\(\int \frac {\sqrt {a+b \cos (c+d x)}}{\sqrt {\sec (c+d x)}} \, dx\) [734]

Optimal result
Mathematica [B] (warning: unable to verify)
Rubi [A] (verified)
Maple [A] (verified)
Fricas [F]
Sympy [F]
Maxima [F]
Giac [F]
Mupad [F(-1)]
Reduce [F]

Optimal result

Integrand size = 25, antiderivative size = 431 \[ \int \frac {\sqrt {a+b \cos (c+d x)}}{\sqrt {\sec (c+d x)}} \, dx=-\frac {(a-b) \sqrt {a+b} \sqrt {\cos (c+d x)} \csc (c+d x) E\left (\arcsin \left (\frac {\sqrt {a+b \cos (c+d x)}}{\sqrt {a+b} \sqrt {\cos (c+d x)}}\right )|-\frac {a+b}{a-b}\right ) \sqrt {\frac {a (1-\sec (c+d x))}{a+b}} \sqrt {\frac {a (1+\sec (c+d x))}{a-b}}}{a d \sqrt {\sec (c+d x)}}+\frac {\sqrt {a+b} \sqrt {\cos (c+d x)} \csc (c+d x) \operatorname {EllipticF}\left (\arcsin \left (\frac {\sqrt {a+b \cos (c+d x)}}{\sqrt {a+b} \sqrt {\cos (c+d x)}}\right ),-\frac {a+b}{a-b}\right ) \sqrt {\frac {a (1-\sec (c+d x))}{a+b}} \sqrt {\frac {a (1+\sec (c+d x))}{a-b}}}{d \sqrt {\sec (c+d x)}}-\frac {a \sqrt {a+b} \sqrt {\cos (c+d x)} \csc (c+d x) \operatorname {EllipticPi}\left (\frac {a+b}{b},\arcsin \left (\frac {\sqrt {a+b \cos (c+d x)}}{\sqrt {a+b} \sqrt {\cos (c+d x)}}\right ),-\frac {a+b}{a-b}\right ) \sqrt {\frac {a (1-\sec (c+d x))}{a+b}} \sqrt {\frac {a (1+\sec (c+d x))}{a-b}}}{b d \sqrt {\sec (c+d x)}}+\frac {\sqrt {a+b \cos (c+d x)} \sqrt {\sec (c+d x)} \sin (c+d x)}{d} \] Output:

-(a-b)*(a+b)^(1/2)*cos(d*x+c)^(1/2)*csc(d*x+c)*EllipticE((a+b*cos(d*x+c))^ 
(1/2)/(a+b)^(1/2)/cos(d*x+c)^(1/2),(-(a+b)/(a-b))^(1/2))*(a*(1-sec(d*x+c)) 
/(a+b))^(1/2)*(a*(1+sec(d*x+c))/(a-b))^(1/2)/a/d/sec(d*x+c)^(1/2)+(a+b)^(1 
/2)*cos(d*x+c)^(1/2)*csc(d*x+c)*EllipticF((a+b*cos(d*x+c))^(1/2)/(a+b)^(1/ 
2)/cos(d*x+c)^(1/2),(-(a+b)/(a-b))^(1/2))*(a*(1-sec(d*x+c))/(a+b))^(1/2)*( 
a*(1+sec(d*x+c))/(a-b))^(1/2)/d/sec(d*x+c)^(1/2)-a*(a+b)^(1/2)*cos(d*x+c)^ 
(1/2)*csc(d*x+c)*EllipticPi((a+b*cos(d*x+c))^(1/2)/(a+b)^(1/2)/cos(d*x+c)^ 
(1/2),(a+b)/b,(-(a+b)/(a-b))^(1/2))*(a*(1-sec(d*x+c))/(a+b))^(1/2)*(a*(1+s 
ec(d*x+c))/(a-b))^(1/2)/b/d/sec(d*x+c)^(1/2)+(a+b*cos(d*x+c))^(1/2)*sec(d* 
x+c)^(1/2)*sin(d*x+c)/d
 

Mathematica [B] (warning: unable to verify)

Leaf count is larger than twice the leaf count of optimal. \(2995\) vs. \(2(431)=862\).

Time = 19.30 (sec) , antiderivative size = 2995, normalized size of antiderivative = 6.95 \[ \int \frac {\sqrt {a+b \cos (c+d x)}}{\sqrt {\sec (c+d x)}} \, dx=\text {Result too large to show} \] Input:

Integrate[Sqrt[a + b*Cos[c + d*x]]/Sqrt[Sec[c + d*x]],x]
 

Output:

(Sec[(c + d*x)/2]^2*Sqrt[1 + Sec[c + d*x]]*(8*(a + b)*Sqrt[Cos[c + d*x]/(1 
 + Cos[c + d*x])]*Sqrt[(a + b*Cos[c + d*x])/((a + b)*(1 + Cos[c + d*x]))]* 
EllipticE[ArcSin[Tan[(c + d*x)/2]], (-a + b)/(a + b)] + 16*a*Sqrt[Cos[c + 
d*x]/(1 + Cos[c + d*x])]*Sqrt[(a + b*Cos[c + d*x])/((a + b)*(1 + Cos[c + d 
*x]))]*EllipticPi[-1, ArcSin[Tan[(c + d*x)/2]], (-a + b)/(a + b)] - 16*a*E 
llipticF[ArcSin[Tan[(c + d*x)/2]], (-a + b)/(a + b)]*Sqrt[(1 + Sec[c + d*x 
])^(-1)]*Sqrt[(b + a*Sec[c + d*x])/((a + b)*(1 + Sec[c + d*x]))] + 2*(a + 
b*Cos[c + d*x])*Sec[(c + d*x)/2]^3*(-Sin[(c + d*x)/2] + Sin[(3*(c + d*x))/ 
2])))/(16*d*((1 + Cos[c + d*x])^(-1))^(3/2)*Sqrt[Sec[c + d*x]]*((b*Sec[(c 
+ d*x)/2]^2*Sqrt[1 + Sec[c + d*x]]*Sin[c + d*x]*(8*(a + b)*Sqrt[Cos[c + d* 
x]/(1 + Cos[c + d*x])]*Sqrt[(a + b*Cos[c + d*x])/((a + b)*(1 + Cos[c + d*x 
]))]*EllipticE[ArcSin[Tan[(c + d*x)/2]], (-a + b)/(a + b)] + 16*a*Sqrt[Cos 
[c + d*x]/(1 + Cos[c + d*x])]*Sqrt[(a + b*Cos[c + d*x])/((a + b)*(1 + Cos[ 
c + d*x]))]*EllipticPi[-1, ArcSin[Tan[(c + d*x)/2]], (-a + b)/(a + b)] - 1 
6*a*EllipticF[ArcSin[Tan[(c + d*x)/2]], (-a + b)/(a + b)]*Sqrt[(1 + Sec[c 
+ d*x])^(-1)]*Sqrt[(b + a*Sec[c + d*x])/((a + b)*(1 + Sec[c + d*x]))] + 2* 
(a + b*Cos[c + d*x])*Sec[(c + d*x)/2]^3*(-Sin[(c + d*x)/2] + Sin[(3*(c + d 
*x))/2])))/(32*((1 + Cos[c + d*x])^(-1))^(3/2)*(a + b*Cos[c + d*x])^(3/2)) 
 - (3*Sec[(c + d*x)/2]^2*Sqrt[1 + Sec[c + d*x]]*Sin[c + d*x]*(8*(a + b)*Sq 
rt[Cos[c + d*x]/(1 + Cos[c + d*x])]*Sqrt[(a + b*Cos[c + d*x])/((a + b)*...
 

Rubi [A] (verified)

Time = 1.51 (sec) , antiderivative size = 405, normalized size of antiderivative = 0.94, number of steps used = 14, number of rules used = 14, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.560, Rules used = {3042, 4710, 3042, 3300, 27, 3042, 3533, 27, 3042, 3280, 3042, 3288, 3295, 3473}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {\sqrt {a+b \cos (c+d x)}}{\sqrt {\sec (c+d x)}} \, dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \frac {\sqrt {a+b \sin \left (c+d x+\frac {\pi }{2}\right )}}{\sqrt {\csc \left (c+d x+\frac {\pi }{2}\right )}}dx\)

\(\Big \downarrow \) 4710

\(\displaystyle \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \int \sqrt {\cos (c+d x)} \sqrt {a+b \cos (c+d x)}dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \int \sqrt {\sin \left (c+d x+\frac {\pi }{2}\right )} \sqrt {a+b \sin \left (c+d x+\frac {\pi }{2}\right )}dx\)

\(\Big \downarrow \) 3300

\(\displaystyle \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \left (\frac {\int -\frac {a b-a b \cos ^2(c+d x)}{2 \cos ^{\frac {3}{2}}(c+d x) \sqrt {a+b \cos (c+d x)}}dx}{b}+\frac {\sin (c+d x) \sqrt {a+b \cos (c+d x)}}{d \sqrt {\cos (c+d x)}}\right )\)

\(\Big \downarrow \) 27

\(\displaystyle \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \left (\frac {\sin (c+d x) \sqrt {a+b \cos (c+d x)}}{d \sqrt {\cos (c+d x)}}-\frac {\int \frac {a b-a b \cos ^2(c+d x)}{\cos ^{\frac {3}{2}}(c+d x) \sqrt {a+b \cos (c+d x)}}dx}{2 b}\right )\)

\(\Big \downarrow \) 3042

\(\displaystyle \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \left (\frac {\sin (c+d x) \sqrt {a+b \cos (c+d x)}}{d \sqrt {\cos (c+d x)}}-\frac {\int \frac {a b-a b \sin \left (c+d x+\frac {\pi }{2}\right )^2}{\sin \left (c+d x+\frac {\pi }{2}\right )^{3/2} \sqrt {a+b \sin \left (c+d x+\frac {\pi }{2}\right )}}dx}{2 b}\right )\)

\(\Big \downarrow \) 3533

\(\displaystyle \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \left (\frac {\sin (c+d x) \sqrt {a+b \cos (c+d x)}}{d \sqrt {\cos (c+d x)}}-\frac {\int \frac {a b}{\cos ^{\frac {3}{2}}(c+d x) \sqrt {a+b \cos (c+d x)}}dx-a b \int \frac {\sqrt {\cos (c+d x)}}{\sqrt {a+b \cos (c+d x)}}dx}{2 b}\right )\)

\(\Big \downarrow \) 27

\(\displaystyle \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \left (\frac {\sin (c+d x) \sqrt {a+b \cos (c+d x)}}{d \sqrt {\cos (c+d x)}}-\frac {a b \int \frac {1}{\cos ^{\frac {3}{2}}(c+d x) \sqrt {a+b \cos (c+d x)}}dx-a b \int \frac {\sqrt {\cos (c+d x)}}{\sqrt {a+b \cos (c+d x)}}dx}{2 b}\right )\)

\(\Big \downarrow \) 3042

\(\displaystyle \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \left (\frac {\sin (c+d x) \sqrt {a+b \cos (c+d x)}}{d \sqrt {\cos (c+d x)}}-\frac {a b \int \frac {1}{\sin \left (c+d x+\frac {\pi }{2}\right )^{3/2} \sqrt {a+b \sin \left (c+d x+\frac {\pi }{2}\right )}}dx-a b \int \frac {\sqrt {\sin \left (c+d x+\frac {\pi }{2}\right )}}{\sqrt {a+b \sin \left (c+d x+\frac {\pi }{2}\right )}}dx}{2 b}\right )\)

\(\Big \downarrow \) 3280

\(\displaystyle \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \left (\frac {\sin (c+d x) \sqrt {a+b \cos (c+d x)}}{d \sqrt {\cos (c+d x)}}-\frac {a b \left (\int \frac {\cos (c+d x)+1}{\cos ^{\frac {3}{2}}(c+d x) \sqrt {a+b \cos (c+d x)}}dx-\int \frac {1}{\sqrt {\cos (c+d x)} \sqrt {a+b \cos (c+d x)}}dx\right )-a b \int \frac {\sqrt {\sin \left (c+d x+\frac {\pi }{2}\right )}}{\sqrt {a+b \sin \left (c+d x+\frac {\pi }{2}\right )}}dx}{2 b}\right )\)

\(\Big \downarrow \) 3042

\(\displaystyle \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \left (\frac {\sin (c+d x) \sqrt {a+b \cos (c+d x)}}{d \sqrt {\cos (c+d x)}}-\frac {a b \left (\int \frac {\sin \left (c+d x+\frac {\pi }{2}\right )+1}{\sin \left (c+d x+\frac {\pi }{2}\right )^{3/2} \sqrt {a+b \sin \left (c+d x+\frac {\pi }{2}\right )}}dx-\int \frac {1}{\sqrt {\sin \left (c+d x+\frac {\pi }{2}\right )} \sqrt {a+b \sin \left (c+d x+\frac {\pi }{2}\right )}}dx\right )-a b \int \frac {\sqrt {\sin \left (c+d x+\frac {\pi }{2}\right )}}{\sqrt {a+b \sin \left (c+d x+\frac {\pi }{2}\right )}}dx}{2 b}\right )\)

\(\Big \downarrow \) 3288

\(\displaystyle \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \left (\frac {\sin (c+d x) \sqrt {a+b \cos (c+d x)}}{d \sqrt {\cos (c+d x)}}-\frac {a b \left (\int \frac {\sin \left (c+d x+\frac {\pi }{2}\right )+1}{\sin \left (c+d x+\frac {\pi }{2}\right )^{3/2} \sqrt {a+b \sin \left (c+d x+\frac {\pi }{2}\right )}}dx-\int \frac {1}{\sqrt {\sin \left (c+d x+\frac {\pi }{2}\right )} \sqrt {a+b \sin \left (c+d x+\frac {\pi }{2}\right )}}dx\right )+\frac {2 a \sqrt {a+b} \cot (c+d x) \sqrt {\frac {a (1-\sec (c+d x))}{a+b}} \sqrt {\frac {a (\sec (c+d x)+1)}{a-b}} \operatorname {EllipticPi}\left (\frac {a+b}{b},\arcsin \left (\frac {\sqrt {a+b \cos (c+d x)}}{\sqrt {a+b} \sqrt {\cos (c+d x)}}\right ),-\frac {a+b}{a-b}\right )}{d}}{2 b}\right )\)

\(\Big \downarrow \) 3295

\(\displaystyle \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \left (\frac {\sin (c+d x) \sqrt {a+b \cos (c+d x)}}{d \sqrt {\cos (c+d x)}}-\frac {a b \left (\int \frac {\sin \left (c+d x+\frac {\pi }{2}\right )+1}{\sin \left (c+d x+\frac {\pi }{2}\right )^{3/2} \sqrt {a+b \sin \left (c+d x+\frac {\pi }{2}\right )}}dx-\frac {2 \sqrt {a+b} \cot (c+d x) \sqrt {\frac {a (1-\sec (c+d x))}{a+b}} \sqrt {\frac {a (\sec (c+d x)+1)}{a-b}} \operatorname {EllipticF}\left (\arcsin \left (\frac {\sqrt {a+b \cos (c+d x)}}{\sqrt {a+b} \sqrt {\cos (c+d x)}}\right ),-\frac {a+b}{a-b}\right )}{a d}\right )+\frac {2 a \sqrt {a+b} \cot (c+d x) \sqrt {\frac {a (1-\sec (c+d x))}{a+b}} \sqrt {\frac {a (\sec (c+d x)+1)}{a-b}} \operatorname {EllipticPi}\left (\frac {a+b}{b},\arcsin \left (\frac {\sqrt {a+b \cos (c+d x)}}{\sqrt {a+b} \sqrt {\cos (c+d x)}}\right ),-\frac {a+b}{a-b}\right )}{d}}{2 b}\right )\)

\(\Big \downarrow \) 3473

\(\displaystyle \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \left (\frac {\sin (c+d x) \sqrt {a+b \cos (c+d x)}}{d \sqrt {\cos (c+d x)}}-\frac {a b \left (\frac {2 (a-b) \sqrt {a+b} \cot (c+d x) \sqrt {\frac {a (1-\sec (c+d x))}{a+b}} \sqrt {\frac {a (\sec (c+d x)+1)}{a-b}} E\left (\arcsin \left (\frac {\sqrt {a+b \cos (c+d x)}}{\sqrt {a+b} \sqrt {\cos (c+d x)}}\right )|-\frac {a+b}{a-b}\right )}{a^2 d}-\frac {2 \sqrt {a+b} \cot (c+d x) \sqrt {\frac {a (1-\sec (c+d x))}{a+b}} \sqrt {\frac {a (\sec (c+d x)+1)}{a-b}} \operatorname {EllipticF}\left (\arcsin \left (\frac {\sqrt {a+b \cos (c+d x)}}{\sqrt {a+b} \sqrt {\cos (c+d x)}}\right ),-\frac {a+b}{a-b}\right )}{a d}\right )+\frac {2 a \sqrt {a+b} \cot (c+d x) \sqrt {\frac {a (1-\sec (c+d x))}{a+b}} \sqrt {\frac {a (\sec (c+d x)+1)}{a-b}} \operatorname {EllipticPi}\left (\frac {a+b}{b},\arcsin \left (\frac {\sqrt {a+b \cos (c+d x)}}{\sqrt {a+b} \sqrt {\cos (c+d x)}}\right ),-\frac {a+b}{a-b}\right )}{d}}{2 b}\right )\)

Input:

Int[Sqrt[a + b*Cos[c + d*x]]/Sqrt[Sec[c + d*x]],x]
 

Output:

Sqrt[Cos[c + d*x]]*Sqrt[Sec[c + d*x]]*(-1/2*((2*a*Sqrt[a + b]*Cot[c + d*x] 
*EllipticPi[(a + b)/b, ArcSin[Sqrt[a + b*Cos[c + d*x]]/(Sqrt[a + b]*Sqrt[C 
os[c + d*x]])], -((a + b)/(a - b))]*Sqrt[(a*(1 - Sec[c + d*x]))/(a + b)]*S 
qrt[(a*(1 + Sec[c + d*x]))/(a - b)])/d + a*b*((2*(a - b)*Sqrt[a + b]*Cot[c 
 + d*x]*EllipticE[ArcSin[Sqrt[a + b*Cos[c + d*x]]/(Sqrt[a + b]*Sqrt[Cos[c 
+ d*x]])], -((a + b)/(a - b))]*Sqrt[(a*(1 - Sec[c + d*x]))/(a + b)]*Sqrt[( 
a*(1 + Sec[c + d*x]))/(a - b)])/(a^2*d) - (2*Sqrt[a + b]*Cot[c + d*x]*Elli 
pticF[ArcSin[Sqrt[a + b*Cos[c + d*x]]/(Sqrt[a + b]*Sqrt[Cos[c + d*x]])], - 
((a + b)/(a - b))]*Sqrt[(a*(1 - Sec[c + d*x]))/(a + b)]*Sqrt[(a*(1 + Sec[c 
 + d*x]))/(a - b)])/(a*d)))/b + (Sqrt[a + b*Cos[c + d*x]]*Sin[c + d*x])/(d 
*Sqrt[Cos[c + d*x]]))
 

Defintions of rubi rules used

rule 27
Int[(a_)*(Fx_), x_Symbol] :> Simp[a   Int[Fx, x], x] /; FreeQ[a, x] &&  !Ma 
tchQ[Fx, (b_)*(Gx_) /; FreeQ[b, x]]
 

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 3280
Int[1/(((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(3/2)*Sqrt[(c_.) + (d_.)*sin 
[(e_.) + (f_.)*(x_)]]), x_Symbol] :> Simp[1/(a - b)   Int[1/(Sqrt[a + b*Sin 
[e + f*x]]*Sqrt[c + d*Sin[e + f*x]]), x], x] - Simp[b/(a - b)   Int[(1 + Si 
n[e + f*x])/((a + b*Sin[e + f*x])^(3/2)*Sqrt[c + d*Sin[e + f*x]]), x], x] / 
; FreeQ[{a, b, c, d, e, f}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 - b^2, 0] && 
 NeQ[c^2 - d^2, 0]
 

rule 3288
Int[Sqrt[(b_.)*sin[(e_.) + (f_.)*(x_)]]/Sqrt[(c_) + (d_.)*sin[(e_.) + (f_.) 
*(x_)]], x_Symbol] :> Simp[2*b*(Tan[e + f*x]/(d*f))*Rt[(c + d)/b, 2]*Sqrt[c 
*((1 + Csc[e + f*x])/(c - d))]*Sqrt[c*((1 - Csc[e + f*x])/(c + d))]*Ellipti 
cPi[(c + d)/d, ArcSin[Sqrt[c + d*Sin[e + f*x]]/Sqrt[b*Sin[e + f*x]]/Rt[(c + 
 d)/b, 2]], -(c + d)/(c - d)], x] /; FreeQ[{b, c, d, e, f}, x] && NeQ[c^2 - 
 d^2, 0] && PosQ[(c + d)/b]
 

rule 3295
Int[1/(Sqrt[(d_.)*sin[(e_.) + (f_.)*(x_)]]*Sqrt[(a_) + (b_.)*sin[(e_.) + (f 
_.)*(x_)]]), x_Symbol] :> Simp[-2*(Tan[e + f*x]/(a*f))*Rt[(a + b)/d, 2]*Sqr 
t[a*((1 - Csc[e + f*x])/(a + b))]*Sqrt[a*((1 + Csc[e + f*x])/(a - b))]*Elli 
pticF[ArcSin[Sqrt[a + b*Sin[e + f*x]]/Sqrt[d*Sin[e + f*x]]/Rt[(a + b)/d, 2] 
], -(a + b)/(a - b)], x] /; FreeQ[{a, b, d, e, f}, x] && NeQ[a^2 - b^2, 0] 
&& PosQ[(a + b)/d]
 

rule 3300
Int[((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((c_.) + (d_.)*sin[(e_.) + 
 (f_.)*(x_)])^(n_), x_Symbol] :> Simp[(-b)*Cos[e + f*x]*(a + b*Sin[e + f*x] 
)^(m - 1)*((c + d*Sin[e + f*x])^n/(f*(m + n))), x] + Simp[1/(d*(m + n))   I 
nt[(a + b*Sin[e + f*x])^(m - 2)*(c + d*Sin[e + f*x])^(n - 1)*Simp[a^2*c*d*( 
m + n) + b*d*(b*c*(m - 1) + a*d*n) + (a*d*(2*b*c + a*d)*(m + n) - b*d*(a*c 
- b*d*(m + n - 1)))*Sin[e + f*x] + b*d*(b*c*n + a*d*(2*m + n - 1))*Sin[e + 
f*x]^2, x], x], x] /; FreeQ[{a, b, c, d, e, f}, x] && NeQ[b*c - a*d, 0] && 
NeQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0] && LtQ[0, m, 2] && LtQ[-1, n, 2] && 
NeQ[m + n, 0] && (IntegerQ[m] || IntegersQ[2*m, 2*n])
 

rule 3473
Int[((A_) + (B_.)*sin[(e_.) + (f_.)*(x_)])/(((b_.)*sin[(e_.) + (f_.)*(x_)]) 
^(3/2)*Sqrt[(c_) + (d_.)*sin[(e_.) + (f_.)*(x_)]]), x_Symbol] :> Simp[-2*A* 
(c - d)*(Tan[e + f*x]/(f*b*c^2))*Rt[(c + d)/b, 2]*Sqrt[c*((1 + Csc[e + f*x] 
)/(c - d))]*Sqrt[c*((1 - Csc[e + f*x])/(c + d))]*EllipticE[ArcSin[Sqrt[c + 
d*Sin[e + f*x]]/Sqrt[b*Sin[e + f*x]]/Rt[(c + d)/b, 2]], -(c + d)/(c - d)], 
x] /; FreeQ[{b, c, d, e, f, A, B}, x] && NeQ[c^2 - d^2, 0] && EqQ[A, B] && 
PosQ[(c + d)/b]
 

rule 3533
Int[((A_.) + (C_.)*sin[(e_.) + (f_.)*(x_)]^2)/(((a_.) + (b_.)*sin[(e_.) + ( 
f_.)*(x_)])^(3/2)*Sqrt[(c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)]]), x_Symbol] : 
> Simp[C/b^2   Int[Sqrt[a + b*Sin[e + f*x]]/Sqrt[c + d*Sin[e + f*x]], x], x 
] + Simp[1/b^2   Int[(A*b^2 - a^2*C - 2*a*b*C*Sin[e + f*x])/((a + b*Sin[e + 
 f*x])^(3/2)*Sqrt[c + d*Sin[e + f*x]]), x], x] /; FreeQ[{a, b, c, d, e, f, 
A, C}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0]
 

rule 4710
Int[(csc[(a_.) + (b_.)*(x_)]*(c_.))^(m_.)*(u_), x_Symbol] :> Simp[(c*Csc[a 
+ b*x])^m*(c*Sin[a + b*x])^m   Int[ActivateTrig[u]/(c*Sin[a + b*x])^m, x], 
x] /; FreeQ[{a, b, c, m}, x] &&  !IntegerQ[m] && KnownSineIntegrandQ[u, x]
 
Maple [A] (verified)

Time = 8.38 (sec) , antiderivative size = 467, normalized size of antiderivative = 1.08

method result size
default \(\frac {\sqrt {a +\cos \left (d x +c \right ) b}\, \left (\sqrt {\frac {a +\cos \left (d x +c \right ) b}{\left (\cos \left (d x +c \right )+1\right ) \left (a +b \right )}}\, \sqrt {\frac {\cos \left (d x +c \right )}{\cos \left (d x +c \right )+1}}\, a \operatorname {EllipticPi}\left (\cot \left (d x +c \right )-\csc \left (d x +c \right ), -1, \sqrt {-\frac {a -b}{a +b}}\right ) \left (-2 \cos \left (d x +c \right )-4-2 \sec \left (d x +c \right )\right )+\sqrt {\frac {a +\cos \left (d x +c \right ) b}{\left (\cos \left (d x +c \right )+1\right ) \left (a +b \right )}}\, \sqrt {\frac {\cos \left (d x +c \right )}{\cos \left (d x +c \right )+1}}\, a \operatorname {EllipticE}\left (\cot \left (d x +c \right )-\csc \left (d x +c \right ), \sqrt {-\frac {a -b}{a +b}}\right ) \left (-\cos \left (d x +c \right )-2-\sec \left (d x +c \right )\right )+\sqrt {\frac {a +\cos \left (d x +c \right ) b}{\left (\cos \left (d x +c \right )+1\right ) \left (a +b \right )}}\, \sqrt {\frac {\cos \left (d x +c \right )}{\cos \left (d x +c \right )+1}}\, b \operatorname {EllipticE}\left (\cot \left (d x +c \right )-\csc \left (d x +c \right ), \sqrt {-\frac {a -b}{a +b}}\right ) \left (-\cos \left (d x +c \right )-2-\sec \left (d x +c \right )\right )+\sqrt {\frac {a +\cos \left (d x +c \right ) b}{\left (\cos \left (d x +c \right )+1\right ) \left (a +b \right )}}\, \sqrt {\frac {\cos \left (d x +c \right )}{\cos \left (d x +c \right )+1}}\, a \operatorname {EllipticF}\left (\cot \left (d x +c \right )-\csc \left (d x +c \right ), \sqrt {-\frac {a -b}{a +b}}\right ) \left (2 \cos \left (d x +c \right )+4+2 \sec \left (d x +c \right )\right )+b \cos \left (d x +c \right ) \sin \left (d x +c \right )+a \sin \left (d x +c \right )\right )}{d \left (b \cos \left (d x +c \right )^{2}+a \cos \left (d x +c \right )+\cos \left (d x +c \right ) b +a \right ) \sqrt {\sec \left (d x +c \right )}}\) \(467\)

Input:

int((a+cos(d*x+c)*b)^(1/2)/sec(d*x+c)^(1/2),x,method=_RETURNVERBOSE)
 

Output:

1/d*(a+cos(d*x+c)*b)^(1/2)/(b*cos(d*x+c)^2+a*cos(d*x+c)+cos(d*x+c)*b+a)/se 
c(d*x+c)^(1/2)*(((a+cos(d*x+c)*b)/(cos(d*x+c)+1)/(a+b))^(1/2)*(cos(d*x+c)/ 
(cos(d*x+c)+1))^(1/2)*a*EllipticPi(cot(d*x+c)-csc(d*x+c),-1,(-(a-b)/(a+b)) 
^(1/2))*(-2*cos(d*x+c)-4-2*sec(d*x+c))+((a+cos(d*x+c)*b)/(cos(d*x+c)+1)/(a 
+b))^(1/2)*(cos(d*x+c)/(cos(d*x+c)+1))^(1/2)*a*EllipticE(cot(d*x+c)-csc(d* 
x+c),(-(a-b)/(a+b))^(1/2))*(-cos(d*x+c)-2-sec(d*x+c))+((a+cos(d*x+c)*b)/(c 
os(d*x+c)+1)/(a+b))^(1/2)*(cos(d*x+c)/(cos(d*x+c)+1))^(1/2)*b*EllipticE(co 
t(d*x+c)-csc(d*x+c),(-(a-b)/(a+b))^(1/2))*(-cos(d*x+c)-2-sec(d*x+c))+((a+c 
os(d*x+c)*b)/(cos(d*x+c)+1)/(a+b))^(1/2)*(cos(d*x+c)/(cos(d*x+c)+1))^(1/2) 
*a*EllipticF(cot(d*x+c)-csc(d*x+c),(-(a-b)/(a+b))^(1/2))*(2*cos(d*x+c)+4+2 
*sec(d*x+c))+b*cos(d*x+c)*sin(d*x+c)+a*sin(d*x+c))
                                                                                    
                                                                                    
 

Fricas [F]

\[ \int \frac {\sqrt {a+b \cos (c+d x)}}{\sqrt {\sec (c+d x)}} \, dx=\int { \frac {\sqrt {b \cos \left (d x + c\right ) + a}}{\sqrt {\sec \left (d x + c\right )}} \,d x } \] Input:

integrate((a+b*cos(d*x+c))^(1/2)/sec(d*x+c)^(1/2),x, algorithm="fricas")
 

Output:

integral(sqrt(b*cos(d*x + c) + a)/sqrt(sec(d*x + c)), x)
 

Sympy [F]

\[ \int \frac {\sqrt {a+b \cos (c+d x)}}{\sqrt {\sec (c+d x)}} \, dx=\int \frac {\sqrt {a + b \cos {\left (c + d x \right )}}}{\sqrt {\sec {\left (c + d x \right )}}}\, dx \] Input:

integrate((a+b*cos(d*x+c))**(1/2)/sec(d*x+c)**(1/2),x)
 

Output:

Integral(sqrt(a + b*cos(c + d*x))/sqrt(sec(c + d*x)), x)
 

Maxima [F]

\[ \int \frac {\sqrt {a+b \cos (c+d x)}}{\sqrt {\sec (c+d x)}} \, dx=\int { \frac {\sqrt {b \cos \left (d x + c\right ) + a}}{\sqrt {\sec \left (d x + c\right )}} \,d x } \] Input:

integrate((a+b*cos(d*x+c))^(1/2)/sec(d*x+c)^(1/2),x, algorithm="maxima")
 

Output:

integrate(sqrt(b*cos(d*x + c) + a)/sqrt(sec(d*x + c)), x)
 

Giac [F]

\[ \int \frac {\sqrt {a+b \cos (c+d x)}}{\sqrt {\sec (c+d x)}} \, dx=\int { \frac {\sqrt {b \cos \left (d x + c\right ) + a}}{\sqrt {\sec \left (d x + c\right )}} \,d x } \] Input:

integrate((a+b*cos(d*x+c))^(1/2)/sec(d*x+c)^(1/2),x, algorithm="giac")
 

Output:

integrate(sqrt(b*cos(d*x + c) + a)/sqrt(sec(d*x + c)), x)
 

Mupad [F(-1)]

Timed out. \[ \int \frac {\sqrt {a+b \cos (c+d x)}}{\sqrt {\sec (c+d x)}} \, dx=\int \frac {\sqrt {a+b\,\cos \left (c+d\,x\right )}}{\sqrt {\frac {1}{\cos \left (c+d\,x\right )}}} \,d x \] Input:

int((a + b*cos(c + d*x))^(1/2)/(1/cos(c + d*x))^(1/2),x)
 

Output:

int((a + b*cos(c + d*x))^(1/2)/(1/cos(c + d*x))^(1/2), x)
 

Reduce [F]

\[ \int \frac {\sqrt {a+b \cos (c+d x)}}{\sqrt {\sec (c+d x)}} \, dx=\int \frac {\sqrt {\sec \left (d x +c \right )}\, \sqrt {\cos \left (d x +c \right ) b +a}}{\sec \left (d x +c \right )}d x \] Input:

int((a+b*cos(d*x+c))^(1/2)/sec(d*x+c)^(1/2),x)
 

Output:

int((sqrt(sec(c + d*x))*sqrt(cos(c + d*x)*b + a))/sec(c + d*x),x)