\(\int \frac {1}{(a+b \cos (c+d x))^2 \sec ^{\frac {5}{2}}(c+d x)} \, dx\) [723]

Optimal result
Mathematica [A] (warning: unable to verify)
Rubi [A] (verified)
Maple [B] (verified)
Fricas [F(-1)]
Sympy [F(-1)]
Maxima [F]
Giac [F]
Mupad [F(-1)]
Reduce [F]

Optimal result

Integrand size = 23, antiderivative size = 245 \[ \int \frac {1}{(a+b \cos (c+d x))^2 \sec ^{\frac {5}{2}}(c+d x)} \, dx=\frac {\left (3 a^2-2 b^2\right ) \sqrt {\cos (c+d x)} E\left (\left .\frac {1}{2} (c+d x)\right |2\right ) \sqrt {\sec (c+d x)}}{b^2 \left (a^2-b^2\right ) d}-\frac {a \left (3 a^2-4 b^2\right ) \sqrt {\cos (c+d x)} \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),2\right ) \sqrt {\sec (c+d x)}}{b^3 \left (a^2-b^2\right ) d}+\frac {a^2 \left (3 a^2-5 b^2\right ) \sqrt {\cos (c+d x)} \operatorname {EllipticPi}\left (\frac {2 b}{a+b},\frac {1}{2} (c+d x),2\right ) \sqrt {\sec (c+d x)}}{(a-b) b^3 (a+b)^2 d}-\frac {a^2 \sqrt {\sec (c+d x)} \sin (c+d x)}{b \left (a^2-b^2\right ) d (b+a \sec (c+d x))} \] Output:

(3*a^2-2*b^2)*cos(d*x+c)^(1/2)*EllipticE(sin(1/2*d*x+1/2*c),2^(1/2))*sec(d 
*x+c)^(1/2)/b^2/(a^2-b^2)/d-a*(3*a^2-4*b^2)*cos(d*x+c)^(1/2)*InverseJacobi 
AM(1/2*d*x+1/2*c,2^(1/2))*sec(d*x+c)^(1/2)/b^3/(a^2-b^2)/d+a^2*(3*a^2-5*b^ 
2)*cos(d*x+c)^(1/2)*EllipticPi(sin(1/2*d*x+1/2*c),2*b/(a+b),2^(1/2))*sec(d 
*x+c)^(1/2)/(a-b)/b^3/(a+b)^2/d-a^2*sec(d*x+c)^(1/2)*sin(d*x+c)/b/(a^2-b^2 
)/d/(b+a*sec(d*x+c))
                                                                                    
                                                                                    
 

Mathematica [A] (warning: unable to verify)

Time = 3.88 (sec) , antiderivative size = 319, normalized size of antiderivative = 1.30 \[ \int \frac {1}{(a+b \cos (c+d x))^2 \sec ^{\frac {5}{2}}(c+d x)} \, dx=\frac {\frac {4 a^2 \sin (c+d x)}{b \left (-a^2+b^2\right ) (a+b \cos (c+d x)) \sqrt {\sec (c+d x)}}-\frac {2 \cot (c+d x) \left (-3 a^2 b \sec ^{\frac {3}{2}}(c+d x)+2 b^3 \sec ^{\frac {3}{2}}(c+d x)+3 a^2 b \cos (2 (c+d x)) \sec ^{\frac {3}{2}}(c+d x)-2 b^3 \cos (2 (c+d x)) \sec ^{\frac {3}{2}}(c+d x)+2 b \left (3 a^2-2 b^2\right ) E\left (\left .\arcsin \left (\sqrt {\sec (c+d x)}\right )\right |-1\right ) \sqrt {-\tan ^2(c+d x)}+2 b \left (-3 a^2+a b+2 b^2\right ) \operatorname {EllipticF}\left (\arcsin \left (\sqrt {\sec (c+d x)}\right ),-1\right ) \sqrt {-\tan ^2(c+d x)}+6 a^3 \operatorname {EllipticPi}\left (-\frac {a}{b},\arcsin \left (\sqrt {\sec (c+d x)}\right ),-1\right ) \sqrt {-\tan ^2(c+d x)}-10 a b^2 \operatorname {EllipticPi}\left (-\frac {a}{b},\arcsin \left (\sqrt {\sec (c+d x)}\right ),-1\right ) \sqrt {-\tan ^2(c+d x)}\right )}{(a-b) b^3 (a+b)}}{4 d} \] Input:

Integrate[1/((a + b*Cos[c + d*x])^2*Sec[c + d*x]^(5/2)),x]
 

Output:

((4*a^2*Sin[c + d*x])/(b*(-a^2 + b^2)*(a + b*Cos[c + d*x])*Sqrt[Sec[c + d* 
x]]) - (2*Cot[c + d*x]*(-3*a^2*b*Sec[c + d*x]^(3/2) + 2*b^3*Sec[c + d*x]^( 
3/2) + 3*a^2*b*Cos[2*(c + d*x)]*Sec[c + d*x]^(3/2) - 2*b^3*Cos[2*(c + d*x) 
]*Sec[c + d*x]^(3/2) + 2*b*(3*a^2 - 2*b^2)*EllipticE[ArcSin[Sqrt[Sec[c + d 
*x]]], -1]*Sqrt[-Tan[c + d*x]^2] + 2*b*(-3*a^2 + a*b + 2*b^2)*EllipticF[Ar 
cSin[Sqrt[Sec[c + d*x]]], -1]*Sqrt[-Tan[c + d*x]^2] + 6*a^3*EllipticPi[-(a 
/b), ArcSin[Sqrt[Sec[c + d*x]]], -1]*Sqrt[-Tan[c + d*x]^2] - 10*a*b^2*Elli 
pticPi[-(a/b), ArcSin[Sqrt[Sec[c + d*x]]], -1]*Sqrt[-Tan[c + d*x]^2]))/((a 
 - b)*b^3*(a + b)))/(4*d)
 

Rubi [A] (verified)

Time = 1.62 (sec) , antiderivative size = 233, normalized size of antiderivative = 0.95, number of steps used = 17, number of rules used = 17, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.739, Rules used = {3042, 3717, 3042, 4334, 27, 3042, 4594, 3042, 4274, 3042, 4258, 3042, 3119, 3120, 4336, 3042, 3284}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {1}{\sec ^{\frac {5}{2}}(c+d x) (a+b \cos (c+d x))^2} \, dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \frac {1}{\csc \left (c+d x+\frac {\pi }{2}\right )^{5/2} \left (a+b \sin \left (c+d x+\frac {\pi }{2}\right )\right )^2}dx\)

\(\Big \downarrow \) 3717

\(\displaystyle \int \frac {1}{\sqrt {\sec (c+d x)} (a \sec (c+d x)+b)^2}dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \frac {1}{\sqrt {\csc \left (c+d x+\frac {\pi }{2}\right )} \left (a \csc \left (c+d x+\frac {\pi }{2}\right )+b\right )^2}dx\)

\(\Big \downarrow \) 4334

\(\displaystyle \frac {\int \frac {-\sec ^2(c+d x) a^2+3 a^2+2 b \sec (c+d x) a-2 b^2}{2 \sqrt {\sec (c+d x)} (b+a \sec (c+d x))}dx}{b \left (a^2-b^2\right )}-\frac {a^2 \sin (c+d x) \sqrt {\sec (c+d x)}}{b d \left (a^2-b^2\right ) (a \sec (c+d x)+b)}\)

\(\Big \downarrow \) 27

\(\displaystyle \frac {\int \frac {-\sec ^2(c+d x) a^2+3 a^2+2 b \sec (c+d x) a-2 b^2}{\sqrt {\sec (c+d x)} (b+a \sec (c+d x))}dx}{2 b \left (a^2-b^2\right )}-\frac {a^2 \sin (c+d x) \sqrt {\sec (c+d x)}}{b d \left (a^2-b^2\right ) (a \sec (c+d x)+b)}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {\int \frac {-\csc \left (c+d x+\frac {\pi }{2}\right )^2 a^2+3 a^2+2 b \csc \left (c+d x+\frac {\pi }{2}\right ) a-2 b^2}{\sqrt {\csc \left (c+d x+\frac {\pi }{2}\right )} \left (b+a \csc \left (c+d x+\frac {\pi }{2}\right )\right )}dx}{2 b \left (a^2-b^2\right )}-\frac {a^2 \sin (c+d x) \sqrt {\sec (c+d x)}}{b d \left (a^2-b^2\right ) (a \sec (c+d x)+b)}\)

\(\Big \downarrow \) 4594

\(\displaystyle \frac {\frac {\int \frac {b \left (3 a^2-2 b^2\right )-a \left (3 a^2-4 b^2\right ) \sec (c+d x)}{\sqrt {\sec (c+d x)}}dx}{b^2}-a^2 \left (5-\frac {3 a^2}{b^2}\right ) \int \frac {\sec ^{\frac {3}{2}}(c+d x)}{b+a \sec (c+d x)}dx}{2 b \left (a^2-b^2\right )}-\frac {a^2 \sin (c+d x) \sqrt {\sec (c+d x)}}{b d \left (a^2-b^2\right ) (a \sec (c+d x)+b)}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {\frac {\int \frac {b \left (3 a^2-2 b^2\right )-a \left (3 a^2-4 b^2\right ) \csc \left (c+d x+\frac {\pi }{2}\right )}{\sqrt {\csc \left (c+d x+\frac {\pi }{2}\right )}}dx}{b^2}-a^2 \left (5-\frac {3 a^2}{b^2}\right ) \int \frac {\csc \left (c+d x+\frac {\pi }{2}\right )^{3/2}}{b+a \csc \left (c+d x+\frac {\pi }{2}\right )}dx}{2 b \left (a^2-b^2\right )}-\frac {a^2 \sin (c+d x) \sqrt {\sec (c+d x)}}{b d \left (a^2-b^2\right ) (a \sec (c+d x)+b)}\)

\(\Big \downarrow \) 4274

\(\displaystyle \frac {\frac {b \left (3 a^2-2 b^2\right ) \int \frac {1}{\sqrt {\sec (c+d x)}}dx-a \left (3 a^2-4 b^2\right ) \int \sqrt {\sec (c+d x)}dx}{b^2}-a^2 \left (5-\frac {3 a^2}{b^2}\right ) \int \frac {\csc \left (c+d x+\frac {\pi }{2}\right )^{3/2}}{b+a \csc \left (c+d x+\frac {\pi }{2}\right )}dx}{2 b \left (a^2-b^2\right )}-\frac {a^2 \sin (c+d x) \sqrt {\sec (c+d x)}}{b d \left (a^2-b^2\right ) (a \sec (c+d x)+b)}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {\frac {b \left (3 a^2-2 b^2\right ) \int \frac {1}{\sqrt {\csc \left (c+d x+\frac {\pi }{2}\right )}}dx-a \left (3 a^2-4 b^2\right ) \int \sqrt {\csc \left (c+d x+\frac {\pi }{2}\right )}dx}{b^2}-a^2 \left (5-\frac {3 a^2}{b^2}\right ) \int \frac {\csc \left (c+d x+\frac {\pi }{2}\right )^{3/2}}{b+a \csc \left (c+d x+\frac {\pi }{2}\right )}dx}{2 b \left (a^2-b^2\right )}-\frac {a^2 \sin (c+d x) \sqrt {\sec (c+d x)}}{b d \left (a^2-b^2\right ) (a \sec (c+d x)+b)}\)

\(\Big \downarrow \) 4258

\(\displaystyle \frac {\frac {b \left (3 a^2-2 b^2\right ) \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \int \sqrt {\cos (c+d x)}dx-a \left (3 a^2-4 b^2\right ) \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \int \frac {1}{\sqrt {\cos (c+d x)}}dx}{b^2}-a^2 \left (5-\frac {3 a^2}{b^2}\right ) \int \frac {\csc \left (c+d x+\frac {\pi }{2}\right )^{3/2}}{b+a \csc \left (c+d x+\frac {\pi }{2}\right )}dx}{2 b \left (a^2-b^2\right )}-\frac {a^2 \sin (c+d x) \sqrt {\sec (c+d x)}}{b d \left (a^2-b^2\right ) (a \sec (c+d x)+b)}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {\frac {b \left (3 a^2-2 b^2\right ) \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \int \sqrt {\sin \left (c+d x+\frac {\pi }{2}\right )}dx-a \left (3 a^2-4 b^2\right ) \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \int \frac {1}{\sqrt {\sin \left (c+d x+\frac {\pi }{2}\right )}}dx}{b^2}-a^2 \left (5-\frac {3 a^2}{b^2}\right ) \int \frac {\csc \left (c+d x+\frac {\pi }{2}\right )^{3/2}}{b+a \csc \left (c+d x+\frac {\pi }{2}\right )}dx}{2 b \left (a^2-b^2\right )}-\frac {a^2 \sin (c+d x) \sqrt {\sec (c+d x)}}{b d \left (a^2-b^2\right ) (a \sec (c+d x)+b)}\)

\(\Big \downarrow \) 3119

\(\displaystyle \frac {\frac {\frac {2 b \left (3 a^2-2 b^2\right ) \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{d}-a \left (3 a^2-4 b^2\right ) \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \int \frac {1}{\sqrt {\sin \left (c+d x+\frac {\pi }{2}\right )}}dx}{b^2}-a^2 \left (5-\frac {3 a^2}{b^2}\right ) \int \frac {\csc \left (c+d x+\frac {\pi }{2}\right )^{3/2}}{b+a \csc \left (c+d x+\frac {\pi }{2}\right )}dx}{2 b \left (a^2-b^2\right )}-\frac {a^2 \sin (c+d x) \sqrt {\sec (c+d x)}}{b d \left (a^2-b^2\right ) (a \sec (c+d x)+b)}\)

\(\Big \downarrow \) 3120

\(\displaystyle \frac {\frac {\frac {2 b \left (3 a^2-2 b^2\right ) \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{d}-\frac {2 a \left (3 a^2-4 b^2\right ) \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),2\right )}{d}}{b^2}-a^2 \left (5-\frac {3 a^2}{b^2}\right ) \int \frac {\csc \left (c+d x+\frac {\pi }{2}\right )^{3/2}}{b+a \csc \left (c+d x+\frac {\pi }{2}\right )}dx}{2 b \left (a^2-b^2\right )}-\frac {a^2 \sin (c+d x) \sqrt {\sec (c+d x)}}{b d \left (a^2-b^2\right ) (a \sec (c+d x)+b)}\)

\(\Big \downarrow \) 4336

\(\displaystyle \frac {\frac {\frac {2 b \left (3 a^2-2 b^2\right ) \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{d}-\frac {2 a \left (3 a^2-4 b^2\right ) \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),2\right )}{d}}{b^2}-a^2 \left (5-\frac {3 a^2}{b^2}\right ) \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \int \frac {1}{\sqrt {\cos (c+d x)} (a+b \cos (c+d x))}dx}{2 b \left (a^2-b^2\right )}-\frac {a^2 \sin (c+d x) \sqrt {\sec (c+d x)}}{b d \left (a^2-b^2\right ) (a \sec (c+d x)+b)}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {\frac {\frac {2 b \left (3 a^2-2 b^2\right ) \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{d}-\frac {2 a \left (3 a^2-4 b^2\right ) \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),2\right )}{d}}{b^2}-a^2 \left (5-\frac {3 a^2}{b^2}\right ) \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \int \frac {1}{\sqrt {\sin \left (c+d x+\frac {\pi }{2}\right )} \left (a+b \sin \left (c+d x+\frac {\pi }{2}\right )\right )}dx}{2 b \left (a^2-b^2\right )}-\frac {a^2 \sin (c+d x) \sqrt {\sec (c+d x)}}{b d \left (a^2-b^2\right ) (a \sec (c+d x)+b)}\)

\(\Big \downarrow \) 3284

\(\displaystyle \frac {\frac {\frac {2 b \left (3 a^2-2 b^2\right ) \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{d}-\frac {2 a \left (3 a^2-4 b^2\right ) \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),2\right )}{d}}{b^2}-\frac {2 a^2 \left (5-\frac {3 a^2}{b^2}\right ) \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \operatorname {EllipticPi}\left (\frac {2 b}{a+b},\frac {1}{2} (c+d x),2\right )}{d (a+b)}}{2 b \left (a^2-b^2\right )}-\frac {a^2 \sin (c+d x) \sqrt {\sec (c+d x)}}{b d \left (a^2-b^2\right ) (a \sec (c+d x)+b)}\)

Input:

Int[1/((a + b*Cos[c + d*x])^2*Sec[c + d*x]^(5/2)),x]
 

Output:

(((2*b*(3*a^2 - 2*b^2)*Sqrt[Cos[c + d*x]]*EllipticE[(c + d*x)/2, 2]*Sqrt[S 
ec[c + d*x]])/d - (2*a*(3*a^2 - 4*b^2)*Sqrt[Cos[c + d*x]]*EllipticF[(c + d 
*x)/2, 2]*Sqrt[Sec[c + d*x]])/d)/b^2 - (2*a^2*(5 - (3*a^2)/b^2)*Sqrt[Cos[c 
 + d*x]]*EllipticPi[(2*b)/(a + b), (c + d*x)/2, 2]*Sqrt[Sec[c + d*x]])/((a 
 + b)*d))/(2*b*(a^2 - b^2)) - (a^2*Sqrt[Sec[c + d*x]]*Sin[c + d*x])/(b*(a^ 
2 - b^2)*d*(b + a*Sec[c + d*x]))
 

Defintions of rubi rules used

rule 27
Int[(a_)*(Fx_), x_Symbol] :> Simp[a   Int[Fx, x], x] /; FreeQ[a, x] &&  !Ma 
tchQ[Fx, (b_)*(Gx_) /; FreeQ[b, x]]
 

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 3119
Int[Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2/d)*EllipticE[(1/2)* 
(c - Pi/2 + d*x), 2], x] /; FreeQ[{c, d}, x]
 

rule 3120
Int[1/Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2/d)*EllipticF[(1/2 
)*(c - Pi/2 + d*x), 2], x] /; FreeQ[{c, d}, x]
 

rule 3284
Int[1/(((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])*Sqrt[(c_.) + (d_.)*sin[(e_.) 
 + (f_.)*(x_)]]), x_Symbol] :> Simp[(2/(f*(a + b)*Sqrt[c + d]))*EllipticPi[ 
2*(b/(a + b)), (1/2)*(e - Pi/2 + f*x), 2*(d/(c + d))], x] /; FreeQ[{a, b, c 
, d, e, f}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 
0] && GtQ[c + d, 0]
 

rule 3717
Int[(csc[(e_.) + (f_.)*(x_)]*(d_.))^(m_)*((a_) + (b_.)*sin[(e_.) + (f_.)*(x 
_)]^(n_.))^(p_.), x_Symbol] :> Simp[d^(n*p)   Int[(d*Csc[e + f*x])^(m - n*p 
)*(b + a*Csc[e + f*x]^n)^p, x], x] /; FreeQ[{a, b, d, e, f, m, n, p}, x] && 
  !IntegerQ[m] && IntegersQ[n, p]
 

rule 4258
Int[(csc[(c_.) + (d_.)*(x_)]*(b_.))^(n_), x_Symbol] :> Simp[(b*Csc[c + d*x] 
)^n*Sin[c + d*x]^n   Int[1/Sin[c + d*x]^n, x], x] /; FreeQ[{b, c, d}, x] && 
 EqQ[n^2, 1/4]
 

rule 4274
Int[(csc[(e_.) + (f_.)*(x_)]*(d_.))^(n_.)*(csc[(e_.) + (f_.)*(x_)]*(b_.) + 
(a_)), x_Symbol] :> Simp[a   Int[(d*Csc[e + f*x])^n, x], x] + Simp[b/d   In 
t[(d*Csc[e + f*x])^(n + 1), x], x] /; FreeQ[{a, b, d, e, f, n}, x]
 

rule 4334
Int[(csc[(e_.) + (f_.)*(x_)]*(d_.))^(n_)*(csc[(e_.) + (f_.)*(x_)]*(b_.) + ( 
a_))^(m_), x_Symbol] :> Simp[b^2*Cot[e + f*x]*(a + b*Csc[e + f*x])^(m + 1)* 
((d*Csc[e + f*x])^n/(a*f*(m + 1)*(a^2 - b^2))), x] + Simp[1/(a*(m + 1)*(a^2 
 - b^2))   Int[(a + b*Csc[e + f*x])^(m + 1)*(d*Csc[e + f*x])^n*(a^2*(m + 1) 
 - b^2*(m + n + 1) - a*b*(m + 1)*Csc[e + f*x] + b^2*(m + n + 2)*Csc[e + f*x 
]^2), x], x] /; FreeQ[{a, b, d, e, f, n}, x] && NeQ[a^2 - b^2, 0] && LtQ[m, 
 -1] && IntegersQ[2*m, 2*n]
 

rule 4336
Int[(csc[(e_.) + (f_.)*(x_)]*(d_.))^(3/2)/(csc[(e_.) + (f_.)*(x_)]*(b_.) + 
(a_)), x_Symbol] :> Simp[d*Sqrt[d*Sin[e + f*x]]*Sqrt[d*Csc[e + f*x]]   Int[ 
1/(Sqrt[d*Sin[e + f*x]]*(b + a*Sin[e + f*x])), x], x] /; FreeQ[{a, b, d, e, 
 f}, x] && NeQ[a^2 - b^2, 0]
 

rule 4594
Int[((A_.) + csc[(e_.) + (f_.)*(x_)]*(B_.) + csc[(e_.) + (f_.)*(x_)]^2*(C_. 
))/(Sqrt[csc[(e_.) + (f_.)*(x_)]*(d_.)]*(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a 
_))), x_Symbol] :> Simp[(A*b^2 - a*b*B + a^2*C)/(a^2*d^2)   Int[(d*Csc[e + 
f*x])^(3/2)/(a + b*Csc[e + f*x]), x], x] + Simp[1/a^2   Int[(a*A - (A*b - a 
*B)*Csc[e + f*x])/Sqrt[d*Csc[e + f*x]], x], x] /; FreeQ[{a, b, d, e, f, A, 
B, C}, x] && NeQ[a^2 - b^2, 0]
 
Maple [B] (verified)

Leaf count of result is larger than twice the leaf count of optimal. \(814\) vs. \(2(236)=472\).

Time = 9.66 (sec) , antiderivative size = 815, normalized size of antiderivative = 3.33

method result size
default \(\text {Expression too large to display}\) \(815\)

Input:

int(1/(a+cos(d*x+c)*b)^2/sec(d*x+c)^(5/2),x,method=_RETURNVERBOSE)
 

Output:

-(-(-2*cos(1/2*d*x+1/2*c)^2+1)*sin(1/2*d*x+1/2*c)^2)^(1/2)*(-2/b^3/(-2*sin 
(1/2*d*x+1/2*c)^4+sin(1/2*d*x+1/2*c)^2)^(1/2)*(2*sin(1/2*d*x+1/2*c)^2-1)^( 
1/2)*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(2*EllipticF(cos(1/2*d*x+1/2*c),2^(1/2)) 
*a+b*EllipticE(cos(1/2*d*x+1/2*c),2^(1/2)))-12/b^2*a^2/(-2*a*b+2*b^2)*(sin 
(1/2*d*x+1/2*c)^2)^(1/2)*(-2*cos(1/2*d*x+1/2*c)^2+1)^(1/2)/(-2*sin(1/2*d*x 
+1/2*c)^4+sin(1/2*d*x+1/2*c)^2)^(1/2)*EllipticPi(cos(1/2*d*x+1/2*c),-2*b/( 
a-b),2^(1/2))-2/b^3*a^3*(-b^2/a/(a^2-b^2)*cos(1/2*d*x+1/2*c)*(-2*sin(1/2*d 
*x+1/2*c)^4+sin(1/2*d*x+1/2*c)^2)^(1/2)/(2*b*cos(1/2*d*x+1/2*c)^2+a-b)-1/2 
/a/(a+b)*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(-2*cos(1/2*d*x+1/2*c)^2+1)^(1/2)/(- 
2*sin(1/2*d*x+1/2*c)^4+sin(1/2*d*x+1/2*c)^2)^(1/2)*EllipticF(cos(1/2*d*x+1 
/2*c),2^(1/2))-1/2*b/(a^2-b^2)/a*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(-2*cos(1/2* 
d*x+1/2*c)^2+1)^(1/2)/(-2*sin(1/2*d*x+1/2*c)^4+sin(1/2*d*x+1/2*c)^2)^(1/2) 
*EllipticF(cos(1/2*d*x+1/2*c),2^(1/2))+1/2*b/(a^2-b^2)/a*(sin(1/2*d*x+1/2* 
c)^2)^(1/2)*(-2*cos(1/2*d*x+1/2*c)^2+1)^(1/2)/(-2*sin(1/2*d*x+1/2*c)^4+sin 
(1/2*d*x+1/2*c)^2)^(1/2)*EllipticE(cos(1/2*d*x+1/2*c),2^(1/2))-3*a/(a^2-b^ 
2)/(-2*a*b+2*b^2)*b*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(-2*cos(1/2*d*x+1/2*c)^2+ 
1)^(1/2)/(-2*sin(1/2*d*x+1/2*c)^4+sin(1/2*d*x+1/2*c)^2)^(1/2)*EllipticPi(c 
os(1/2*d*x+1/2*c),-2*b/(a-b),2^(1/2))+1/a/(a^2-b^2)/(-2*a*b+2*b^2)*b^3*(si 
n(1/2*d*x+1/2*c)^2)^(1/2)*(-2*cos(1/2*d*x+1/2*c)^2+1)^(1/2)/(-2*sin(1/2*d* 
x+1/2*c)^4+sin(1/2*d*x+1/2*c)^2)^(1/2)*EllipticPi(cos(1/2*d*x+1/2*c),-2...
 

Fricas [F(-1)]

Timed out. \[ \int \frac {1}{(a+b \cos (c+d x))^2 \sec ^{\frac {5}{2}}(c+d x)} \, dx=\text {Timed out} \] Input:

integrate(1/(a+b*cos(d*x+c))^2/sec(d*x+c)^(5/2),x, algorithm="fricas")
 

Output:

Timed out
 

Sympy [F(-1)]

Timed out. \[ \int \frac {1}{(a+b \cos (c+d x))^2 \sec ^{\frac {5}{2}}(c+d x)} \, dx=\text {Timed out} \] Input:

integrate(1/(a+b*cos(d*x+c))**2/sec(d*x+c)**(5/2),x)
                                                                                    
                                                                                    
 

Output:

Timed out
 

Maxima [F]

\[ \int \frac {1}{(a+b \cos (c+d x))^2 \sec ^{\frac {5}{2}}(c+d x)} \, dx=\int { \frac {1}{{\left (b \cos \left (d x + c\right ) + a\right )}^{2} \sec \left (d x + c\right )^{\frac {5}{2}}} \,d x } \] Input:

integrate(1/(a+b*cos(d*x+c))^2/sec(d*x+c)^(5/2),x, algorithm="maxima")
 

Output:

integrate(1/((b*cos(d*x + c) + a)^2*sec(d*x + c)^(5/2)), x)
 

Giac [F]

\[ \int \frac {1}{(a+b \cos (c+d x))^2 \sec ^{\frac {5}{2}}(c+d x)} \, dx=\int { \frac {1}{{\left (b \cos \left (d x + c\right ) + a\right )}^{2} \sec \left (d x + c\right )^{\frac {5}{2}}} \,d x } \] Input:

integrate(1/(a+b*cos(d*x+c))^2/sec(d*x+c)^(5/2),x, algorithm="giac")
 

Output:

integrate(1/((b*cos(d*x + c) + a)^2*sec(d*x + c)^(5/2)), x)
 

Mupad [F(-1)]

Timed out. \[ \int \frac {1}{(a+b \cos (c+d x))^2 \sec ^{\frac {5}{2}}(c+d x)} \, dx=\int \frac {1}{{\left (\frac {1}{\cos \left (c+d\,x\right )}\right )}^{5/2}\,{\left (a+b\,\cos \left (c+d\,x\right )\right )}^2} \,d x \] Input:

int(1/((1/cos(c + d*x))^(5/2)*(a + b*cos(c + d*x))^2),x)
 

Output:

int(1/((1/cos(c + d*x))^(5/2)*(a + b*cos(c + d*x))^2), x)
 

Reduce [F]

\[ \int \frac {1}{(a+b \cos (c+d x))^2 \sec ^{\frac {5}{2}}(c+d x)} \, dx=\int \frac {\sqrt {\sec \left (d x +c \right )}}{\cos \left (d x +c \right )^{2} \sec \left (d x +c \right )^{3} b^{2}+2 \cos \left (d x +c \right ) \sec \left (d x +c \right )^{3} a b +\sec \left (d x +c \right )^{3} a^{2}}d x \] Input:

int(1/(a+b*cos(d*x+c))^2/sec(d*x+c)^(5/2),x)
 

Output:

int(sqrt(sec(c + d*x))/(cos(c + d*x)**2*sec(c + d*x)**3*b**2 + 2*cos(c + d 
*x)*sec(c + d*x)**3*a*b + sec(c + d*x)**3*a**2),x)