pi }{2}\right )^{5/2}}dx\)

\(\Big \downarrow \) 4256

\(\displaystyle \int \frac {b^2+a^2 \csc \left (c+d x+\frac {\pi }{2}\right )^2}{\csc \left (c+d x+\frac {\pi }{2}\right )^{7/2}}dx+2 a b \left (\frac {3}{5} \int \frac {1}{\sqrt {\sec (c+d x)}}dx+\frac {2 \sin (c+d x)}{5 d \sec ^{\frac {3}{2}}(c+d x)}\right )\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \frac {b^2+a^2 \csc \left (c+d x+\frac {\pi }{2}\right )^2}{\csc \left (c+d x+\frac {\pi }{2}\right )^{7/2}}dx+2 a b \left (\frac {3}{5} \int \frac {1}{\sqrt {\csc \left (c+d x+\frac {\pi }{2}\right )}}dx+\frac {2 \sin (c+d x)}{5 d \sec ^{\frac {3}{2}}(c+d x)}\right )\)

\(\Big \downarrow \) 4258

\(\displaystyle \int \frac {b^2+a^2 \csc \left (c+d x+\frac {\pi }{2}\right )^2}{\csc \left (c+d x+\frac {\pi }{2}\right )^{7/2}}dx+2 a b \left (\frac {3}{5} \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \int \sqrt {\cos (c+d x)}dx+\frac {2 \sin (c+d x)}{5 d \sec ^{\frac {3}{2}}(c+d x)}\right )\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \frac {b^2+a^2 \csc \left (c+d x+\frac {\pi }{2}\right )^2}{\csc \left (c+d x+\frac {\pi }{2}\right )^{7/2}}dx+2 a b \left (\frac {3}{5} \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \int \sqrt {\sin \left (c+d x+\frac {\pi }{2}\right )}dx+\frac {2 \sin (c+d x)}{5 d \sec ^{\frac {3}{2}}(c+d x)}\right )\)

\(\Big \downarrow \) 3119

\(\displaystyle \int \frac {b^2+a^2 \csc \left (c+d x+\frac {\pi }{2}\right )^2}{\csc \left (c+d x+\frac {\pi }{2}\right )^{7/2}}dx+2 a b \left (\frac {2 \sin (c+d x)}{5 d \sec ^{\frac {3}{2}}(c+d x)}+\frac {6 \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{5 d}\right )\)

\(\Big \downarrow \) 4533

\(\displaystyle \frac {1}{7} \left (7 a^2+5 b^2\right ) \int \frac {1}{\sec ^{\frac {3}{2}}(c+d x)}dx+2 a b \left (\frac {2 \sin (c+d x)}{5 d \sec ^{\frac {3}{2}}(c+d x)}+\frac {6 \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{5 d}\right )+\frac {2 b^2 \sin (c+d x)}{7 d \sec ^{\frac {5}{2}}(c+d x)}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {1}{7} \left (7 a^2+5 b^2\right ) \int \frac {1}{\csc \left (c+d x+\frac {\pi }{2}\right )^{3/2}}dx+2 a b \left (\frac {2 \sin (c+d x)}{5 d \sec ^{\frac {3}{2}}(c+d x)}+\frac {6 \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{5 d}\right )+\frac {2 b^2 \sin (c+d x)}{7 d \sec ^{\frac {5}{2}}(c+d x)}\)

\(\Big \downarrow \) 4256

\(\displaystyle \frac {1}{7} \left (7 a^2+5 b^2\right ) \left (\frac {1}{3} \int \sqrt {\sec (c+d x)}dx+\frac {2 \sin (c+d x)}{3 d \sqrt {\sec (c+d x)}}\right )+2 a b \left (\frac {2 \sin (c+d x)}{5 d \sec ^{\frac {3}{2}}(c+d x)}+\frac {6 \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{5 d}\right )+\frac {2 b^2 \sin (c+d x)}{7 d \sec ^{\frac {5}{2}}(c+d x)}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {1}{7} \left (7 a^2+5 b^2\right ) \left (\frac {1}{3} \int \sqrt {\csc \left (c+d x+\frac {\pi }{2}\right )}dx+\frac {2 \sin (c+d x)}{3 d \sqrt {\sec (c+d x)}}\right )+2 a b \left (\frac {2 \sin (c+d x)}{5 d \sec ^{\frac {3}{2}}(c+d x)}+\frac {6 \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{5 d}\right )+\frac {2 b^2 \sin (c+d x)}{7 d \sec ^{\frac {5}{2}}(c+d x)}\)

\(\Big \downarrow \) 4258

\(\displaystyle \frac {1}{7} \left (7 a^2+5 b^2\right ) \left (\frac {1}{3} \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \int \frac {1}{\sqrt {\cos (c+d x)}}dx+\frac {2 \sin (c+d x)}{3 d \sqrt {\sec (c+d x)}}\right )+2 a b \left (\frac {2 \sin (c+d x)}{5 d \sec ^{\frac {3}{2}}(c+d x)}+\frac {6 \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{5 d}\right )+\frac {2 b^2 \sin (c+d x)}{7 d \sec ^{\frac {5}{2}}(c+d x)}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {1}{7} \left (7 a^2+5 b^2\right ) \left (\frac {1}{3} \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \int \frac {1}{\sqrt {\sin \left (c+d x+\frac {\pi }{2}\right )}}dx+\frac {2 \sin (c+d x)}{3 d \sqrt {\sec (c+d x)}}\right )+2 a b \left (\frac {2 \sin (c+d x)}{5 d \sec ^{\frac {3}{2}}(c+d x)}+\frac {6 \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{5 d}\right )+\frac {2 b^2 \sin (c+d x)}{7 d \sec ^{\frac {5}{2}}(c+d x)}\)

\(\Big \downarrow \) 3120

\(\displaystyle \frac {1}{7} \left (7 a^2+5 b^2\right ) \left (\frac {2 \sin (c+d x)}{3 d \sqrt {\sec (c+d x)}}+\frac {2 \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),2\right )}{3 d}\right )+2 a b \left (\frac {2 \sin (c+d x)}{5 d \sec ^{\frac {3}{2}}(c+d x)}+\frac {6 \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{5 d}\right )+\frac {2 b^2 \sin (c+d x)}{7 d \sec ^{\frac {5}{2}}(c+d x)}\)

Input:

Int[(a + b*Cos[c + d*x])^2/Sec[c + d*x]^(3/2),x]
 

Output:

(2*b^2*Sin[c + d*x])/(7*d*Sec[c + d*x]^(5/2)) + 2*a*b*((6*Sqrt[Cos[c + d*x 
]]*EllipticE[(c + d*x)/2, 2]*Sqrt[Sec[c + d*x]])/(5*d) + (2*Sin[c + d*x])/ 
(5*d*Sec[c + d*x]^(3/2))) + ((7*a^2 + 5*b^2)*((2*Sqrt[Cos[c + d*x]]*Ellipt 
icF[(c + d*x)/2, 2]*Sqrt[Sec[c + d*x]])/(3*d) + (2*Sin[c + d*x])/(3*d*Sqrt 
[Sec[c + d*x]])))/7
 

Defintions of rubi rules used

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 3119
Int[Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2/d)*EllipticE[(1/2)* 
(c - Pi/2 + d*x), 2], x] /; FreeQ[{c, d}, x]
 

rule 3120
Int[1/Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2/d)*EllipticF[(1/2 
)*(c - Pi/2 + d*x), 2], x] /; FreeQ[{c, d}, x]
 

rule 3717
Int[(csc[(e_.) + (f_.)*(x_)]*(d_.))^(m_)*((a_) + (b_.)*sin[(e_.) + (f_.)*(x 
_)]^(n_.))^(p_.), x_Symbol] :> Simp[d^(n*p)   Int[(d*Csc[e + f*x])^(m - n*p 
)*(b + a*Csc[e + f*x]^n)^p, x], x] /; FreeQ[{a, b, d, e, f, m, n, p}, x] && 
  !IntegerQ[m] && IntegersQ[n, p]
 

rule 4256
Int[(csc[(c_.) + (d_.)*(x_)]*(b_.))^(n_), x_Symbol] :> Simp[Cos[c + d*x]*(( 
b*Csc[c + d*x])^(n + 1)/(b*d*n)), x] + Simp[(n + 1)/(b^2*n)   Int[(b*Csc[c 
+ d*x])^(n + 2), x], x] /; FreeQ[{b, c, d}, x] && LtQ[n, -1] && IntegerQ[2* 
n]
 

rule 4258
Int[(csc[(c_.) + (d_.)*(x_)]*(b_.))^(n_), x_Symbol] :> Simp[(b*Csc[c + d*x] 
)^n*Sin[c + d*x]^n   Int[1/Sin[c + d*x]^n, x], x] /; FreeQ[{b, c, d}, x] && 
 EqQ[n^2, 1/4]
 

rule 4275
Int[(csc[(e_.) + (f_.)*(x_)]*(d_.))^(n_.)*(csc[(e_.) + (f_.)*(x_)]*(b_.) + 
(a_))^2, x_Symbol] :> Simp[2*a*(b/d)   Int[(d*Csc[e + f*x])^(n + 1), x], x] 
 + Int[(d*Csc[e + f*x])^n*(a^2 + b^2*Csc[e + f*x]^2), x] /; FreeQ[{a, b, d, 
 e, f, n}, x]
 

rule 4533
Int[(csc[(e_.) + (f_.)*(x_)]*(b_.))^(m_.)*(csc[(e_.) + (f_.)*(x_)]^2*(C_.) 
+ (A_)), x_Symbol] :> Simp[A*Cot[e + f*x]*((b*Csc[e + f*x])^m/(f*m)), x] + 
Simp[(C*m + A*(m + 1))/(b^2*m)   Int[(b*Csc[e + f*x])^(m + 2), x], x] /; Fr 
eeQ[{b, e, f, A, C}, x] && NeQ[C*m + A*(m + 1), 0] && LeQ[m, -1]
 
Maple [B] (verified)

Leaf count of result is larger than twice the leaf count of optimal. \(361\) vs. \(2(154)=308\).

Time = 17.00 (sec) , antiderivative size = 362, normalized size of antiderivative = 2.07

method result size
default \(-\frac {2 \sqrt {\left (2 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-1\right ) \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}}\, \left (240 \cos \left (\frac {d x}{2}+\frac {c}{2}\right ) \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{8} b^{2}+\left (-336 a b -360 b^{2}\right ) \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{6} \cos \left (\frac {d x}{2}+\frac {c}{2}\right )+\left (140 a^{2}+336 a b +280 b^{2}\right ) \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{4} \cos \left (\frac {d x}{2}+\frac {c}{2}\right )+\left (-70 a^{2}-84 a b -80 b^{2}\right ) \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2} \cos \left (\frac {d x}{2}+\frac {c}{2}\right )+35 a^{2} \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {2 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-1}\, \operatorname {EllipticF}\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right )+25 b^{2} \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {2 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-1}\, \operatorname {EllipticF}\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right )-126 \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {2 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-1}\, \operatorname {EllipticE}\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right ) a b \right )}{105 \sqrt {-2 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{4}+\sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}}\, \sin \left (\frac {d x}{2}+\frac {c}{2}\right ) \sqrt {2 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-1}\, d}\) \(362\)
parts \(-\frac {2 a^{2} \sqrt {\left (2 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-1\right ) \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}}\, \left (4 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{4} \cos \left (\frac {d x}{2}+\frac {c}{2}\right )-2 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2} \cos \left (\frac {d x}{2}+\frac {c}{2}\right )+\sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {2 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-1}\, \operatorname {EllipticF}\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right )\right )}{3 \sqrt {-2 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{4}+\sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}}\, \sin \left (\frac {d x}{2}+\frac {c}{2}\right ) \sqrt {2 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-1}\, d}-\frac {2 b^{2} \sqrt {\left (2 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-1\right ) \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}}\, \left (48 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{9}-120 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{7}+128 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{5}-72 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{3}+5 \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {-2 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}+1}\, \operatorname {EllipticF}\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right )+16 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{21 \sqrt {-2 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{4}+\sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}}\, \sin \left (\frac {d x}{2}+\frac {c}{2}\right ) \sqrt {2 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-1}\, d}-\frac {4 a b \sqrt {\left (2 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-1\right ) \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}}\, \left (-8 \cos \left (\frac {d x}{2}+\frac {c}{2}\right ) \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{6}+8 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{4} \cos \left (\frac {d x}{2}+\frac {c}{2}\right )-2 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2} \cos \left (\frac {d x}{2}+\frac {c}{2}\right )-3 \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {2 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-1}\, \operatorname {EllipticE}\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right )\right )}{5 \sqrt {-2 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{4}+\sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}}\, \sin \left (\frac {d x}{2}+\frac {c}{2}\right ) \sqrt {2 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-1}\, d}\) \(587\)

Input:

int((a+cos(d*x+c)*b)^2/sec(d*x+c)^(3/2),x,method=_RETURNVERBOSE)
 

Output:

-2/105*((2*cos(1/2*d*x+1/2*c)^2-1)*sin(1/2*d*x+1/2*c)^2)^(1/2)*(240*cos(1/ 
2*d*x+1/2*c)*sin(1/2*d*x+1/2*c)^8*b^2+(-336*a*b-360*b^2)*sin(1/2*d*x+1/2*c 
)^6*cos(1/2*d*x+1/2*c)+(140*a^2+336*a*b+280*b^2)*sin(1/2*d*x+1/2*c)^4*cos( 
1/2*d*x+1/2*c)+(-70*a^2-84*a*b-80*b^2)*sin(1/2*d*x+1/2*c)^2*cos(1/2*d*x+1/ 
2*c)+35*a^2*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(2*sin(1/2*d*x+1/2*c)^2-1)^(1/2)* 
EllipticF(cos(1/2*d*x+1/2*c),2^(1/2))+25*b^2*(sin(1/2*d*x+1/2*c)^2)^(1/2)* 
(2*sin(1/2*d*x+1/2*c)^2-1)^(1/2)*EllipticF(cos(1/2*d*x+1/2*c),2^(1/2))-126 
*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(2*sin(1/2*d*x+1/2*c)^2-1)^(1/2)*EllipticE(c 
os(1/2*d*x+1/2*c),2^(1/2))*a*b)/(-2*sin(1/2*d*x+1/2*c)^4+sin(1/2*d*x+1/2*c 
)^2)^(1/2)/sin(1/2*d*x+1/2*c)/(2*cos(1/2*d*x+1/2*c)^2-1)^(1/2)/d
 

Fricas [C] (verification not implemented)

Result contains complex when optimal does not.

Time = 0.09 (sec) , antiderivative size = 191, normalized size of antiderivative = 1.09 \[ \int \frac {(a+b \cos (c+d x))^2}{\sec ^{\frac {3}{2}}(c+d x)} \, dx=\frac {126 i \, \sqrt {2} a b {\rm weierstrassZeta}\left (-4, 0, {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) + i \, \sin \left (d x + c\right )\right )\right ) - 126 i \, \sqrt {2} a b {\rm weierstrassZeta}\left (-4, 0, {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) - i \, \sin \left (d x + c\right )\right )\right ) - 5 \, \sqrt {2} {\left (7 i \, a^{2} + 5 i \, b^{2}\right )} {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) + i \, \sin \left (d x + c\right )\right ) - 5 \, \sqrt {2} {\left (-7 i \, a^{2} - 5 i \, b^{2}\right )} {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) - i \, \sin \left (d x + c\right )\right ) + \frac {2 \, {\left (15 \, b^{2} \cos \left (d x + c\right )^{3} + 42 \, a b \cos \left (d x + c\right )^{2} + 5 \, {\left (7 \, a^{2} + 5 \, b^{2}\right )} \cos \left (d x + c\right )\right )} \sin \left (d x + c\right )}{\sqrt {\cos \left (d x + c\right )}}}{105 \, d} \] Input:

integrate((a+b*cos(d*x+c))^2/sec(d*x+c)^(3/2),x, algorithm="fricas")
 

Output:

1/105*(126*I*sqrt(2)*a*b*weierstrassZeta(-4, 0, weierstrassPInverse(-4, 0, 
 cos(d*x + c) + I*sin(d*x + c))) - 126*I*sqrt(2)*a*b*weierstrassZeta(-4, 0 
, weierstrassPInverse(-4, 0, cos(d*x + c) - I*sin(d*x + c))) - 5*sqrt(2)*( 
7*I*a^2 + 5*I*b^2)*weierstrassPInverse(-4, 0, cos(d*x + c) + I*sin(d*x + c 
)) - 5*sqrt(2)*(-7*I*a^2 - 5*I*b^2)*weierstrassPInverse(-4, 0, cos(d*x + c 
) - I*sin(d*x + c)) + 2*(15*b^2*cos(d*x + c)^3 + 42*a*b*cos(d*x + c)^2 + 5 
*(7*a^2 + 5*b^2)*cos(d*x + c))*sin(d*x + c)/sqrt(cos(d*x + c)))/d
 

Sympy [F]

\[ \int \frac {(a+b \cos (c+d x))^2}{\sec ^{\frac {3}{2}}(c+d x)} \, dx=\int \frac {\left (a + b \cos {\left (c + d x \right )}\right )^{2}}{\sec ^{\frac {3}{2}}{\left (c + d x \right )}}\, dx \] Input:

integrate((a+b*cos(d*x+c))**2/sec(d*x+c)**(3/2),x)
 

Output:

Integral((a + b*cos(c + d*x))**2/sec(c + d*x)**(3/2), x)
 

Maxima [F]

\[ \int \frac {(a+b \cos (c+d x))^2}{\sec ^{\frac {3}{2}}(c+d x)} \, dx=\int { \frac {{\left (b \cos \left (d x + c\right ) + a\right )}^{2}}{\sec \left (d x + c\right )^{\frac {3}{2}}} \,d x } \] Input:

integrate((a+b*cos(d*x+c))^2/sec(d*x+c)^(3/2),x, algorithm="maxima")
 

Output:

integrate((b*cos(d*x + c) + a)^2/sec(d*x + c)^(3/2), x)
 

Giac [F]

\[ \int \frac {(a+b \cos (c+d x))^2}{\sec ^{\frac {3}{2}}(c+d x)} \, dx=\int { \frac {{\left (b \cos \left (d x + c\right ) + a\right )}^{2}}{\sec \left (d x + c\right )^{\frac {3}{2}}} \,d x } \] Input:

integrate((a+b*cos(d*x+c))^2/sec(d*x+c)^(3/2),x, algorithm="giac")
 

Output:

integrate((b*cos(d*x + c) + a)^2/sec(d*x + c)^(3/2), x)
 

Mupad [F(-1)]

Timed out. \[ \int \frac {(a+b \cos (c+d x))^2}{\sec ^{\frac {3}{2}}(c+d x)} \, dx=\int \frac {{\left (a+b\,\cos \left (c+d\,x\right )\right )}^2}{{\left (\frac {1}{\cos \left (c+d\,x\right )}\right )}^{3/2}} \,d x \] Input:

int((a + b*cos(c + d*x))^2/(1/cos(c + d*x))^(3/2),x)
 

Output:

int((a + b*cos(c + d*x))^2/(1/cos(c + d*x))^(3/2), x)
 

Reduce [F]

\[ \int \frac {(a+b \cos (c+d x))^2}{\sec ^{\frac {3}{2}}(c+d x)} \, dx=\left (\int \frac {\sqrt {\sec \left (d x +c \right )}}{\sec \left (d x +c \right )^{2}}d x \right ) a^{2}+2 \left (\int \frac {\sqrt {\sec \left (d x +c \right )}\, \cos \left (d x +c \right )}{\sec \left (d x +c \right )^{2}}d x \right ) a b +\left (\int \frac {\sqrt {\sec \left (d x +c \right )}\, \cos \left (d x +c \right )^{2}}{\sec \left (d x +c \right )^{2}}d x \right ) b^{2} \] Input:

int((a+b*cos(d*x+c))^2/sec(d*x+c)^(3/2),x)
 

Output:

int(sqrt(sec(c + d*x))/sec(c + d*x)**2,x)*a**2 + 2*int((sqrt(sec(c + d*x)) 
*cos(c + d*x))/sec(c + d*x)**2,x)*a*b + int((sqrt(sec(c + d*x))*cos(c + d* 
x)**2)/sec(c + d*x)**2,x)*b**2