\(\int (a+b \cos (c+d x))^3 \sec ^{\frac {5}{2}}(c+d x) \, dx\) [707]

Optimal result
Mathematica [A] (verified)
Rubi [A] (verified)
Maple [B] (verified)
Fricas [C] (verification not implemented)
Sympy [F(-1)]
Maxima [F]
Giac [F]
Mupad [F(-1)]
Reduce [F]

Optimal result

Integrand size = 23, antiderivative size = 160 \[ \int (a+b \cos (c+d x))^3 \sec ^{\frac {5}{2}}(c+d x) \, dx=-\frac {2 b \left (3 a^2-b^2\right ) \sqrt {\cos (c+d x)} E\left (\left .\frac {1}{2} (c+d x)\right |2\right ) \sqrt {\sec (c+d x)}}{d}+\frac {2 a \left (a^2+9 b^2\right ) \sqrt {\cos (c+d x)} \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),2\right ) \sqrt {\sec (c+d x)}}{3 d}+\frac {16 a^2 b \sqrt {\sec (c+d x)} \sin (c+d x)}{3 d}+\frac {2 a^2 \sqrt {\sec (c+d x)} (b+a \sec (c+d x)) \sin (c+d x)}{3 d} \] Output:

-2*b*(3*a^2-b^2)*cos(d*x+c)^(1/2)*EllipticE(sin(1/2*d*x+1/2*c),2^(1/2))*se 
c(d*x+c)^(1/2)/d+2/3*a*(a^2+9*b^2)*cos(d*x+c)^(1/2)*InverseJacobiAM(1/2*d* 
x+1/2*c,2^(1/2))*sec(d*x+c)^(1/2)/d+16/3*a^2*b*sec(d*x+c)^(1/2)*sin(d*x+c) 
/d+2/3*a^2*sec(d*x+c)^(1/2)*(b+a*sec(d*x+c))*sin(d*x+c)/d
 

Mathematica [A] (verified)

Time = 1.11 (sec) , antiderivative size = 106, normalized size of antiderivative = 0.66 \[ \int (a+b \cos (c+d x))^3 \sec ^{\frac {5}{2}}(c+d x) \, dx=\frac {\sec ^{\frac {3}{2}}(c+d x) \left (6 b \left (-3 a^2+b^2\right ) \cos ^{\frac {3}{2}}(c+d x) E\left (\left .\frac {1}{2} (c+d x)\right |2\right )+a \left (2 \left (a^2+9 b^2\right ) \cos ^{\frac {3}{2}}(c+d x) \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),2\right )+2 a (a+9 b \cos (c+d x)) \sin (c+d x)\right )\right )}{3 d} \] Input:

Integrate[(a + b*Cos[c + d*x])^3*Sec[c + d*x]^(5/2),x]
 

Output:

(Sec[c + d*x]^(3/2)*(6*b*(-3*a^2 + b^2)*Cos[c + d*x]^(3/2)*EllipticE[(c + 
d*x)/2, 2] + a*(2*(a^2 + 9*b^2)*Cos[c + d*x]^(3/2)*EllipticF[(c + d*x)/2, 
2] + 2*a*(a + 9*b*Cos[c + d*x])*Sin[c + d*x])))/(3*d)
 

Rubi [A] (verified)

Time = 1.04 (sec) , antiderivative size = 161, normalized size of antiderivative = 1.01, number of steps used = 16, number of rules used = 16, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.696, Rules used = {3042, 3717, 3042, 4329, 27, 3042, 4535, 3042, 4258, 3042, 3120, 4534, 3042, 4258, 3042, 3119}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \sec ^{\frac {5}{2}}(c+d x) (a+b \cos (c+d x))^3 \, dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \csc \left (c+d x+\frac {\pi }{2}\right )^{5/2} \left (a+b \sin \left (c+d x+\frac {\pi }{2}\right )\right )^3dx\)

\(\Big \downarrow \) 3717

\(\displaystyle \int \frac {(a \sec (c+d x)+b)^3}{\sqrt {\sec (c+d x)}}dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \frac {\left (a \csc \left (c+d x+\frac {\pi }{2}\right )+b\right )^3}{\sqrt {\csc \left (c+d x+\frac {\pi }{2}\right )}}dx\)

\(\Big \downarrow \) 4329

\(\displaystyle \frac {2}{3} \int -\frac {-8 a^2 b \sec ^2(c+d x)-a \left (a^2+9 b^2\right ) \sec (c+d x)+b \left (a^2-3 b^2\right )}{2 \sqrt {\sec (c+d x)}}dx+\frac {2 a^2 \sin (c+d x) \sqrt {\sec (c+d x)} (a \sec (c+d x)+b)}{3 d}\)

\(\Big \downarrow \) 27

\(\displaystyle \frac {2 a^2 \sin (c+d x) \sqrt {\sec (c+d x)} (a \sec (c+d x)+b)}{3 d}-\frac {1}{3} \int \frac {-8 a^2 b \sec ^2(c+d x)-a \left (a^2+9 b^2\right ) \sec (c+d x)+b \left (a^2-3 b^2\right )}{\sqrt {\sec (c+d x)}}dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {2 a^2 \sin (c+d x) \sqrt {\sec (c+d x)} (a \sec (c+d x)+b)}{3 d}-\frac {1}{3} \int \frac {-8 a^2 b \csc \left (c+d x+\frac {\pi }{2}\right )^2-a \left (a^2+9 b^2\right ) \csc \left (c+d x+\frac {\pi }{2}\right )+b \left (a^2-3 b^2\right )}{\sqrt {\csc \left (c+d x+\frac {\pi }{2}\right )}}dx\)

\(\Big \downarrow \) 4535

\(\displaystyle \frac {1}{3} \left (a \left (a^2+9 b^2\right ) \int \sqrt {\sec (c+d x)}dx-\int \frac {b \left (a^2-3 b^2\right )-8 a^2 b \sec ^2(c+d x)}{\sqrt {\sec (c+d x)}}dx\right )+\frac {2 a^2 \sin (c+d x) \sqrt {\sec (c+d x)} (a \sec (c+d x)+b)}{3 d}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {1}{3} \left (a \left (a^2+9 b^2\right ) \int \sqrt {\csc \left (c+d x+\frac {\pi }{2}\right )}dx-\int \frac {b \left (a^2-3 b^2\right )-8 a^2 b \csc \left (c+d x+\frac {\pi }{2}\right )^2}{\sqrt {\csc \left (c+d x+\frac {\pi }{2}\right )}}dx\right )+\frac {2 a^2 \sin (c+d x) \sqrt {\sec (c+d x)} (a \sec (c+d x)+b)}{3 d}\)

\(\Big \downarrow \) 4258

\(\displaystyle \frac {1}{3} \left (a \left (a^2+9 b^2\right ) \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \int \frac {1}{\sqrt {\cos (c+d x)}}dx-\int \frac {b \left (a^2-3 b^2\right )-8 a^2 b \csc \left (c+d x+\frac {\pi }{2}\right )^2}{\sqrt {\csc \left (c+d x+\frac {\pi }{2}\right )}}dx\right )+\frac {2 a^2 \sin (c+d x) \sqrt {\sec (c+d x)} (a \sec (c+d x)+b)}{3 d}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {1}{3} \left (a \left (a^2+9 b^2\right ) \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \int \frac {1}{\sqrt {\sin \left (c+d x+\frac {\pi }{2}\right )}}dx-\int \frac {b \left (a^2-3 b^2\right )-8 a^2 b \csc \left (c+d x+\frac {\pi }{2}\right )^2}{\sqrt {\csc \left (c+d x+\frac {\pi }{2}\right )}}dx\right )+\frac {2 a^2 \sin (c+d x) \sqrt {\sec (c+d x)} (a \sec (c+d x)+b)}{3 d}\)

\(\Big \downarrow \) 3120

\(\displaystyle \frac {1}{3} \left (\frac {2 a \left (a^2+9 b^2\right ) \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),2\right )}{d}-\int \frac {b \left (a^2-3 b^2\right )-8 a^2 b \csc \left (c+d x+\frac {\pi }{2}\right )^2}{\sqrt {\csc \left (c+d x+\frac {\pi }{2}\right )}}dx\right )+\frac {2 a^2 \sin (c+d x) \sqrt {\sec (c+d x)} (a \sec (c+d x)+b)}{3 d}\)

\(\Big \downarrow \) 4534

\(\displaystyle \frac {1}{3} \left (-3 b \left (3 a^2-b^2\right ) \int \frac {1}{\sqrt {\sec (c+d x)}}dx+\frac {2 a \left (a^2+9 b^2\right ) \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),2\right )}{d}+\frac {16 a^2 b \sin (c+d x) \sqrt {\sec (c+d x)}}{d}\right )+\frac {2 a^2 \sin (c+d x) \sqrt {\sec (c+d x)} (a \sec (c+d x)+b)}{3 d}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {1}{3} \left (-3 b \left (3 a^2-b^2\right ) \int \frac {1}{\sqrt {\csc \left (c+d x+\frac {\pi }{2}\right )}}dx+\frac {2 a \left (a^2+9 b^2\right ) \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),2\right )}{d}+\frac {16 a^2 b \sin (c+d x) \sqrt {\sec (c+d x)}}{d}\right )+\frac {2 a^2 \sin (c+d x) \sqrt {\sec (c+d x)} (a \sec (c+d x)+b)}{3 d}\)

\(\Big \downarrow \) 4258

\(\displaystyle \frac {1}{3} \left (-3 b \left (3 a^2-b^2\right ) \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \int \sqrt {\cos (c+d x)}dx+\frac {2 a \left (a^2+9 b^2\right ) \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),2\right )}{d}+\frac {16 a^2 b \sin (c+d x) \sqrt {\sec (c+d x)}}{d}\right )+\frac {2 a^2 \sin (c+d x) \sqrt {\sec (c+d x)} (a \sec (c+d x)+b)}{3 d}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {1}{3} \left (-3 b \left (3 a^2-b^2\right ) \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \int \sqrt {\sin \left (c+d x+\frac {\pi }{2}\right )}dx+\frac {2 a \left (a^2+9 b^2\right ) \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),2\right )}{d}+\frac {16 a^2 b \sin (c+d x) \sqrt {\sec (c+d x)}}{d}\right )+\frac {2 a^2 \sin (c+d x) \sqrt {\sec (c+d x)} (a \sec (c+d x)+b)}{3 d}\)

\(\Big \downarrow \) 3119

\(\displaystyle \frac {1}{3} \left (\frac {2 a \left (a^2+9 b^2\right ) \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),2\right )}{d}-\frac {6 b \left (3 a^2-b^2\right ) \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{d}+\frac {16 a^2 b \sin (c+d x) \sqrt {\sec (c+d x)}}{d}\right )+\frac {2 a^2 \sin (c+d x) \sqrt {\sec (c+d x)} (a \sec (c+d x)+b)}{3 d}\)

Input:

Int[(a + b*Cos[c + d*x])^3*Sec[c + d*x]^(5/2),x]
 

Output:

(2*a^2*Sqrt[Sec[c + d*x]]*(b + a*Sec[c + d*x])*Sin[c + d*x])/(3*d) + ((-6* 
b*(3*a^2 - b^2)*Sqrt[Cos[c + d*x]]*EllipticE[(c + d*x)/2, 2]*Sqrt[Sec[c + 
d*x]])/d + (2*a*(a^2 + 9*b^2)*Sqrt[Cos[c + d*x]]*EllipticF[(c + d*x)/2, 2] 
*Sqrt[Sec[c + d*x]])/d + (16*a^2*b*Sqrt[Sec[c + d*x]]*Sin[c + d*x])/d)/3
 

Defintions of rubi rules used

rule 27
Int[(a_)*(Fx_), x_Symbol] :> Simp[a   Int[Fx, x], x] /; FreeQ[a, x] &&  !Ma 
tchQ[Fx, (b_)*(Gx_) /; FreeQ[b, x]]
 

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 3119
Int[Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2/d)*EllipticE[(1/2)* 
(c - Pi/2 + d*x), 2], x] /; FreeQ[{c, d}, x]
 

rule 3120
Int[1/Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2/d)*EllipticF[(1/2 
)*(c - Pi/2 + d*x), 2], x] /; FreeQ[{c, d}, x]
 

rule 3717
Int[(csc[(e_.) + (f_.)*(x_)]*(d_.))^(m_)*((a_) + (b_.)*sin[(e_.) + (f_.)*(x 
_)]^(n_.))^(p_.), x_Symbol] :> Simp[d^(n*p)   Int[(d*Csc[e + f*x])^(m - n*p 
)*(b + a*Csc[e + f*x]^n)^p, x], x] /; FreeQ[{a, b, d, e, f, m, n, p}, x] && 
  !IntegerQ[m] && IntegersQ[n, p]
 

rule 4258
Int[(csc[(c_.) + (d_.)*(x_)]*(b_.))^(n_), x_Symbol] :> Simp[(b*Csc[c + d*x] 
)^n*Sin[c + d*x]^n   Int[1/Sin[c + d*x]^n, x], x] /; FreeQ[{b, c, d}, x] && 
 EqQ[n^2, 1/4]
 

rule 4329
Int[(csc[(e_.) + (f_.)*(x_)]*(d_.))^(n_)*(csc[(e_.) + (f_.)*(x_)]*(b_.) + ( 
a_))^(m_), x_Symbol] :> Simp[(-b^2)*Cot[e + f*x]*(a + b*Csc[e + f*x])^(m - 
2)*((d*Csc[e + f*x])^n/(f*(m + n - 1))), x] + Simp[1/(d*(m + n - 1))   Int[ 
(a + b*Csc[e + f*x])^(m - 3)*(d*Csc[e + f*x])^n*Simp[a^3*d*(m + n - 1) + a* 
b^2*d*n + b*(b^2*d*(m + n - 2) + 3*a^2*d*(m + n - 1))*Csc[e + f*x] + a*b^2* 
d*(3*m + 2*n - 4)*Csc[e + f*x]^2, x], x], x] /; FreeQ[{a, b, d, e, f, n}, x 
] && NeQ[a^2 - b^2, 0] && GtQ[m, 2] && (IntegerQ[m] || IntegersQ[2*m, 2*n]) 
 &&  !(IGtQ[n, 2] &&  !IntegerQ[m])
 

rule 4534
Int[(csc[(e_.) + (f_.)*(x_)]*(b_.))^(m_.)*(csc[(e_.) + (f_.)*(x_)]^2*(C_.) 
+ (A_)), x_Symbol] :> Simp[(-C)*Cot[e + f*x]*((b*Csc[e + f*x])^m/(f*(m + 1) 
)), x] + Simp[(C*m + A*(m + 1))/(m + 1)   Int[(b*Csc[e + f*x])^m, x], x] /; 
 FreeQ[{b, e, f, A, C, m}, x] && NeQ[C*m + A*(m + 1), 0] &&  !LeQ[m, -1]
 

rule 4535
Int[(csc[(e_.) + (f_.)*(x_)]*(b_.))^(m_.)*((A_.) + csc[(e_.) + (f_.)*(x_)]* 
(B_.) + csc[(e_.) + (f_.)*(x_)]^2*(C_.)), x_Symbol] :> Simp[B/b   Int[(b*Cs 
c[e + f*x])^(m + 1), x], x] + Int[(b*Csc[e + f*x])^m*(A + C*Csc[e + f*x]^2) 
, x] /; FreeQ[{b, e, f, A, B, C, m}, x]
 
Maple [B] (verified)

Leaf count of result is larger than twice the leaf count of optimal. \(629\) vs. \(2(145)=290\).

Time = 1001.36 (sec) , antiderivative size = 630, normalized size of antiderivative = 3.94

method result size
default \(-\frac {2 \sqrt {-\left (-2 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}+1\right ) \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}}\, \left (36 \cos \left (\frac {d x}{2}+\frac {c}{2}\right ) \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{4} a^{2} b -2 \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {2 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-1}\, \operatorname {EllipticF}\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right ) \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2} a^{3}-18 \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {2 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-1}\, \operatorname {EllipticF}\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right ) \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2} a \,b^{2}-18 \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {2 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-1}\, \operatorname {EllipticE}\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right ) \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2} a^{2} b +6 \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {2 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-1}\, \operatorname {EllipticE}\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right ) \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2} b^{3}-2 \cos \left (\frac {d x}{2}+\frac {c}{2}\right ) \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2} a^{3}-18 \cos \left (\frac {d x}{2}+\frac {c}{2}\right ) \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2} a^{2} b +a^{3} \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {2 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-1}\, \operatorname {EllipticF}\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right )+9 b^{2} a \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {2 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-1}\, \operatorname {EllipticF}\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right )+9 \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {2 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-1}\, \operatorname {EllipticE}\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right ) a^{2} b -3 \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {2 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-1}\, \operatorname {EllipticE}\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right ) b^{3}\right ) \sqrt {-2 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{4}+\sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}}}{3 \left (4 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{4}-4 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}+1\right ) \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{3} \sqrt {2 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-1}\, d}\) \(630\)
parts \(-\frac {2 a^{3} \left (-2 \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {2 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-1}\, \operatorname {EllipticF}\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right ) \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-2 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2} \cos \left (\frac {d x}{2}+\frac {c}{2}\right )+\sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {2 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-1}\, \operatorname {EllipticF}\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right )\right ) \sqrt {\left (2 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-1\right ) \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}}}{3 \sqrt {-2 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{4}+\sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}}\, \left (2 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-1\right )^{\frac {3}{2}} \sin \left (\frac {d x}{2}+\frac {c}{2}\right ) d}+\frac {2 b^{3} \sqrt {\left (2 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-1\right ) \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}}\, \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {-2 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}+1}\, \operatorname {EllipticE}\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right )}{\sqrt {-2 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{4}+\sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}}\, \sin \left (\frac {d x}{2}+\frac {c}{2}\right ) \sqrt {2 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-1}\, d}-\frac {6 b^{2} a \sqrt {\left (2 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-1\right ) \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}}\, \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {-2 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}+1}\, \operatorname {EllipticF}\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right )}{\sqrt {-2 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{4}+\sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}}\, \sin \left (\frac {d x}{2}+\frac {c}{2}\right ) \sqrt {2 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-1}\, d}-\frac {6 a^{2} b \left (-2 \cos \left (\frac {d x}{2}+\frac {c}{2}\right ) \sqrt {-2 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{4}+\sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}}\, \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}+\sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {2 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-1}\, \sqrt {-2 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{4}+\sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}}\, \operatorname {EllipticE}\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right )\right )}{\sqrt {-2 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{4}+\sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}}\, \sin \left (\frac {d x}{2}+\frac {c}{2}\right ) \sqrt {2 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-1}\, d}\) \(673\)

Input:

int((a+cos(d*x+c)*b)^3*sec(d*x+c)^(5/2),x,method=_RETURNVERBOSE)
 

Output:

-2/3*(-(-2*cos(1/2*d*x+1/2*c)^2+1)*sin(1/2*d*x+1/2*c)^2)^(1/2)/(4*sin(1/2* 
d*x+1/2*c)^4-4*sin(1/2*d*x+1/2*c)^2+1)/sin(1/2*d*x+1/2*c)^3*(36*cos(1/2*d* 
x+1/2*c)*sin(1/2*d*x+1/2*c)^4*a^2*b-2*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(2*sin( 
1/2*d*x+1/2*c)^2-1)^(1/2)*EllipticF(cos(1/2*d*x+1/2*c),2^(1/2))*sin(1/2*d* 
x+1/2*c)^2*a^3-18*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(2*sin(1/2*d*x+1/2*c)^2-1)^ 
(1/2)*EllipticF(cos(1/2*d*x+1/2*c),2^(1/2))*sin(1/2*d*x+1/2*c)^2*a*b^2-18* 
(sin(1/2*d*x+1/2*c)^2)^(1/2)*(2*sin(1/2*d*x+1/2*c)^2-1)^(1/2)*EllipticE(co 
s(1/2*d*x+1/2*c),2^(1/2))*sin(1/2*d*x+1/2*c)^2*a^2*b+6*(sin(1/2*d*x+1/2*c) 
^2)^(1/2)*(2*sin(1/2*d*x+1/2*c)^2-1)^(1/2)*EllipticE(cos(1/2*d*x+1/2*c),2^ 
(1/2))*sin(1/2*d*x+1/2*c)^2*b^3-2*cos(1/2*d*x+1/2*c)*sin(1/2*d*x+1/2*c)^2* 
a^3-18*cos(1/2*d*x+1/2*c)*sin(1/2*d*x+1/2*c)^2*a^2*b+a^3*(sin(1/2*d*x+1/2* 
c)^2)^(1/2)*(2*sin(1/2*d*x+1/2*c)^2-1)^(1/2)*EllipticF(cos(1/2*d*x+1/2*c), 
2^(1/2))+9*b^2*a*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(2*sin(1/2*d*x+1/2*c)^2-1)^( 
1/2)*EllipticF(cos(1/2*d*x+1/2*c),2^(1/2))+9*(sin(1/2*d*x+1/2*c)^2)^(1/2)* 
(2*sin(1/2*d*x+1/2*c)^2-1)^(1/2)*EllipticE(cos(1/2*d*x+1/2*c),2^(1/2))*a^2 
*b-3*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(2*sin(1/2*d*x+1/2*c)^2-1)^(1/2)*Ellipti 
cE(cos(1/2*d*x+1/2*c),2^(1/2))*b^3)*(-2*sin(1/2*d*x+1/2*c)^4+sin(1/2*d*x+1 
/2*c)^2)^(1/2)/(2*cos(1/2*d*x+1/2*c)^2-1)^(1/2)/d
 

Fricas [C] (verification not implemented)

Result contains complex when optimal does not.

Time = 0.10 (sec) , antiderivative size = 214, normalized size of antiderivative = 1.34 \[ \int (a+b \cos (c+d x))^3 \sec ^{\frac {5}{2}}(c+d x) \, dx=\frac {\sqrt {2} {\left (-i \, a^{3} - 9 i \, a b^{2}\right )} \cos \left (d x + c\right ) {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) + i \, \sin \left (d x + c\right )\right ) + \sqrt {2} {\left (i \, a^{3} + 9 i \, a b^{2}\right )} \cos \left (d x + c\right ) {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) - i \, \sin \left (d x + c\right )\right ) - 3 \, \sqrt {2} {\left (3 i \, a^{2} b - i \, b^{3}\right )} \cos \left (d x + c\right ) {\rm weierstrassZeta}\left (-4, 0, {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) + i \, \sin \left (d x + c\right )\right )\right ) - 3 \, \sqrt {2} {\left (-3 i \, a^{2} b + i \, b^{3}\right )} \cos \left (d x + c\right ) {\rm weierstrassZeta}\left (-4, 0, {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) - i \, \sin \left (d x + c\right )\right )\right ) + \frac {2 \, {\left (9 \, a^{2} b \cos \left (d x + c\right ) + a^{3}\right )} \sin \left (d x + c\right )}{\sqrt {\cos \left (d x + c\right )}}}{3 \, d \cos \left (d x + c\right )} \] Input:

integrate((a+b*cos(d*x+c))^3*sec(d*x+c)^(5/2),x, algorithm="fricas")
 

Output:

1/3*(sqrt(2)*(-I*a^3 - 9*I*a*b^2)*cos(d*x + c)*weierstrassPInverse(-4, 0, 
cos(d*x + c) + I*sin(d*x + c)) + sqrt(2)*(I*a^3 + 9*I*a*b^2)*cos(d*x + c)* 
weierstrassPInverse(-4, 0, cos(d*x + c) - I*sin(d*x + c)) - 3*sqrt(2)*(3*I 
*a^2*b - I*b^3)*cos(d*x + c)*weierstrassZeta(-4, 0, weierstrassPInverse(-4 
, 0, cos(d*x + c) + I*sin(d*x + c))) - 3*sqrt(2)*(-3*I*a^2*b + I*b^3)*cos( 
d*x + c)*weierstrassZeta(-4, 0, weierstrassPInverse(-4, 0, cos(d*x + c) - 
I*sin(d*x + c))) + 2*(9*a^2*b*cos(d*x + c) + a^3)*sin(d*x + c)/sqrt(cos(d* 
x + c)))/(d*cos(d*x + c))
 

Sympy [F(-1)]

Timed out. \[ \int (a+b \cos (c+d x))^3 \sec ^{\frac {5}{2}}(c+d x) \, dx=\text {Timed out} \] Input:

integrate((a+b*cos(d*x+c))**3*sec(d*x+c)**(5/2),x)
 

Output:

Timed out
                                                                                    
                                                                                    
 

Maxima [F]

\[ \int (a+b \cos (c+d x))^3 \sec ^{\frac {5}{2}}(c+d x) \, dx=\int { {\left (b \cos \left (d x + c\right ) + a\right )}^{3} \sec \left (d x + c\right )^{\frac {5}{2}} \,d x } \] Input:

integrate((a+b*cos(d*x+c))^3*sec(d*x+c)^(5/2),x, algorithm="maxima")
 

Output:

integrate((b*cos(d*x + c) + a)^3*sec(d*x + c)^(5/2), x)
 

Giac [F]

\[ \int (a+b \cos (c+d x))^3 \sec ^{\frac {5}{2}}(c+d x) \, dx=\int { {\left (b \cos \left (d x + c\right ) + a\right )}^{3} \sec \left (d x + c\right )^{\frac {5}{2}} \,d x } \] Input:

integrate((a+b*cos(d*x+c))^3*sec(d*x+c)^(5/2),x, algorithm="giac")
 

Output:

integrate((b*cos(d*x + c) + a)^3*sec(d*x + c)^(5/2), x)
 

Mupad [F(-1)]

Timed out. \[ \int (a+b \cos (c+d x))^3 \sec ^{\frac {5}{2}}(c+d x) \, dx=\int {\left (\frac {1}{\cos \left (c+d\,x\right )}\right )}^{5/2}\,{\left (a+b\,\cos \left (c+d\,x\right )\right )}^3 \,d x \] Input:

int((1/cos(c + d*x))^(5/2)*(a + b*cos(c + d*x))^3,x)
 

Output:

int((1/cos(c + d*x))^(5/2)*(a + b*cos(c + d*x))^3, x)
 

Reduce [F]

\[ \int (a+b \cos (c+d x))^3 \sec ^{\frac {5}{2}}(c+d x) \, dx=3 \left (\int \sqrt {\sec \left (d x +c \right )}\, \cos \left (d x +c \right ) \sec \left (d x +c \right )^{2}d x \right ) a^{2} b +\left (\int \sqrt {\sec \left (d x +c \right )}\, \cos \left (d x +c \right )^{3} \sec \left (d x +c \right )^{2}d x \right ) b^{3}+3 \left (\int \sqrt {\sec \left (d x +c \right )}\, \cos \left (d x +c \right )^{2} \sec \left (d x +c \right )^{2}d x \right ) a \,b^{2}+\left (\int \sqrt {\sec \left (d x +c \right )}\, \sec \left (d x +c \right )^{2}d x \right ) a^{3} \] Input:

int((a+b*cos(d*x+c))^3*sec(d*x+c)^(5/2),x)
 

Output:

3*int(sqrt(sec(c + d*x))*cos(c + d*x)*sec(c + d*x)**2,x)*a**2*b + int(sqrt 
(sec(c + d*x))*cos(c + d*x)**3*sec(c + d*x)**2,x)*b**3 + 3*int(sqrt(sec(c 
+ d*x))*cos(c + d*x)**2*sec(c + d*x)**2,x)*a*b**2 + int(sqrt(sec(c + d*x)) 
*sec(c + d*x)**2,x)*a**3