\(\int \frac {1}{(a+b \cos (c+d x))^{3/2} \sec ^{\frac {3}{2}}(c+d x)} \, dx\) [761]

Optimal result
Mathematica [A] (warning: unable to verify)
Rubi [A] (verified)
Maple [A] (verified)
Fricas [F]
Sympy [F(-1)]
Maxima [F]
Giac [F]
Mupad [F(-1)]
Reduce [F]

Optimal result

Integrand size = 25, antiderivative size = 447 \[ \int \frac {1}{(a+b \cos (c+d x))^{3/2} \sec ^{\frac {3}{2}}(c+d x)} \, dx=\frac {2 \sqrt {\cos (c+d x)} \csc (c+d x) E\left (\arcsin \left (\frac {\sqrt {a+b \cos (c+d x)}}{\sqrt {a+b} \sqrt {\cos (c+d x)}}\right )|-\frac {a+b}{a-b}\right ) \sqrt {\frac {a (1-\sec (c+d x))}{a+b}} \sqrt {\frac {a (1+\sec (c+d x))}{a-b}}}{b \sqrt {a+b} d \sqrt {\sec (c+d x)}}-\frac {2 \sqrt {\cos (c+d x)} \csc (c+d x) \operatorname {EllipticF}\left (\arcsin \left (\frac {\sqrt {a+b \cos (c+d x)}}{\sqrt {a+b} \sqrt {\cos (c+d x)}}\right ),-\frac {a+b}{a-b}\right ) \sqrt {\frac {a (1-\sec (c+d x))}{a+b}} \sqrt {\frac {a (1+\sec (c+d x))}{a-b}}}{b \sqrt {a+b} d \sqrt {\sec (c+d x)}}-\frac {2 \sqrt {a+b} \sqrt {\cos (c+d x)} \csc (c+d x) \operatorname {EllipticPi}\left (\frac {a+b}{b},\arcsin \left (\frac {\sqrt {a+b \cos (c+d x)}}{\sqrt {a+b} \sqrt {\cos (c+d x)}}\right ),-\frac {a+b}{a-b}\right ) \sqrt {\frac {a (1-\sec (c+d x))}{a+b}} \sqrt {\frac {a (1+\sec (c+d x))}{a-b}}}{b^2 d \sqrt {\sec (c+d x)}}-\frac {2 a^2 \sqrt {\sec (c+d x)} \sin (c+d x)}{b \left (a^2-b^2\right ) d \sqrt {a+b \cos (c+d x)}} \] Output:

2*cos(d*x+c)^(1/2)*csc(d*x+c)*EllipticE((a+b*cos(d*x+c))^(1/2)/(a+b)^(1/2) 
/cos(d*x+c)^(1/2),(-(a+b)/(a-b))^(1/2))*(a*(1-sec(d*x+c))/(a+b))^(1/2)*(a* 
(1+sec(d*x+c))/(a-b))^(1/2)/b/(a+b)^(1/2)/d/sec(d*x+c)^(1/2)-2*cos(d*x+c)^ 
(1/2)*csc(d*x+c)*EllipticF((a+b*cos(d*x+c))^(1/2)/(a+b)^(1/2)/cos(d*x+c)^( 
1/2),(-(a+b)/(a-b))^(1/2))*(a*(1-sec(d*x+c))/(a+b))^(1/2)*(a*(1+sec(d*x+c) 
)/(a-b))^(1/2)/b/(a+b)^(1/2)/d/sec(d*x+c)^(1/2)-2*(a+b)^(1/2)*cos(d*x+c)^( 
1/2)*csc(d*x+c)*EllipticPi((a+b*cos(d*x+c))^(1/2)/(a+b)^(1/2)/cos(d*x+c)^( 
1/2),(a+b)/b,(-(a+b)/(a-b))^(1/2))*(a*(1-sec(d*x+c))/(a+b))^(1/2)*(a*(1+se 
c(d*x+c))/(a-b))^(1/2)/b^2/d/sec(d*x+c)^(1/2)-2*a^2*sec(d*x+c)^(1/2)*sin(d 
*x+c)/b/(a^2-b^2)/d/(a+b*cos(d*x+c))^(1/2)
                                                                                    
                                                                                    
 

Mathematica [A] (warning: unable to verify)

Time = 16.02 (sec) , antiderivative size = 893, normalized size of antiderivative = 2.00 \[ \int \frac {1}{(a+b \cos (c+d x))^{3/2} \sec ^{\frac {3}{2}}(c+d x)} \, dx =\text {Too large to display} \] Input:

Integrate[1/((a + b*Cos[c + d*x])^(3/2)*Sec[c + d*x]^(3/2)),x]
 

Output:

(Sqrt[a + b*Cos[c + d*x]]*Sqrt[Sec[c + d*x]]*((2*a*Sin[c + d*x])/(b*(a^2 - 
 b^2)) + (2*a^2*Sin[c + d*x])/(b*(-a^2 + b^2)*(a + b*Cos[c + d*x]))))/d - 
(2*(-(a^2*Tan[(c + d*x)/2]) - a*b*Tan[(c + d*x)/2] + 2*a*b*Tan[(c + d*x)/2 
]^3 + a^2*Tan[(c + d*x)/2]^5 - a*b*Tan[(c + d*x)/2]^5 + 2*a^2*EllipticPi[- 
1, ArcSin[Tan[(c + d*x)/2]], (-a + b)/(a + b)]*Sqrt[1 - Tan[(c + d*x)/2]^2 
]*Sqrt[(a + b + a*Tan[(c + d*x)/2]^2 - b*Tan[(c + d*x)/2]^2)/(a + b)] - 2* 
b^2*EllipticPi[-1, ArcSin[Tan[(c + d*x)/2]], (-a + b)/(a + b)]*Sqrt[1 - Ta 
n[(c + d*x)/2]^2]*Sqrt[(a + b + a*Tan[(c + d*x)/2]^2 - b*Tan[(c + d*x)/2]^ 
2)/(a + b)] + 2*a^2*EllipticPi[-1, ArcSin[Tan[(c + d*x)/2]], (-a + b)/(a + 
 b)]*Tan[(c + d*x)/2]^2*Sqrt[1 - Tan[(c + d*x)/2]^2]*Sqrt[(a + b + a*Tan[( 
c + d*x)/2]^2 - b*Tan[(c + d*x)/2]^2)/(a + b)] - 2*b^2*EllipticPi[-1, ArcS 
in[Tan[(c + d*x)/2]], (-a + b)/(a + b)]*Tan[(c + d*x)/2]^2*Sqrt[1 - Tan[(c 
 + d*x)/2]^2]*Sqrt[(a + b + a*Tan[(c + d*x)/2]^2 - b*Tan[(c + d*x)/2]^2)/( 
a + b)] - a*(a + b)*EllipticE[ArcSin[Tan[(c + d*x)/2]], (-a + b)/(a + b)]* 
Sqrt[1 - Tan[(c + d*x)/2]^2]*(1 + Tan[(c + d*x)/2]^2)*Sqrt[(a + b + a*Tan[ 
(c + d*x)/2]^2 - b*Tan[(c + d*x)/2]^2)/(a + b)] + b*(a + b)*EllipticF[ArcS 
in[Tan[(c + d*x)/2]], (-a + b)/(a + b)]*Sqrt[1 - Tan[(c + d*x)/2]^2]*(1 + 
Tan[(c + d*x)/2]^2)*Sqrt[(a + b + a*Tan[(c + d*x)/2]^2 - b*Tan[(c + d*x)/2 
]^2)/(a + b)]))/(b*(a^2 - b^2)*d*Sqrt[(1 - Tan[(c + d*x)/2]^2)^(-1)]*(-1 + 
 Tan[(c + d*x)/2]^2)*(1 + Tan[(c + d*x)/2]^2)^(3/2)*Sqrt[(a + b + a*Tan...
 

Rubi [A] (verified)

Time = 1.54 (sec) , antiderivative size = 434, normalized size of antiderivative = 0.97, number of steps used = 12, number of rules used = 12, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.480, Rules used = {3042, 4710, 3042, 3276, 3042, 3273, 3042, 3274, 3042, 3288, 3295, 3473}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {1}{\sec ^{\frac {3}{2}}(c+d x) (a+b \cos (c+d x))^{3/2}} \, dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \frac {1}{\csc \left (c+d x+\frac {\pi }{2}\right )^{3/2} \left (a+b \sin \left (c+d x+\frac {\pi }{2}\right )\right )^{3/2}}dx\)

\(\Big \downarrow \) 4710

\(\displaystyle \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \int \frac {\cos ^{\frac {3}{2}}(c+d x)}{(a+b \cos (c+d x))^{3/2}}dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \int \frac {\sin \left (c+d x+\frac {\pi }{2}\right )^{3/2}}{\left (a+b \sin \left (c+d x+\frac {\pi }{2}\right )\right )^{3/2}}dx\)

\(\Big \downarrow \) 3276

\(\displaystyle \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \left (\frac {\int \frac {\sqrt {\cos (c+d x)}}{\sqrt {a+b \cos (c+d x)}}dx}{b}-\frac {a \int \frac {\sqrt {\cos (c+d x)}}{(a+b \cos (c+d x))^{3/2}}dx}{b}\right )\)

\(\Big \downarrow \) 3042

\(\displaystyle \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \left (\frac {\int \frac {\sqrt {\sin \left (c+d x+\frac {\pi }{2}\right )}}{\sqrt {a+b \sin \left (c+d x+\frac {\pi }{2}\right )}}dx}{b}-\frac {a \int \frac {\sqrt {\sin \left (c+d x+\frac {\pi }{2}\right )}}{\left (a+b \sin \left (c+d x+\frac {\pi }{2}\right )\right )^{3/2}}dx}{b}\right )\)

\(\Big \downarrow \) 3273

\(\displaystyle \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \left (\frac {\int \frac {\sqrt {\sin \left (c+d x+\frac {\pi }{2}\right )}}{\sqrt {a+b \sin \left (c+d x+\frac {\pi }{2}\right )}}dx}{b}-\frac {a \left (\frac {2 a \sin (c+d x)}{d \left (a^2-b^2\right ) \sqrt {\cos (c+d x)} \sqrt {a+b \cos (c+d x)}}-\frac {\int \frac {\sqrt {a+b \cos (c+d x)}}{\cos ^{\frac {3}{2}}(c+d x)}dx}{a^2-b^2}\right )}{b}\right )\)

\(\Big \downarrow \) 3042

\(\displaystyle \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \left (\frac {\int \frac {\sqrt {\sin \left (c+d x+\frac {\pi }{2}\right )}}{\sqrt {a+b \sin \left (c+d x+\frac {\pi }{2}\right )}}dx}{b}-\frac {a \left (\frac {2 a \sin (c+d x)}{d \left (a^2-b^2\right ) \sqrt {\cos (c+d x)} \sqrt {a+b \cos (c+d x)}}-\frac {\int \frac {\sqrt {a+b \sin \left (c+d x+\frac {\pi }{2}\right )}}{\sin \left (c+d x+\frac {\pi }{2}\right )^{3/2}}dx}{a^2-b^2}\right )}{b}\right )\)

\(\Big \downarrow \) 3274

\(\displaystyle \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \left (\frac {\int \frac {\sqrt {\sin \left (c+d x+\frac {\pi }{2}\right )}}{\sqrt {a+b \sin \left (c+d x+\frac {\pi }{2}\right )}}dx}{b}-\frac {a \left (\frac {2 a \sin (c+d x)}{d \left (a^2-b^2\right ) \sqrt {\cos (c+d x)} \sqrt {a+b \cos (c+d x)}}-\frac {a \int \frac {\cos (c+d x)+1}{\cos ^{\frac {3}{2}}(c+d x) \sqrt {a+b \cos (c+d x)}}dx-(a-b) \int \frac {1}{\sqrt {\cos (c+d x)} \sqrt {a+b \cos (c+d x)}}dx}{a^2-b^2}\right )}{b}\right )\)

\(\Big \downarrow \) 3042

\(\displaystyle \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \left (\frac {\int \frac {\sqrt {\sin \left (c+d x+\frac {\pi }{2}\right )}}{\sqrt {a+b \sin \left (c+d x+\frac {\pi }{2}\right )}}dx}{b}-\frac {a \left (\frac {2 a \sin (c+d x)}{d \left (a^2-b^2\right ) \sqrt {\cos (c+d x)} \sqrt {a+b \cos (c+d x)}}-\frac {a \int \frac {\sin \left (c+d x+\frac {\pi }{2}\right )+1}{\sin \left (c+d x+\frac {\pi }{2}\right )^{3/2} \sqrt {a+b \sin \left (c+d x+\frac {\pi }{2}\right )}}dx-(a-b) \int \frac {1}{\sqrt {\sin \left (c+d x+\frac {\pi }{2}\right )} \sqrt {a+b \sin \left (c+d x+\frac {\pi }{2}\right )}}dx}{a^2-b^2}\right )}{b}\right )\)

\(\Big \downarrow \) 3288

\(\displaystyle \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \left (-\frac {a \left (\frac {2 a \sin (c+d x)}{d \left (a^2-b^2\right ) \sqrt {\cos (c+d x)} \sqrt {a+b \cos (c+d x)}}-\frac {a \int \frac {\sin \left (c+d x+\frac {\pi }{2}\right )+1}{\sin \left (c+d x+\frac {\pi }{2}\right )^{3/2} \sqrt {a+b \sin \left (c+d x+\frac {\pi }{2}\right )}}dx-(a-b) \int \frac {1}{\sqrt {\sin \left (c+d x+\frac {\pi }{2}\right )} \sqrt {a+b \sin \left (c+d x+\frac {\pi }{2}\right )}}dx}{a^2-b^2}\right )}{b}-\frac {2 \sqrt {a+b} \cot (c+d x) \sqrt {\frac {a (1-\sec (c+d x))}{a+b}} \sqrt {\frac {a (\sec (c+d x)+1)}{a-b}} \operatorname {EllipticPi}\left (\frac {a+b}{b},\arcsin \left (\frac {\sqrt {a+b \cos (c+d x)}}{\sqrt {a+b} \sqrt {\cos (c+d x)}}\right ),-\frac {a+b}{a-b}\right )}{b^2 d}\right )\)

\(\Big \downarrow \) 3295

\(\displaystyle \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \left (-\frac {a \left (\frac {2 a \sin (c+d x)}{d \left (a^2-b^2\right ) \sqrt {\cos (c+d x)} \sqrt {a+b \cos (c+d x)}}-\frac {a \int \frac {\sin \left (c+d x+\frac {\pi }{2}\right )+1}{\sin \left (c+d x+\frac {\pi }{2}\right )^{3/2} \sqrt {a+b \sin \left (c+d x+\frac {\pi }{2}\right )}}dx-\frac {2 (a-b) \sqrt {a+b} \cot (c+d x) \sqrt {\frac {a (1-\sec (c+d x))}{a+b}} \sqrt {\frac {a (\sec (c+d x)+1)}{a-b}} \operatorname {EllipticF}\left (\arcsin \left (\frac {\sqrt {a+b \cos (c+d x)}}{\sqrt {a+b} \sqrt {\cos (c+d x)}}\right ),-\frac {a+b}{a-b}\right )}{a d}}{a^2-b^2}\right )}{b}-\frac {2 \sqrt {a+b} \cot (c+d x) \sqrt {\frac {a (1-\sec (c+d x))}{a+b}} \sqrt {\frac {a (\sec (c+d x)+1)}{a-b}} \operatorname {EllipticPi}\left (\frac {a+b}{b},\arcsin \left (\frac {\sqrt {a+b \cos (c+d x)}}{\sqrt {a+b} \sqrt {\cos (c+d x)}}\right ),-\frac {a+b}{a-b}\right )}{b^2 d}\right )\)

\(\Big \downarrow \) 3473

\(\displaystyle \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \left (-\frac {a \left (\frac {2 a \sin (c+d x)}{d \left (a^2-b^2\right ) \sqrt {\cos (c+d x)} \sqrt {a+b \cos (c+d x)}}-\frac {\frac {2 (a-b) \sqrt {a+b} \cot (c+d x) \sqrt {\frac {a (1-\sec (c+d x))}{a+b}} \sqrt {\frac {a (\sec (c+d x)+1)}{a-b}} E\left (\arcsin \left (\frac {\sqrt {a+b \cos (c+d x)}}{\sqrt {a+b} \sqrt {\cos (c+d x)}}\right )|-\frac {a+b}{a-b}\right )}{a d}-\frac {2 (a-b) \sqrt {a+b} \cot (c+d x) \sqrt {\frac {a (1-\sec (c+d x))}{a+b}} \sqrt {\frac {a (\sec (c+d x)+1)}{a-b}} \operatorname {EllipticF}\left (\arcsin \left (\frac {\sqrt {a+b \cos (c+d x)}}{\sqrt {a+b} \sqrt {\cos (c+d x)}}\right ),-\frac {a+b}{a-b}\right )}{a d}}{a^2-b^2}\right )}{b}-\frac {2 \sqrt {a+b} \cot (c+d x) \sqrt {\frac {a (1-\sec (c+d x))}{a+b}} \sqrt {\frac {a (\sec (c+d x)+1)}{a-b}} \operatorname {EllipticPi}\left (\frac {a+b}{b},\arcsin \left (\frac {\sqrt {a+b \cos (c+d x)}}{\sqrt {a+b} \sqrt {\cos (c+d x)}}\right ),-\frac {a+b}{a-b}\right )}{b^2 d}\right )\)

Input:

Int[1/((a + b*Cos[c + d*x])^(3/2)*Sec[c + d*x]^(3/2)),x]
 

Output:

Sqrt[Cos[c + d*x]]*Sqrt[Sec[c + d*x]]*((-2*Sqrt[a + b]*Cot[c + d*x]*Ellipt 
icPi[(a + b)/b, ArcSin[Sqrt[a + b*Cos[c + d*x]]/(Sqrt[a + b]*Sqrt[Cos[c + 
d*x]])], -((a + b)/(a - b))]*Sqrt[(a*(1 - Sec[c + d*x]))/(a + b)]*Sqrt[(a* 
(1 + Sec[c + d*x]))/(a - b)])/(b^2*d) - (a*(-(((2*(a - b)*Sqrt[a + b]*Cot[ 
c + d*x]*EllipticE[ArcSin[Sqrt[a + b*Cos[c + d*x]]/(Sqrt[a + b]*Sqrt[Cos[c 
 + d*x]])], -((a + b)/(a - b))]*Sqrt[(a*(1 - Sec[c + d*x]))/(a + b)]*Sqrt[ 
(a*(1 + Sec[c + d*x]))/(a - b)])/(a*d) - (2*(a - b)*Sqrt[a + b]*Cot[c + d* 
x]*EllipticF[ArcSin[Sqrt[a + b*Cos[c + d*x]]/(Sqrt[a + b]*Sqrt[Cos[c + d*x 
]])], -((a + b)/(a - b))]*Sqrt[(a*(1 - Sec[c + d*x]))/(a + b)]*Sqrt[(a*(1 
+ Sec[c + d*x]))/(a - b)])/(a*d))/(a^2 - b^2)) + (2*a*Sin[c + d*x])/((a^2 
- b^2)*d*Sqrt[Cos[c + d*x]]*Sqrt[a + b*Cos[c + d*x]])))/b)
 

Defintions of rubi rules used

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 3273
Int[Sqrt[(d_.)*sin[(e_.) + (f_.)*(x_)]]/((a_) + (b_.)*sin[(e_.) + (f_.)*(x_ 
)])^(3/2), x_Symbol] :> Simp[-2*a*d*(Cos[e + f*x]/(f*(a^2 - b^2)*Sqrt[a + b 
*Sin[e + f*x]]*Sqrt[d*Sin[e + f*x]])), x] - Simp[d^2/(a^2 - b^2)   Int[Sqrt 
[a + b*Sin[e + f*x]]/(d*Sin[e + f*x])^(3/2), x], x] /; FreeQ[{a, b, d, e, f 
}, x] && NeQ[a^2 - b^2, 0]
 

rule 3274
Int[Sqrt[(c_) + (d_.)*sin[(e_.) + (f_.)*(x_)]]/((a_.) + (b_.)*sin[(e_.) + ( 
f_.)*(x_)])^(3/2), x_Symbol] :> Simp[(c - d)/(a - b)   Int[1/(Sqrt[a + b*Si 
n[e + f*x]]*Sqrt[c + d*Sin[e + f*x]]), x], x] - Simp[(b*c - a*d)/(a - b) 
Int[(1 + Sin[e + f*x])/((a + b*Sin[e + f*x])^(3/2)*Sqrt[c + d*Sin[e + f*x]] 
), x], x] /; FreeQ[{a, b, c, d, e, f}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 - 
 b^2, 0] && NeQ[c^2 - d^2, 0]
 

rule 3276
Int[((d_.)*sin[(e_.) + (f_.)*(x_)])^(3/2)/((a_) + (b_.)*sin[(e_.) + (f_.)*( 
x_)])^(3/2), x_Symbol] :> Simp[d/b   Int[Sqrt[d*Sin[e + f*x]]/Sqrt[a + b*Si 
n[e + f*x]], x], x] - Simp[a*(d/b)   Int[Sqrt[d*Sin[e + f*x]]/(a + b*Sin[e 
+ f*x])^(3/2), x], x] /; FreeQ[{a, b, d, e, f}, x] && NeQ[a^2 - b^2, 0]
 

rule 3288
Int[Sqrt[(b_.)*sin[(e_.) + (f_.)*(x_)]]/Sqrt[(c_) + (d_.)*sin[(e_.) + (f_.) 
*(x_)]], x_Symbol] :> Simp[2*b*(Tan[e + f*x]/(d*f))*Rt[(c + d)/b, 2]*Sqrt[c 
*((1 + Csc[e + f*x])/(c - d))]*Sqrt[c*((1 - Csc[e + f*x])/(c + d))]*Ellipti 
cPi[(c + d)/d, ArcSin[Sqrt[c + d*Sin[e + f*x]]/Sqrt[b*Sin[e + f*x]]/Rt[(c + 
 d)/b, 2]], -(c + d)/(c - d)], x] /; FreeQ[{b, c, d, e, f}, x] && NeQ[c^2 - 
 d^2, 0] && PosQ[(c + d)/b]
 

rule 3295
Int[1/(Sqrt[(d_.)*sin[(e_.) + (f_.)*(x_)]]*Sqrt[(a_) + (b_.)*sin[(e_.) + (f 
_.)*(x_)]]), x_Symbol] :> Simp[-2*(Tan[e + f*x]/(a*f))*Rt[(a + b)/d, 2]*Sqr 
t[a*((1 - Csc[e + f*x])/(a + b))]*Sqrt[a*((1 + Csc[e + f*x])/(a - b))]*Elli 
pticF[ArcSin[Sqrt[a + b*Sin[e + f*x]]/Sqrt[d*Sin[e + f*x]]/Rt[(a + b)/d, 2] 
], -(a + b)/(a - b)], x] /; FreeQ[{a, b, d, e, f}, x] && NeQ[a^2 - b^2, 0] 
&& PosQ[(a + b)/d]
 

rule 3473
Int[((A_) + (B_.)*sin[(e_.) + (f_.)*(x_)])/(((b_.)*sin[(e_.) + (f_.)*(x_)]) 
^(3/2)*Sqrt[(c_) + (d_.)*sin[(e_.) + (f_.)*(x_)]]), x_Symbol] :> Simp[-2*A* 
(c - d)*(Tan[e + f*x]/(f*b*c^2))*Rt[(c + d)/b, 2]*Sqrt[c*((1 + Csc[e + f*x] 
)/(c - d))]*Sqrt[c*((1 - Csc[e + f*x])/(c + d))]*EllipticE[ArcSin[Sqrt[c + 
d*Sin[e + f*x]]/Sqrt[b*Sin[e + f*x]]/Rt[(c + d)/b, 2]], -(c + d)/(c - d)], 
x] /; FreeQ[{b, c, d, e, f, A, B}, x] && NeQ[c^2 - d^2, 0] && EqQ[A, B] && 
PosQ[(c + d)/b]
 

rule 4710
Int[(csc[(a_.) + (b_.)*(x_)]*(c_.))^(m_.)*(u_), x_Symbol] :> Simp[(c*Csc[a 
+ b*x])^m*(c*Sin[a + b*x])^m   Int[ActivateTrig[u]/(c*Sin[a + b*x])^m, x], 
x] /; FreeQ[{a, b, c, m}, x] &&  !IntegerQ[m] && KnownSineIntegrandQ[u, x]
 
Maple [A] (verified)

Time = 15.65 (sec) , antiderivative size = 694, normalized size of antiderivative = 1.55

method result size
default \(-\frac {2 \sqrt {a +\cos \left (d x +c \right ) b}\, \left (\sqrt {\frac {\cos \left (d x +c \right )}{\cos \left (d x +c \right )+1}}\, \sqrt {\frac {a +\cos \left (d x +c \right ) b}{\left (\cos \left (d x +c \right )+1\right ) \left (a +b \right )}}\, a^{2} \operatorname {EllipticPi}\left (\cot \left (d x +c \right )-\csc \left (d x +c \right ), -1, \sqrt {-\frac {a -b}{a +b}}\right ) \left (2+4 \sec \left (d x +c \right )+2 \sec \left (d x +c \right )^{2}\right )+\sqrt {\frac {\cos \left (d x +c \right )}{\cos \left (d x +c \right )+1}}\, \sqrt {\frac {a +\cos \left (d x +c \right ) b}{\left (\cos \left (d x +c \right )+1\right ) \left (a +b \right )}}\, b^{2} \operatorname {EllipticPi}\left (\cot \left (d x +c \right )-\csc \left (d x +c \right ), -1, \sqrt {-\frac {a -b}{a +b}}\right ) \left (-2-4 \sec \left (d x +c \right )-2 \sec \left (d x +c \right )^{2}\right )+\sqrt {\frac {\cos \left (d x +c \right )}{\cos \left (d x +c \right )+1}}\, \sqrt {\frac {a +\cos \left (d x +c \right ) b}{\left (\cos \left (d x +c \right )+1\right ) \left (a +b \right )}}\, a^{2} \operatorname {EllipticE}\left (\cot \left (d x +c \right )-\csc \left (d x +c \right ), \sqrt {-\frac {a -b}{a +b}}\right ) \left (-1-2 \sec \left (d x +c \right )-\sec \left (d x +c \right )^{2}\right )+\sqrt {\frac {\cos \left (d x +c \right )}{\cos \left (d x +c \right )+1}}\, \sqrt {\frac {a +\cos \left (d x +c \right ) b}{\left (\cos \left (d x +c \right )+1\right ) \left (a +b \right )}}\, a b \operatorname {EllipticE}\left (\cot \left (d x +c \right )-\csc \left (d x +c \right ), \sqrt {-\frac {a -b}{a +b}}\right ) \left (-1-2 \sec \left (d x +c \right )-\sec \left (d x +c \right )^{2}\right )+\sqrt {\frac {\cos \left (d x +c \right )}{\cos \left (d x +c \right )+1}}\, \sqrt {\frac {a +\cos \left (d x +c \right ) b}{\left (\cos \left (d x +c \right )+1\right ) \left (a +b \right )}}\, a b \operatorname {EllipticF}\left (\cot \left (d x +c \right )-\csc \left (d x +c \right ), \sqrt {-\frac {a -b}{a +b}}\right ) \left (1+2 \sec \left (d x +c \right )+\sec \left (d x +c \right )^{2}\right )+\sqrt {\frac {\cos \left (d x +c \right )}{\cos \left (d x +c \right )+1}}\, \sqrt {\frac {a +\cos \left (d x +c \right ) b}{\left (\cos \left (d x +c \right )+1\right ) \left (a +b \right )}}\, b^{2} \operatorname {EllipticF}\left (\cot \left (d x +c \right )-\csc \left (d x +c \right ), \sqrt {-\frac {a -b}{a +b}}\right ) \left (1+2 \sec \left (d x +c \right )+\sec \left (d x +c \right )^{2}\right )+\tan \left (d x +c \right ) a^{2}-\tan \left (d x +c \right ) a b \right )}{d \left (b \cos \left (d x +c \right )^{2}+a \cos \left (d x +c \right )+\cos \left (d x +c \right ) b +a \right ) \sec \left (d x +c \right )^{\frac {3}{2}} b \left (a -b \right ) \left (a +b \right )}\) \(694\)

Input:

int(1/(a+cos(d*x+c)*b)^(3/2)/sec(d*x+c)^(3/2),x,method=_RETURNVERBOSE)
 

Output:

-2/d*(a+cos(d*x+c)*b)^(1/2)/(b*cos(d*x+c)^2+a*cos(d*x+c)+cos(d*x+c)*b+a)/s 
ec(d*x+c)^(3/2)*((cos(d*x+c)/(cos(d*x+c)+1))^(1/2)*((a+cos(d*x+c)*b)/(cos( 
d*x+c)+1)/(a+b))^(1/2)*a^2*EllipticPi(cot(d*x+c)-csc(d*x+c),-1,(-(a-b)/(a+ 
b))^(1/2))*(2+4*sec(d*x+c)+2*sec(d*x+c)^2)+(cos(d*x+c)/(cos(d*x+c)+1))^(1/ 
2)*((a+cos(d*x+c)*b)/(cos(d*x+c)+1)/(a+b))^(1/2)*b^2*EllipticPi(cot(d*x+c) 
-csc(d*x+c),-1,(-(a-b)/(a+b))^(1/2))*(-2-4*sec(d*x+c)-2*sec(d*x+c)^2)+(cos 
(d*x+c)/(cos(d*x+c)+1))^(1/2)*((a+cos(d*x+c)*b)/(cos(d*x+c)+1)/(a+b))^(1/2 
)*a^2*EllipticE(cot(d*x+c)-csc(d*x+c),(-(a-b)/(a+b))^(1/2))*(-1-2*sec(d*x+ 
c)-sec(d*x+c)^2)+(cos(d*x+c)/(cos(d*x+c)+1))^(1/2)*((a+cos(d*x+c)*b)/(cos( 
d*x+c)+1)/(a+b))^(1/2)*a*b*EllipticE(cot(d*x+c)-csc(d*x+c),(-(a-b)/(a+b))^ 
(1/2))*(-1-2*sec(d*x+c)-sec(d*x+c)^2)+(cos(d*x+c)/(cos(d*x+c)+1))^(1/2)*(( 
a+cos(d*x+c)*b)/(cos(d*x+c)+1)/(a+b))^(1/2)*a*b*EllipticF(cot(d*x+c)-csc(d 
*x+c),(-(a-b)/(a+b))^(1/2))*(1+2*sec(d*x+c)+sec(d*x+c)^2)+(cos(d*x+c)/(cos 
(d*x+c)+1))^(1/2)*((a+cos(d*x+c)*b)/(cos(d*x+c)+1)/(a+b))^(1/2)*b^2*Ellipt 
icF(cot(d*x+c)-csc(d*x+c),(-(a-b)/(a+b))^(1/2))*(1+2*sec(d*x+c)+sec(d*x+c) 
^2)+tan(d*x+c)*a^2-tan(d*x+c)*a*b)/b/(a-b)/(a+b)
 

Fricas [F]

\[ \int \frac {1}{(a+b \cos (c+d x))^{3/2} \sec ^{\frac {3}{2}}(c+d x)} \, dx=\int { \frac {1}{{\left (b \cos \left (d x + c\right ) + a\right )}^{\frac {3}{2}} \sec \left (d x + c\right )^{\frac {3}{2}}} \,d x } \] Input:

integrate(1/(a+b*cos(d*x+c))^(3/2)/sec(d*x+c)^(3/2),x, algorithm="fricas")
 

Output:

integral(sqrt(b*cos(d*x + c) + a)/((b^2*cos(d*x + c)^2 + 2*a*b*cos(d*x + c 
) + a^2)*sec(d*x + c)^(3/2)), x)
 

Sympy [F(-1)]

Timed out. \[ \int \frac {1}{(a+b \cos (c+d x))^{3/2} \sec ^{\frac {3}{2}}(c+d x)} \, dx=\text {Timed out} \] Input:

integrate(1/(a+b*cos(d*x+c))**(3/2)/sec(d*x+c)**(3/2),x)
 

Output:

Timed out
 

Maxima [F]

\[ \int \frac {1}{(a+b \cos (c+d x))^{3/2} \sec ^{\frac {3}{2}}(c+d x)} \, dx=\int { \frac {1}{{\left (b \cos \left (d x + c\right ) + a\right )}^{\frac {3}{2}} \sec \left (d x + c\right )^{\frac {3}{2}}} \,d x } \] Input:

integrate(1/(a+b*cos(d*x+c))^(3/2)/sec(d*x+c)^(3/2),x, algorithm="maxima")
 

Output:

integrate(1/((b*cos(d*x + c) + a)^(3/2)*sec(d*x + c)^(3/2)), x)
 

Giac [F]

\[ \int \frac {1}{(a+b \cos (c+d x))^{3/2} \sec ^{\frac {3}{2}}(c+d x)} \, dx=\int { \frac {1}{{\left (b \cos \left (d x + c\right ) + a\right )}^{\frac {3}{2}} \sec \left (d x + c\right )^{\frac {3}{2}}} \,d x } \] Input:

integrate(1/(a+b*cos(d*x+c))^(3/2)/sec(d*x+c)^(3/2),x, algorithm="giac")
 

Output:

integrate(1/((b*cos(d*x + c) + a)^(3/2)*sec(d*x + c)^(3/2)), x)
 

Mupad [F(-1)]

Timed out. \[ \int \frac {1}{(a+b \cos (c+d x))^{3/2} \sec ^{\frac {3}{2}}(c+d x)} \, dx=\int \frac {1}{{\left (\frac {1}{\cos \left (c+d\,x\right )}\right )}^{3/2}\,{\left (a+b\,\cos \left (c+d\,x\right )\right )}^{3/2}} \,d x \] Input:

int(1/((1/cos(c + d*x))^(3/2)*(a + b*cos(c + d*x))^(3/2)),x)
                                                                                    
                                                                                    
 

Output:

int(1/((1/cos(c + d*x))^(3/2)*(a + b*cos(c + d*x))^(3/2)), x)
 

Reduce [F]

\[ \int \frac {1}{(a+b \cos (c+d x))^{3/2} \sec ^{\frac {3}{2}}(c+d x)} \, dx=\int \frac {\sqrt {\sec \left (d x +c \right )}\, \sqrt {\cos \left (d x +c \right ) b +a}}{\cos \left (d x +c \right )^{2} \sec \left (d x +c \right )^{2} b^{2}+2 \cos \left (d x +c \right ) \sec \left (d x +c \right )^{2} a b +\sec \left (d x +c \right )^{2} a^{2}}d x \] Input:

int(1/(a+b*cos(d*x+c))^(3/2)/sec(d*x+c)^(3/2),x)
 

Output:

int((sqrt(sec(c + d*x))*sqrt(cos(c + d*x)*b + a))/(cos(c + d*x)**2*sec(c + 
 d*x)**2*b**2 + 2*cos(c + d*x)*sec(c + d*x)**2*a*b + sec(c + d*x)**2*a**2) 
,x)