\(\int \frac {\sec ^{\frac {3}{2}}(c+d x)}{\sqrt {a+b \cos (c+d x)}} \, dx\) [752]

Optimal result
Mathematica [A] (warning: unable to verify)
Rubi [A] (verified)
Maple [A] (verified)
Fricas [F]
Sympy [F]
Maxima [F]
Giac [F]
Mupad [F(-1)]
Reduce [F]

Optimal result

Integrand size = 25, antiderivative size = 264 \[ \int \frac {\sec ^{\frac {3}{2}}(c+d x)}{\sqrt {a+b \cos (c+d x)}} \, dx=\frac {2 (a-b) \sqrt {a+b} \sqrt {\cos (c+d x)} \csc (c+d x) E\left (\arcsin \left (\frac {\sqrt {a+b \cos (c+d x)}}{\sqrt {a+b} \sqrt {\cos (c+d x)}}\right )|-\frac {a+b}{a-b}\right ) \sqrt {\frac {a (1-\sec (c+d x))}{a+b}} \sqrt {\frac {a (1+\sec (c+d x))}{a-b}}}{a^2 d \sqrt {\sec (c+d x)}}-\frac {2 \sqrt {a+b} \sqrt {\cos (c+d x)} \csc (c+d x) \operatorname {EllipticF}\left (\arcsin \left (\frac {\sqrt {a+b \cos (c+d x)}}{\sqrt {a+b} \sqrt {\cos (c+d x)}}\right ),-\frac {a+b}{a-b}\right ) \sqrt {\frac {a (1-\sec (c+d x))}{a+b}} \sqrt {\frac {a (1+\sec (c+d x))}{a-b}}}{a d \sqrt {\sec (c+d x)}} \] Output:

2*(a-b)*(a+b)^(1/2)*cos(d*x+c)^(1/2)*csc(d*x+c)*EllipticE((a+b*cos(d*x+c)) 
^(1/2)/(a+b)^(1/2)/cos(d*x+c)^(1/2),(-(a+b)/(a-b))^(1/2))*(a*(1-sec(d*x+c) 
)/(a+b))^(1/2)*(a*(1+sec(d*x+c))/(a-b))^(1/2)/a^2/d/sec(d*x+c)^(1/2)-2*(a+ 
b)^(1/2)*cos(d*x+c)^(1/2)*csc(d*x+c)*EllipticF((a+b*cos(d*x+c))^(1/2)/(a+b 
)^(1/2)/cos(d*x+c)^(1/2),(-(a+b)/(a-b))^(1/2))*(a*(1-sec(d*x+c))/(a+b))^(1 
/2)*(a*(1+sec(d*x+c))/(a-b))^(1/2)/a/d/sec(d*x+c)^(1/2)
 

Mathematica [A] (warning: unable to verify)

Time = 11.25 (sec) , antiderivative size = 296, normalized size of antiderivative = 1.12 \[ \int \frac {\sec ^{\frac {3}{2}}(c+d x)}{\sqrt {a+b \cos (c+d x)}} \, dx=\frac {2 \sqrt {a+b \cos (c+d x)} \sqrt {\sec (c+d x)} \sin (c+d x)}{a d}-\frac {2 \sqrt {\cos ^2\left (\frac {1}{2} (c+d x)\right ) \sec (c+d x)} \left (2 (a+b) \sqrt {\frac {\cos (c+d x)}{1+\cos (c+d x)}} \sqrt {\frac {a+b \cos (c+d x)}{(a+b) (1+\cos (c+d x))}} E\left (\arcsin \left (\tan \left (\frac {1}{2} (c+d x)\right )\right )|\frac {-a+b}{a+b}\right )-2 a \sqrt {\frac {\cos (c+d x)}{1+\cos (c+d x)}} \sqrt {\frac {a+b \cos (c+d x)}{(a+b) (1+\cos (c+d x))}} \operatorname {EllipticF}\left (\arcsin \left (\tan \left (\frac {1}{2} (c+d x)\right )\right ),\frac {-a+b}{a+b}\right )+\cos (c+d x) (a+b \cos (c+d x)) \sec ^2\left (\frac {1}{2} (c+d x)\right ) \tan \left (\frac {1}{2} (c+d x)\right )\right )}{a d \sqrt {a+b \cos (c+d x)} \sqrt {\sec ^2\left (\frac {1}{2} (c+d x)\right )}} \] Input:

Integrate[Sec[c + d*x]^(3/2)/Sqrt[a + b*Cos[c + d*x]],x]
 

Output:

(2*Sqrt[a + b*Cos[c + d*x]]*Sqrt[Sec[c + d*x]]*Sin[c + d*x])/(a*d) - (2*Sq 
rt[Cos[(c + d*x)/2]^2*Sec[c + d*x]]*(2*(a + b)*Sqrt[Cos[c + d*x]/(1 + Cos[ 
c + d*x])]*Sqrt[(a + b*Cos[c + d*x])/((a + b)*(1 + Cos[c + d*x]))]*Ellipti 
cE[ArcSin[Tan[(c + d*x)/2]], (-a + b)/(a + b)] - 2*a*Sqrt[Cos[c + d*x]/(1 
+ Cos[c + d*x])]*Sqrt[(a + b*Cos[c + d*x])/((a + b)*(1 + Cos[c + d*x]))]*E 
llipticF[ArcSin[Tan[(c + d*x)/2]], (-a + b)/(a + b)] + Cos[c + d*x]*(a + b 
*Cos[c + d*x])*Sec[(c + d*x)/2]^2*Tan[(c + d*x)/2]))/(a*d*Sqrt[a + b*Cos[c 
 + d*x]]*Sqrt[Sec[(c + d*x)/2]^2])
 

Rubi [A] (verified)

Time = 0.76 (sec) , antiderivative size = 245, normalized size of antiderivative = 0.93, number of steps used = 7, number of rules used = 7, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.280, Rules used = {3042, 4710, 3042, 3280, 3042, 3295, 3473}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {\sec ^{\frac {3}{2}}(c+d x)}{\sqrt {a+b \cos (c+d x)}} \, dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \frac {\csc \left (c+d x+\frac {\pi }{2}\right )^{3/2}}{\sqrt {a+b \sin \left (c+d x+\frac {\pi }{2}\right )}}dx\)

\(\Big \downarrow \) 4710

\(\displaystyle \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \int \frac {1}{\cos ^{\frac {3}{2}}(c+d x) \sqrt {a+b \cos (c+d x)}}dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \int \frac {1}{\sin \left (c+d x+\frac {\pi }{2}\right )^{3/2} \sqrt {a+b \sin \left (c+d x+\frac {\pi }{2}\right )}}dx\)

\(\Big \downarrow \) 3280

\(\displaystyle \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \left (\int \frac {\cos (c+d x)+1}{\cos ^{\frac {3}{2}}(c+d x) \sqrt {a+b \cos (c+d x)}}dx-\int \frac {1}{\sqrt {\cos (c+d x)} \sqrt {a+b \cos (c+d x)}}dx\right )\)

\(\Big \downarrow \) 3042

\(\displaystyle \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \left (\int \frac {\sin \left (c+d x+\frac {\pi }{2}\right )+1}{\sin \left (c+d x+\frac {\pi }{2}\right )^{3/2} \sqrt {a+b \sin \left (c+d x+\frac {\pi }{2}\right )}}dx-\int \frac {1}{\sqrt {\sin \left (c+d x+\frac {\pi }{2}\right )} \sqrt {a+b \sin \left (c+d x+\frac {\pi }{2}\right )}}dx\right )\)

\(\Big \downarrow \) 3295

\(\displaystyle \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \left (\int \frac {\sin \left (c+d x+\frac {\pi }{2}\right )+1}{\sin \left (c+d x+\frac {\pi }{2}\right )^{3/2} \sqrt {a+b \sin \left (c+d x+\frac {\pi }{2}\right )}}dx-\frac {2 \sqrt {a+b} \cot (c+d x) \sqrt {\frac {a (1-\sec (c+d x))}{a+b}} \sqrt {\frac {a (\sec (c+d x)+1)}{a-b}} \operatorname {EllipticF}\left (\arcsin \left (\frac {\sqrt {a+b \cos (c+d x)}}{\sqrt {a+b} \sqrt {\cos (c+d x)}}\right ),-\frac {a+b}{a-b}\right )}{a d}\right )\)

\(\Big \downarrow \) 3473

\(\displaystyle \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \left (\frac {2 (a-b) \sqrt {a+b} \cot (c+d x) \sqrt {\frac {a (1-\sec (c+d x))}{a+b}} \sqrt {\frac {a (\sec (c+d x)+1)}{a-b}} E\left (\arcsin \left (\frac {\sqrt {a+b \cos (c+d x)}}{\sqrt {a+b} \sqrt {\cos (c+d x)}}\right )|-\frac {a+b}{a-b}\right )}{a^2 d}-\frac {2 \sqrt {a+b} \cot (c+d x) \sqrt {\frac {a (1-\sec (c+d x))}{a+b}} \sqrt {\frac {a (\sec (c+d x)+1)}{a-b}} \operatorname {EllipticF}\left (\arcsin \left (\frac {\sqrt {a+b \cos (c+d x)}}{\sqrt {a+b} \sqrt {\cos (c+d x)}}\right ),-\frac {a+b}{a-b}\right )}{a d}\right )\)

Input:

Int[Sec[c + d*x]^(3/2)/Sqrt[a + b*Cos[c + d*x]],x]
 

Output:

Sqrt[Cos[c + d*x]]*Sqrt[Sec[c + d*x]]*((2*(a - b)*Sqrt[a + b]*Cot[c + d*x] 
*EllipticE[ArcSin[Sqrt[a + b*Cos[c + d*x]]/(Sqrt[a + b]*Sqrt[Cos[c + d*x]] 
)], -((a + b)/(a - b))]*Sqrt[(a*(1 - Sec[c + d*x]))/(a + b)]*Sqrt[(a*(1 + 
Sec[c + d*x]))/(a - b)])/(a^2*d) - (2*Sqrt[a + b]*Cot[c + d*x]*EllipticF[A 
rcSin[Sqrt[a + b*Cos[c + d*x]]/(Sqrt[a + b]*Sqrt[Cos[c + d*x]])], -((a + b 
)/(a - b))]*Sqrt[(a*(1 - Sec[c + d*x]))/(a + b)]*Sqrt[(a*(1 + Sec[c + d*x] 
))/(a - b)])/(a*d))
 

Defintions of rubi rules used

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 3280
Int[1/(((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(3/2)*Sqrt[(c_.) + (d_.)*sin 
[(e_.) + (f_.)*(x_)]]), x_Symbol] :> Simp[1/(a - b)   Int[1/(Sqrt[a + b*Sin 
[e + f*x]]*Sqrt[c + d*Sin[e + f*x]]), x], x] - Simp[b/(a - b)   Int[(1 + Si 
n[e + f*x])/((a + b*Sin[e + f*x])^(3/2)*Sqrt[c + d*Sin[e + f*x]]), x], x] / 
; FreeQ[{a, b, c, d, e, f}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 - b^2, 0] && 
 NeQ[c^2 - d^2, 0]
 

rule 3295
Int[1/(Sqrt[(d_.)*sin[(e_.) + (f_.)*(x_)]]*Sqrt[(a_) + (b_.)*sin[(e_.) + (f 
_.)*(x_)]]), x_Symbol] :> Simp[-2*(Tan[e + f*x]/(a*f))*Rt[(a + b)/d, 2]*Sqr 
t[a*((1 - Csc[e + f*x])/(a + b))]*Sqrt[a*((1 + Csc[e + f*x])/(a - b))]*Elli 
pticF[ArcSin[Sqrt[a + b*Sin[e + f*x]]/Sqrt[d*Sin[e + f*x]]/Rt[(a + b)/d, 2] 
], -(a + b)/(a - b)], x] /; FreeQ[{a, b, d, e, f}, x] && NeQ[a^2 - b^2, 0] 
&& PosQ[(a + b)/d]
 

rule 3473
Int[((A_) + (B_.)*sin[(e_.) + (f_.)*(x_)])/(((b_.)*sin[(e_.) + (f_.)*(x_)]) 
^(3/2)*Sqrt[(c_) + (d_.)*sin[(e_.) + (f_.)*(x_)]]), x_Symbol] :> Simp[-2*A* 
(c - d)*(Tan[e + f*x]/(f*b*c^2))*Rt[(c + d)/b, 2]*Sqrt[c*((1 + Csc[e + f*x] 
)/(c - d))]*Sqrt[c*((1 - Csc[e + f*x])/(c + d))]*EllipticE[ArcSin[Sqrt[c + 
d*Sin[e + f*x]]/Sqrt[b*Sin[e + f*x]]/Rt[(c + d)/b, 2]], -(c + d)/(c - d)], 
x] /; FreeQ[{b, c, d, e, f, A, B}, x] && NeQ[c^2 - d^2, 0] && EqQ[A, B] && 
PosQ[(c + d)/b]
 

rule 4710
Int[(csc[(a_.) + (b_.)*(x_)]*(c_.))^(m_.)*(u_), x_Symbol] :> Simp[(c*Csc[a 
+ b*x])^m*(c*Sin[a + b*x])^m   Int[ActivateTrig[u]/(c*Sin[a + b*x])^m, x], 
x] /; FreeQ[{a, b, c, m}, x] &&  !IntegerQ[m] && KnownSineIntegrandQ[u, x]
 
Maple [A] (verified)

Time = 20.27 (sec) , antiderivative size = 381, normalized size of antiderivative = 1.44

method result size
default \(\frac {2 \left (\left (\cos \left (d x +c \right )^{2}+2 \cos \left (d x +c \right )+1\right ) \sqrt {\frac {a +\cos \left (d x +c \right ) b}{\left (\cos \left (d x +c \right )+1\right ) \left (a +b \right )}}\, \sqrt {\frac {\cos \left (d x +c \right )}{\cos \left (d x +c \right )+1}}\, a \operatorname {EllipticE}\left (\cot \left (d x +c \right )-\csc \left (d x +c \right ), \sqrt {-\frac {a -b}{a +b}}\right )+\left (\cos \left (d x +c \right )^{2}+2 \cos \left (d x +c \right )+1\right ) \sqrt {\frac {a +\cos \left (d x +c \right ) b}{\left (\cos \left (d x +c \right )+1\right ) \left (a +b \right )}}\, \sqrt {\frac {\cos \left (d x +c \right )}{\cos \left (d x +c \right )+1}}\, b \operatorname {EllipticE}\left (\cot \left (d x +c \right )-\csc \left (d x +c \right ), \sqrt {-\frac {a -b}{a +b}}\right )+\left (-\cos \left (d x +c \right )^{2}-2 \cos \left (d x +c \right )-1\right ) \sqrt {\frac {a +\cos \left (d x +c \right ) b}{\left (\cos \left (d x +c \right )+1\right ) \left (a +b \right )}}\, \sqrt {\frac {\cos \left (d x +c \right )}{\cos \left (d x +c \right )+1}}\, a \operatorname {EllipticF}\left (\cot \left (d x +c \right )-\csc \left (d x +c \right ), \sqrt {-\frac {a -b}{a +b}}\right )+b \cos \left (d x +c \right ) \sin \left (d x +c \right )+a \sin \left (d x +c \right )\right ) \sqrt {a +\cos \left (d x +c \right ) b}\, \cos \left (d x +c \right ) \sec \left (d x +c \right )^{\frac {3}{2}}}{d \left (b \cos \left (d x +c \right )^{2}+a \cos \left (d x +c \right )+\cos \left (d x +c \right ) b +a \right ) a}\) \(381\)

Input:

int(sec(d*x+c)^(3/2)/(a+cos(d*x+c)*b)^(1/2),x,method=_RETURNVERBOSE)
 

Output:

2/d*((cos(d*x+c)^2+2*cos(d*x+c)+1)*((a+cos(d*x+c)*b)/(cos(d*x+c)+1)/(a+b)) 
^(1/2)*(cos(d*x+c)/(cos(d*x+c)+1))^(1/2)*a*EllipticE(cot(d*x+c)-csc(d*x+c) 
,(-(a-b)/(a+b))^(1/2))+(cos(d*x+c)^2+2*cos(d*x+c)+1)*((a+cos(d*x+c)*b)/(co 
s(d*x+c)+1)/(a+b))^(1/2)*(cos(d*x+c)/(cos(d*x+c)+1))^(1/2)*b*EllipticE(cot 
(d*x+c)-csc(d*x+c),(-(a-b)/(a+b))^(1/2))+(-cos(d*x+c)^2-2*cos(d*x+c)-1)*(( 
a+cos(d*x+c)*b)/(cos(d*x+c)+1)/(a+b))^(1/2)*(cos(d*x+c)/(cos(d*x+c)+1))^(1 
/2)*a*EllipticF(cot(d*x+c)-csc(d*x+c),(-(a-b)/(a+b))^(1/2))+b*cos(d*x+c)*s 
in(d*x+c)+a*sin(d*x+c))*(a+cos(d*x+c)*b)^(1/2)*cos(d*x+c)*sec(d*x+c)^(3/2) 
/(b*cos(d*x+c)^2+a*cos(d*x+c)+cos(d*x+c)*b+a)/a
 

Fricas [F]

\[ \int \frac {\sec ^{\frac {3}{2}}(c+d x)}{\sqrt {a+b \cos (c+d x)}} \, dx=\int { \frac {\sec \left (d x + c\right )^{\frac {3}{2}}}{\sqrt {b \cos \left (d x + c\right ) + a}} \,d x } \] Input:

integrate(sec(d*x+c)^(3/2)/(a+b*cos(d*x+c))^(1/2),x, algorithm="fricas")
 

Output:

integral(sec(d*x + c)^(3/2)/sqrt(b*cos(d*x + c) + a), x)
 

Sympy [F]

\[ \int \frac {\sec ^{\frac {3}{2}}(c+d x)}{\sqrt {a+b \cos (c+d x)}} \, dx=\int \frac {\sec ^{\frac {3}{2}}{\left (c + d x \right )}}{\sqrt {a + b \cos {\left (c + d x \right )}}}\, dx \] Input:

integrate(sec(d*x+c)**(3/2)/(a+b*cos(d*x+c))**(1/2),x)
 

Output:

Integral(sec(c + d*x)**(3/2)/sqrt(a + b*cos(c + d*x)), x)
 

Maxima [F]

\[ \int \frac {\sec ^{\frac {3}{2}}(c+d x)}{\sqrt {a+b \cos (c+d x)}} \, dx=\int { \frac {\sec \left (d x + c\right )^{\frac {3}{2}}}{\sqrt {b \cos \left (d x + c\right ) + a}} \,d x } \] Input:

integrate(sec(d*x+c)^(3/2)/(a+b*cos(d*x+c))^(1/2),x, algorithm="maxima")
 

Output:

integrate(sec(d*x + c)^(3/2)/sqrt(b*cos(d*x + c) + a), x)
 

Giac [F]

\[ \int \frac {\sec ^{\frac {3}{2}}(c+d x)}{\sqrt {a+b \cos (c+d x)}} \, dx=\int { \frac {\sec \left (d x + c\right )^{\frac {3}{2}}}{\sqrt {b \cos \left (d x + c\right ) + a}} \,d x } \] Input:

integrate(sec(d*x+c)^(3/2)/(a+b*cos(d*x+c))^(1/2),x, algorithm="giac")
 

Output:

integrate(sec(d*x + c)^(3/2)/sqrt(b*cos(d*x + c) + a), x)
 

Mupad [F(-1)]

Timed out. \[ \int \frac {\sec ^{\frac {3}{2}}(c+d x)}{\sqrt {a+b \cos (c+d x)}} \, dx=\int \frac {{\left (\frac {1}{\cos \left (c+d\,x\right )}\right )}^{3/2}}{\sqrt {a+b\,\cos \left (c+d\,x\right )}} \,d x \] Input:

int((1/cos(c + d*x))^(3/2)/(a + b*cos(c + d*x))^(1/2),x)
 

Output:

int((1/cos(c + d*x))^(3/2)/(a + b*cos(c + d*x))^(1/2), x)
 

Reduce [F]

\[ \int \frac {\sec ^{\frac {3}{2}}(c+d x)}{\sqrt {a+b \cos (c+d x)}} \, dx=\int \frac {\sqrt {\sec \left (d x +c \right )}\, \sqrt {\cos \left (d x +c \right ) b +a}\, \sec \left (d x +c \right )}{\cos \left (d x +c \right ) b +a}d x \] Input:

int(sec(d*x+c)^(3/2)/(a+b*cos(d*x+c))^(1/2),x)
 

Output:

int((sqrt(sec(c + d*x))*sqrt(cos(c + d*x)*b + a)*sec(c + d*x))/(cos(c + d* 
x)*b + a),x)