\(\int (a+b \cos (c+d x))^{3/2} \sec ^{\frac {7}{2}}(c+d x) \, dx\) [737]

Optimal result
Mathematica [A] (warning: unable to verify)
Rubi [A] (verified)
Maple [B] (verified)
Fricas [F]
Sympy [F(-1)]
Maxima [F]
Giac [F]
Mupad [F(-1)]
Reduce [F]

Optimal result

Integrand size = 25, antiderivative size = 365 \[ \int (a+b \cos (c+d x))^{3/2} \sec ^{\frac {7}{2}}(c+d x) \, dx=\frac {2 (a-b) \sqrt {a+b} \left (3 a^2+b^2\right ) \sqrt {\cos (c+d x)} \csc (c+d x) E\left (\arcsin \left (\frac {\sqrt {a+b \cos (c+d x)}}{\sqrt {a+b} \sqrt {\cos (c+d x)}}\right )|-\frac {a+b}{a-b}\right ) \sqrt {\frac {a (1-\sec (c+d x))}{a+b}} \sqrt {\frac {a (1+\sec (c+d x))}{a-b}}}{5 a^2 d \sqrt {\sec (c+d x)}}-\frac {2 (a-b) (3 a-b) \sqrt {a+b} \sqrt {\cos (c+d x)} \csc (c+d x) \operatorname {EllipticF}\left (\arcsin \left (\frac {\sqrt {a+b \cos (c+d x)}}{\sqrt {a+b} \sqrt {\cos (c+d x)}}\right ),-\frac {a+b}{a-b}\right ) \sqrt {\frac {a (1-\sec (c+d x))}{a+b}} \sqrt {\frac {a (1+\sec (c+d x))}{a-b}}}{5 a d \sqrt {\sec (c+d x)}}+\frac {4 b \sqrt {a+b \cos (c+d x)} \sec ^{\frac {3}{2}}(c+d x) \sin (c+d x)}{5 d}+\frac {2 a \sqrt {a+b \cos (c+d x)} \sec ^{\frac {5}{2}}(c+d x) \sin (c+d x)}{5 d} \] Output:

2/5*(a-b)*(a+b)^(1/2)*(3*a^2+b^2)*cos(d*x+c)^(1/2)*csc(d*x+c)*EllipticE((a 
+b*cos(d*x+c))^(1/2)/(a+b)^(1/2)/cos(d*x+c)^(1/2),(-(a+b)/(a-b))^(1/2))*(a 
*(1-sec(d*x+c))/(a+b))^(1/2)*(a*(1+sec(d*x+c))/(a-b))^(1/2)/a^2/d/sec(d*x+ 
c)^(1/2)-2/5*(a-b)*(3*a-b)*(a+b)^(1/2)*cos(d*x+c)^(1/2)*csc(d*x+c)*Ellipti 
cF((a+b*cos(d*x+c))^(1/2)/(a+b)^(1/2)/cos(d*x+c)^(1/2),(-(a+b)/(a-b))^(1/2 
))*(a*(1-sec(d*x+c))/(a+b))^(1/2)*(a*(1+sec(d*x+c))/(a-b))^(1/2)/a/d/sec(d 
*x+c)^(1/2)+4/5*b*(a+b*cos(d*x+c))^(1/2)*sec(d*x+c)^(3/2)*sin(d*x+c)/d+2/5 
*a*(a+b*cos(d*x+c))^(1/2)*sec(d*x+c)^(5/2)*sin(d*x+c)/d
 

Mathematica [A] (warning: unable to verify)

Time = 7.89 (sec) , antiderivative size = 345, normalized size of antiderivative = 0.95 \[ \int (a+b \cos (c+d x))^{3/2} \sec ^{\frac {7}{2}}(c+d x) \, dx=\frac {2 \left (\frac {\sqrt {\cos ^2\left (\frac {1}{2} (c+d x)\right ) \sec (c+d x)} \left (-2 \left (3 a^3+3 a^2 b+a b^2+b^3\right ) E\left (\arcsin \left (\tan \left (\frac {1}{2} (c+d x)\right )\right )|\frac {-a+b}{a+b}\right ) \sqrt {\frac {1}{1+\sec (c+d x)}} \sqrt {\frac {b+a \sec (c+d x)}{(a+b) (1+\sec (c+d x))}}+2 a \left (3 a^2+4 a b+b^2\right ) \operatorname {EllipticF}\left (\arcsin \left (\tan \left (\frac {1}{2} (c+d x)\right )\right ),\frac {-a+b}{a+b}\right ) \sqrt {\frac {1}{1+\sec (c+d x)}} \sqrt {\frac {b+a \sec (c+d x)}{(a+b) (1+\sec (c+d x))}}-\left (3 a^2+b^2\right ) \cos (c+d x) (a+b \cos (c+d x)) \sec ^2\left (\frac {1}{2} (c+d x)\right ) \tan \left (\frac {1}{2} (c+d x)\right )\right )}{\sqrt {\sec ^2\left (\frac {1}{2} (c+d x)\right )}}+(a+b \cos (c+d x)) \sqrt {\sec (c+d x)} \left (\left (3 a^2+b^2\right ) \sin (c+d x)+a (2 b+a \sec (c+d x)) \tan (c+d x)\right )\right )}{5 a d \sqrt {a+b \cos (c+d x)}} \] Input:

Integrate[(a + b*Cos[c + d*x])^(3/2)*Sec[c + d*x]^(7/2),x]
 

Output:

(2*((Sqrt[Cos[(c + d*x)/2]^2*Sec[c + d*x]]*(-2*(3*a^3 + 3*a^2*b + a*b^2 + 
b^3)*EllipticE[ArcSin[Tan[(c + d*x)/2]], (-a + b)/(a + b)]*Sqrt[(1 + Sec[c 
 + d*x])^(-1)]*Sqrt[(b + a*Sec[c + d*x])/((a + b)*(1 + Sec[c + d*x]))] + 2 
*a*(3*a^2 + 4*a*b + b^2)*EllipticF[ArcSin[Tan[(c + d*x)/2]], (-a + b)/(a + 
 b)]*Sqrt[(1 + Sec[c + d*x])^(-1)]*Sqrt[(b + a*Sec[c + d*x])/((a + b)*(1 + 
 Sec[c + d*x]))] - (3*a^2 + b^2)*Cos[c + d*x]*(a + b*Cos[c + d*x])*Sec[(c 
+ d*x)/2]^2*Tan[(c + d*x)/2]))/Sqrt[Sec[(c + d*x)/2]^2] + (a + b*Cos[c + d 
*x])*Sqrt[Sec[c + d*x]]*((3*a^2 + b^2)*Sin[c + d*x] + a*(2*b + a*Sec[c + d 
*x])*Tan[c + d*x])))/(5*a*d*Sqrt[a + b*Cos[c + d*x]])
 

Rubi [A] (verified)

Time = 1.45 (sec) , antiderivative size = 347, normalized size of antiderivative = 0.95, number of steps used = 13, number of rules used = 13, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.520, Rules used = {3042, 4710, 3042, 3278, 27, 3042, 3534, 27, 3042, 3477, 3042, 3295, 3473}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \sec ^{\frac {7}{2}}(c+d x) (a+b \cos (c+d x))^{3/2} \, dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \csc \left (c+d x+\frac {\pi }{2}\right )^{7/2} \left (a+b \sin \left (c+d x+\frac {\pi }{2}\right )\right )^{3/2}dx\)

\(\Big \downarrow \) 4710

\(\displaystyle \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \int \frac {(a+b \cos (c+d x))^{3/2}}{\cos ^{\frac {7}{2}}(c+d x)}dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \int \frac {\left (a+b \sin \left (c+d x+\frac {\pi }{2}\right )\right )^{3/2}}{\sin \left (c+d x+\frac {\pi }{2}\right )^{7/2}}dx\)

\(\Big \downarrow \) 3278

\(\displaystyle \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \left (\frac {2}{5} \int \frac {2 a b \cos ^2(c+d x)+\left (3 a^2+5 b^2\right ) \cos (c+d x)+6 a b}{2 \cos ^{\frac {5}{2}}(c+d x) \sqrt {a+b \cos (c+d x)}}dx+\frac {2 a \sin (c+d x) \sqrt {a+b \cos (c+d x)}}{5 d \cos ^{\frac {5}{2}}(c+d x)}\right )\)

\(\Big \downarrow \) 27

\(\displaystyle \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \left (\frac {1}{5} \int \frac {2 a b \cos ^2(c+d x)+\left (3 a^2+5 b^2\right ) \cos (c+d x)+6 a b}{\cos ^{\frac {5}{2}}(c+d x) \sqrt {a+b \cos (c+d x)}}dx+\frac {2 a \sin (c+d x) \sqrt {a+b \cos (c+d x)}}{5 d \cos ^{\frac {5}{2}}(c+d x)}\right )\)

\(\Big \downarrow \) 3042

\(\displaystyle \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \left (\frac {1}{5} \int \frac {2 a b \sin \left (c+d x+\frac {\pi }{2}\right )^2+\left (3 a^2+5 b^2\right ) \sin \left (c+d x+\frac {\pi }{2}\right )+6 a b}{\sin \left (c+d x+\frac {\pi }{2}\right )^{5/2} \sqrt {a+b \sin \left (c+d x+\frac {\pi }{2}\right )}}dx+\frac {2 a \sin (c+d x) \sqrt {a+b \cos (c+d x)}}{5 d \cos ^{\frac {5}{2}}(c+d x)}\right )\)

\(\Big \downarrow \) 3534

\(\displaystyle \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \left (\frac {1}{5} \left (\frac {2 \int \frac {3 \left (4 b \cos (c+d x) a^2+\left (3 a^2+b^2\right ) a\right )}{2 \cos ^{\frac {3}{2}}(c+d x) \sqrt {a+b \cos (c+d x)}}dx}{3 a}+\frac {4 b \sin (c+d x) \sqrt {a+b \cos (c+d x)}}{d \cos ^{\frac {3}{2}}(c+d x)}\right )+\frac {2 a \sin (c+d x) \sqrt {a+b \cos (c+d x)}}{5 d \cos ^{\frac {5}{2}}(c+d x)}\right )\)

\(\Big \downarrow \) 27

\(\displaystyle \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \left (\frac {1}{5} \left (\frac {\int \frac {4 b \cos (c+d x) a^2+\left (3 a^2+b^2\right ) a}{\cos ^{\frac {3}{2}}(c+d x) \sqrt {a+b \cos (c+d x)}}dx}{a}+\frac {4 b \sin (c+d x) \sqrt {a+b \cos (c+d x)}}{d \cos ^{\frac {3}{2}}(c+d x)}\right )+\frac {2 a \sin (c+d x) \sqrt {a+b \cos (c+d x)}}{5 d \cos ^{\frac {5}{2}}(c+d x)}\right )\)

\(\Big \downarrow \) 3042

\(\displaystyle \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \left (\frac {1}{5} \left (\frac {\int \frac {4 b \sin \left (c+d x+\frac {\pi }{2}\right ) a^2+\left (3 a^2+b^2\right ) a}{\sin \left (c+d x+\frac {\pi }{2}\right )^{3/2} \sqrt {a+b \sin \left (c+d x+\frac {\pi }{2}\right )}}dx}{a}+\frac {4 b \sin (c+d x) \sqrt {a+b \cos (c+d x)}}{d \cos ^{\frac {3}{2}}(c+d x)}\right )+\frac {2 a \sin (c+d x) \sqrt {a+b \cos (c+d x)}}{5 d \cos ^{\frac {5}{2}}(c+d x)}\right )\)

\(\Big \downarrow \) 3477

\(\displaystyle \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \left (\frac {1}{5} \left (\frac {a \left (3 a^2+b^2\right ) \int \frac {\cos (c+d x)+1}{\cos ^{\frac {3}{2}}(c+d x) \sqrt {a+b \cos (c+d x)}}dx-a (a-b) (3 a-b) \int \frac {1}{\sqrt {\cos (c+d x)} \sqrt {a+b \cos (c+d x)}}dx}{a}+\frac {4 b \sin (c+d x) \sqrt {a+b \cos (c+d x)}}{d \cos ^{\frac {3}{2}}(c+d x)}\right )+\frac {2 a \sin (c+d x) \sqrt {a+b \cos (c+d x)}}{5 d \cos ^{\frac {5}{2}}(c+d x)}\right )\)

\(\Big \downarrow \) 3042

\(\displaystyle \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \left (\frac {1}{5} \left (\frac {a \left (3 a^2+b^2\right ) \int \frac {\sin \left (c+d x+\frac {\pi }{2}\right )+1}{\sin \left (c+d x+\frac {\pi }{2}\right )^{3/2} \sqrt {a+b \sin \left (c+d x+\frac {\pi }{2}\right )}}dx-a (a-b) (3 a-b) \int \frac {1}{\sqrt {\sin \left (c+d x+\frac {\pi }{2}\right )} \sqrt {a+b \sin \left (c+d x+\frac {\pi }{2}\right )}}dx}{a}+\frac {4 b \sin (c+d x) \sqrt {a+b \cos (c+d x)}}{d \cos ^{\frac {3}{2}}(c+d x)}\right )+\frac {2 a \sin (c+d x) \sqrt {a+b \cos (c+d x)}}{5 d \cos ^{\frac {5}{2}}(c+d x)}\right )\)

\(\Big \downarrow \) 3295

\(\displaystyle \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \left (\frac {1}{5} \left (\frac {a \left (3 a^2+b^2\right ) \int \frac {\sin \left (c+d x+\frac {\pi }{2}\right )+1}{\sin \left (c+d x+\frac {\pi }{2}\right )^{3/2} \sqrt {a+b \sin \left (c+d x+\frac {\pi }{2}\right )}}dx-\frac {2 (a-b) (3 a-b) \sqrt {a+b} \cot (c+d x) \sqrt {\frac {a (1-\sec (c+d x))}{a+b}} \sqrt {\frac {a (\sec (c+d x)+1)}{a-b}} \operatorname {EllipticF}\left (\arcsin \left (\frac {\sqrt {a+b \cos (c+d x)}}{\sqrt {a+b} \sqrt {\cos (c+d x)}}\right ),-\frac {a+b}{a-b}\right )}{d}}{a}+\frac {4 b \sin (c+d x) \sqrt {a+b \cos (c+d x)}}{d \cos ^{\frac {3}{2}}(c+d x)}\right )+\frac {2 a \sin (c+d x) \sqrt {a+b \cos (c+d x)}}{5 d \cos ^{\frac {5}{2}}(c+d x)}\right )\)

\(\Big \downarrow \) 3473

\(\displaystyle \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \left (\frac {1}{5} \left (\frac {\frac {2 (a-b) \sqrt {a+b} \left (3 a^2+b^2\right ) \cot (c+d x) \sqrt {\frac {a (1-\sec (c+d x))}{a+b}} \sqrt {\frac {a (\sec (c+d x)+1)}{a-b}} E\left (\arcsin \left (\frac {\sqrt {a+b \cos (c+d x)}}{\sqrt {a+b} \sqrt {\cos (c+d x)}}\right )|-\frac {a+b}{a-b}\right )}{a d}-\frac {2 (a-b) (3 a-b) \sqrt {a+b} \cot (c+d x) \sqrt {\frac {a (1-\sec (c+d x))}{a+b}} \sqrt {\frac {a (\sec (c+d x)+1)}{a-b}} \operatorname {EllipticF}\left (\arcsin \left (\frac {\sqrt {a+b \cos (c+d x)}}{\sqrt {a+b} \sqrt {\cos (c+d x)}}\right ),-\frac {a+b}{a-b}\right )}{d}}{a}+\frac {4 b \sin (c+d x) \sqrt {a+b \cos (c+d x)}}{d \cos ^{\frac {3}{2}}(c+d x)}\right )+\frac {2 a \sin (c+d x) \sqrt {a+b \cos (c+d x)}}{5 d \cos ^{\frac {5}{2}}(c+d x)}\right )\)

Input:

Int[(a + b*Cos[c + d*x])^(3/2)*Sec[c + d*x]^(7/2),x]
 

Output:

Sqrt[Cos[c + d*x]]*Sqrt[Sec[c + d*x]]*((2*a*Sqrt[a + b*Cos[c + d*x]]*Sin[c 
 + d*x])/(5*d*Cos[c + d*x]^(5/2)) + (((2*(a - b)*Sqrt[a + b]*(3*a^2 + b^2) 
*Cot[c + d*x]*EllipticE[ArcSin[Sqrt[a + b*Cos[c + d*x]]/(Sqrt[a + b]*Sqrt[ 
Cos[c + d*x]])], -((a + b)/(a - b))]*Sqrt[(a*(1 - Sec[c + d*x]))/(a + b)]* 
Sqrt[(a*(1 + Sec[c + d*x]))/(a - b)])/(a*d) - (2*(a - b)*(3*a - b)*Sqrt[a 
+ b]*Cot[c + d*x]*EllipticF[ArcSin[Sqrt[a + b*Cos[c + d*x]]/(Sqrt[a + b]*S 
qrt[Cos[c + d*x]])], -((a + b)/(a - b))]*Sqrt[(a*(1 - Sec[c + d*x]))/(a + 
b)]*Sqrt[(a*(1 + Sec[c + d*x]))/(a - b)])/d)/a + (4*b*Sqrt[a + b*Cos[c + d 
*x]]*Sin[c + d*x])/(d*Cos[c + d*x]^(3/2)))/5)
 

Defintions of rubi rules used

rule 27
Int[(a_)*(Fx_), x_Symbol] :> Simp[a   Int[Fx, x], x] /; FreeQ[a, x] &&  !Ma 
tchQ[Fx, (b_)*(Gx_) /; FreeQ[b, x]]
 

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 3278
Int[((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((c_.) + (d_.)*sin[(e_.) + 
 (f_.)*(x_)])^(n_), x_Symbol] :> Simp[(-(b*c - a*d))*Cos[e + f*x]*(a + b*Si 
n[e + f*x])^(m + 1)*((c + d*Sin[e + f*x])^(n - 1)/(f*(m + 1)*(a^2 - b^2))), 
 x] + Simp[1/((m + 1)*(a^2 - b^2))   Int[(a + b*Sin[e + f*x])^(m + 1)*(c + 
d*Sin[e + f*x])^(n - 2)*Simp[c*(a*c - b*d)*(m + 1) + d*(b*c - a*d)*(n - 1) 
+ (d*(a*c - b*d)*(m + 1) - c*(b*c - a*d)*(m + 2))*Sin[e + f*x] - d*(b*c - a 
*d)*(m + n + 1)*Sin[e + f*x]^2, x], x], x] /; FreeQ[{a, b, c, d, e, f}, x] 
&& NeQ[b*c - a*d, 0] && NeQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0] && LtQ[m, -1 
] && LtQ[1, n, 2] && IntegersQ[2*m, 2*n]
 

rule 3295
Int[1/(Sqrt[(d_.)*sin[(e_.) + (f_.)*(x_)]]*Sqrt[(a_) + (b_.)*sin[(e_.) + (f 
_.)*(x_)]]), x_Symbol] :> Simp[-2*(Tan[e + f*x]/(a*f))*Rt[(a + b)/d, 2]*Sqr 
t[a*((1 - Csc[e + f*x])/(a + b))]*Sqrt[a*((1 + Csc[e + f*x])/(a - b))]*Elli 
pticF[ArcSin[Sqrt[a + b*Sin[e + f*x]]/Sqrt[d*Sin[e + f*x]]/Rt[(a + b)/d, 2] 
], -(a + b)/(a - b)], x] /; FreeQ[{a, b, d, e, f}, x] && NeQ[a^2 - b^2, 0] 
&& PosQ[(a + b)/d]
 

rule 3473
Int[((A_) + (B_.)*sin[(e_.) + (f_.)*(x_)])/(((b_.)*sin[(e_.) + (f_.)*(x_)]) 
^(3/2)*Sqrt[(c_) + (d_.)*sin[(e_.) + (f_.)*(x_)]]), x_Symbol] :> Simp[-2*A* 
(c - d)*(Tan[e + f*x]/(f*b*c^2))*Rt[(c + d)/b, 2]*Sqrt[c*((1 + Csc[e + f*x] 
)/(c - d))]*Sqrt[c*((1 - Csc[e + f*x])/(c + d))]*EllipticE[ArcSin[Sqrt[c + 
d*Sin[e + f*x]]/Sqrt[b*Sin[e + f*x]]/Rt[(c + d)/b, 2]], -(c + d)/(c - d)], 
x] /; FreeQ[{b, c, d, e, f, A, B}, x] && NeQ[c^2 - d^2, 0] && EqQ[A, B] && 
PosQ[(c + d)/b]
 

rule 3477
Int[((A_.) + (B_.)*sin[(e_.) + (f_.)*(x_)])/(((a_.) + (b_.)*sin[(e_.) + (f_ 
.)*(x_)])^(3/2)*Sqrt[(c_) + (d_.)*sin[(e_.) + (f_.)*(x_)]]), x_Symbol] :> S 
imp[(A - B)/(a - b)   Int[1/(Sqrt[a + b*Sin[e + f*x]]*Sqrt[c + d*Sin[e + f* 
x]]), x], x] - Simp[(A*b - a*B)/(a - b)   Int[(1 + Sin[e + f*x])/((a + b*Si 
n[e + f*x])^(3/2)*Sqrt[c + d*Sin[e + f*x]]), x], x] /; FreeQ[{a, b, c, d, e 
, f, A, B}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 
0] && NeQ[A, B]
 

rule 3534
Int[((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((c_.) + (d_.)*sin[(e_.) + 
 (f_.)*(x_)])^(n_)*((A_.) + (B_.)*sin[(e_.) + (f_.)*(x_)] + (C_.)*sin[(e_.) 
 + (f_.)*(x_)]^2), x_Symbol] :> Simp[(-(A*b^2 - a*b*B + a^2*C))*Cos[e + f*x 
]*(a + b*Sin[e + f*x])^(m + 1)*((c + d*Sin[e + f*x])^(n + 1)/(f*(m + 1)*(b* 
c - a*d)*(a^2 - b^2))), x] + Simp[1/((m + 1)*(b*c - a*d)*(a^2 - b^2))   Int 
[(a + b*Sin[e + f*x])^(m + 1)*(c + d*Sin[e + f*x])^n*Simp[(m + 1)*(b*c - a* 
d)*(a*A - b*B + a*C) + d*(A*b^2 - a*b*B + a^2*C)*(m + n + 2) - (c*(A*b^2 - 
a*b*B + a^2*C) + (m + 1)*(b*c - a*d)*(A*b - a*B + b*C))*Sin[e + f*x] - d*(A 
*b^2 - a*b*B + a^2*C)*(m + n + 3)*Sin[e + f*x]^2, x], x], x] /; FreeQ[{a, b 
, c, d, e, f, A, B, C, n}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 - b^2, 0] && 
NeQ[c^2 - d^2, 0] && LtQ[m, -1] && ((EqQ[a, 0] && IntegerQ[m] &&  !IntegerQ 
[n]) ||  !(IntegerQ[2*n] && LtQ[n, -1] && ((IntegerQ[n] &&  !IntegerQ[m]) | 
| EqQ[a, 0])))
 

rule 4710
Int[(csc[(a_.) + (b_.)*(x_)]*(c_.))^(m_.)*(u_), x_Symbol] :> Simp[(c*Csc[a 
+ b*x])^m*(c*Sin[a + b*x])^m   Int[ActivateTrig[u]/(c*Sin[a + b*x])^m, x], 
x] /; FreeQ[{a, b, c, m}, x] &&  !IntegerQ[m] && KnownSineIntegrandQ[u, x]
 
Maple [B] (verified)

Leaf count of result is larger than twice the leaf count of optimal. \(966\) vs. \(2(319)=638\).

Time = 26.51 (sec) , antiderivative size = 967, normalized size of antiderivative = 2.65

method result size
default \(\text {Expression too large to display}\) \(967\)

Input:

int((a+cos(d*x+c)*b)^(3/2)*sec(d*x+c)^(7/2),x,method=_RETURNVERBOSE)
 

Output:

-2/5/d*(a+cos(d*x+c)*b)^(1/2)*sec(d*x+c)^(7/2)/(b*cos(d*x+c)^2+a*cos(d*x+c 
)+cos(d*x+c)*b+a)*(((a+cos(d*x+c)*b)/(cos(d*x+c)+1)/(a+b))^(1/2)*(cos(d*x+ 
c)/(cos(d*x+c)+1))^(1/2)*a^3*EllipticE(cot(d*x+c)-csc(d*x+c),(-(a-b)/(a+b) 
)^(1/2))*(-3*cos(d*x+c)^5-6*cos(d*x+c)^4-3*cos(d*x+c)^3)+((a+cos(d*x+c)*b) 
/(cos(d*x+c)+1)/(a+b))^(1/2)*(cos(d*x+c)/(cos(d*x+c)+1))^(1/2)*a^2*b*Ellip 
ticE(cot(d*x+c)-csc(d*x+c),(-(a-b)/(a+b))^(1/2))*(-3*cos(d*x+c)^5-6*cos(d* 
x+c)^4-3*cos(d*x+c)^3)+((a+cos(d*x+c)*b)/(cos(d*x+c)+1)/(a+b))^(1/2)*(cos( 
d*x+c)/(cos(d*x+c)+1))^(1/2)*a*b^2*EllipticE(cot(d*x+c)-csc(d*x+c),(-(a-b) 
/(a+b))^(1/2))*(-cos(d*x+c)^5-2*cos(d*x+c)^4-cos(d*x+c)^3)+((a+cos(d*x+c)* 
b)/(cos(d*x+c)+1)/(a+b))^(1/2)*(cos(d*x+c)/(cos(d*x+c)+1))^(1/2)*b^3*Ellip 
ticE(cot(d*x+c)-csc(d*x+c),(-(a-b)/(a+b))^(1/2))*(-cos(d*x+c)^5-2*cos(d*x+ 
c)^4-cos(d*x+c)^3)+((a+cos(d*x+c)*b)/(cos(d*x+c)+1)/(a+b))^(1/2)*(cos(d*x+ 
c)/(cos(d*x+c)+1))^(1/2)*a^3*EllipticF(cot(d*x+c)-csc(d*x+c),(-(a-b)/(a+b) 
)^(1/2))*(3*cos(d*x+c)^5+6*cos(d*x+c)^4+3*cos(d*x+c)^3)+((a+cos(d*x+c)*b)/ 
(cos(d*x+c)+1)/(a+b))^(1/2)*(cos(d*x+c)/(cos(d*x+c)+1))^(1/2)*a^2*b*Ellipt 
icF(cot(d*x+c)-csc(d*x+c),(-(a-b)/(a+b))^(1/2))*(4*cos(d*x+c)^5+8*cos(d*x+ 
c)^4+4*cos(d*x+c)^3)+((a+cos(d*x+c)*b)/(cos(d*x+c)+1)/(a+b))^(1/2)*(cos(d* 
x+c)/(cos(d*x+c)+1))^(1/2)*a*b^2*EllipticF(cot(d*x+c)-csc(d*x+c),(-(a-b)/( 
a+b))^(1/2))*(cos(d*x+c)^5+2*cos(d*x+c)^4+cos(d*x+c)^3)+cos(d*x+c)*(-3*cos 
(d*x+c)^2-cos(d*x+c)-1)*sin(d*x+c)*a^3+cos(d*x+c)^2*sin(d*x+c)*(-3*cos(...
 

Fricas [F]

\[ \int (a+b \cos (c+d x))^{3/2} \sec ^{\frac {7}{2}}(c+d x) \, dx=\int { {\left (b \cos \left (d x + c\right ) + a\right )}^{\frac {3}{2}} \sec \left (d x + c\right )^{\frac {7}{2}} \,d x } \] Input:

integrate((a+b*cos(d*x+c))^(3/2)*sec(d*x+c)^(7/2),x, algorithm="fricas")
 

Output:

integral((b*cos(d*x + c) + a)^(3/2)*sec(d*x + c)^(7/2), x)
 

Sympy [F(-1)]

Timed out. \[ \int (a+b \cos (c+d x))^{3/2} \sec ^{\frac {7}{2}}(c+d x) \, dx=\text {Timed out} \] Input:

integrate((a+b*cos(d*x+c))**(3/2)*sec(d*x+c)**(7/2),x)
 

Output:

Timed out
 

Maxima [F]

\[ \int (a+b \cos (c+d x))^{3/2} \sec ^{\frac {7}{2}}(c+d x) \, dx=\int { {\left (b \cos \left (d x + c\right ) + a\right )}^{\frac {3}{2}} \sec \left (d x + c\right )^{\frac {7}{2}} \,d x } \] Input:

integrate((a+b*cos(d*x+c))^(3/2)*sec(d*x+c)^(7/2),x, algorithm="maxima")
 

Output:

integrate((b*cos(d*x + c) + a)^(3/2)*sec(d*x + c)^(7/2), x)
 

Giac [F]

\[ \int (a+b \cos (c+d x))^{3/2} \sec ^{\frac {7}{2}}(c+d x) \, dx=\int { {\left (b \cos \left (d x + c\right ) + a\right )}^{\frac {3}{2}} \sec \left (d x + c\right )^{\frac {7}{2}} \,d x } \] Input:

integrate((a+b*cos(d*x+c))^(3/2)*sec(d*x+c)^(7/2),x, algorithm="giac")
 

Output:

integrate((b*cos(d*x + c) + a)^(3/2)*sec(d*x + c)^(7/2), x)
 

Mupad [F(-1)]

Timed out. \[ \int (a+b \cos (c+d x))^{3/2} \sec ^{\frac {7}{2}}(c+d x) \, dx=\int {\left (\frac {1}{\cos \left (c+d\,x\right )}\right )}^{7/2}\,{\left (a+b\,\cos \left (c+d\,x\right )\right )}^{3/2} \,d x \] Input:

int((1/cos(c + d*x))^(7/2)*(a + b*cos(c + d*x))^(3/2),x)
                                                                                    
                                                                                    
 

Output:

int((1/cos(c + d*x))^(7/2)*(a + b*cos(c + d*x))^(3/2), x)
 

Reduce [F]

\[ \int (a+b \cos (c+d x))^{3/2} \sec ^{\frac {7}{2}}(c+d x) \, dx=\left (\int \sqrt {\sec \left (d x +c \right )}\, \sqrt {\cos \left (d x +c \right ) b +a}\, \cos \left (d x +c \right ) \sec \left (d x +c \right )^{3}d x \right ) b +\left (\int \sqrt {\sec \left (d x +c \right )}\, \sqrt {\cos \left (d x +c \right ) b +a}\, \sec \left (d x +c \right )^{3}d x \right ) a \] Input:

int((a+b*cos(d*x+c))^(3/2)*sec(d*x+c)^(7/2),x)
 

Output:

int(sqrt(sec(c + d*x))*sqrt(cos(c + d*x)*b + a)*cos(c + d*x)*sec(c + d*x)* 
*3,x)*b + int(sqrt(sec(c + d*x))*sqrt(cos(c + d*x)*b + a)*sec(c + d*x)**3, 
x)*a