\(\int \frac {\sqrt {\sec (c+d x)}}{(a+b \cos (c+d x))^{5/2}} \, dx\) [765]

Optimal result
Mathematica [A] (warning: unable to verify)
Rubi [A] (verified)
Maple [B] (verified)
Fricas [F]
Sympy [F(-1)]
Maxima [F]
Giac [F]
Mupad [F(-1)]
Reduce [F]

Optimal result

Integrand size = 25, antiderivative size = 421 \[ \int \frac {\sqrt {\sec (c+d x)}}{(a+b \cos (c+d x))^{5/2}} \, dx=\frac {4 b \left (3 a^2-b^2\right ) \sqrt {\cos (c+d x)} \csc (c+d x) E\left (\arcsin \left (\frac {\sqrt {a+b \cos (c+d x)}}{\sqrt {a+b} \sqrt {\cos (c+d x)}}\right )|-\frac {a+b}{a-b}\right ) \sqrt {\frac {a (1-\sec (c+d x))}{a+b}} \sqrt {\frac {a (1+\sec (c+d x))}{a-b}}}{3 a^3 (a-b) (a+b)^{3/2} d \sqrt {\sec (c+d x)}}+\frac {2 \left (3 a^2-3 a b-2 b^2\right ) \sqrt {\cos (c+d x)} \csc (c+d x) \operatorname {EllipticF}\left (\arcsin \left (\frac {\sqrt {a+b \cos (c+d x)}}{\sqrt {a+b} \sqrt {\cos (c+d x)}}\right ),-\frac {a+b}{a-b}\right ) \sqrt {\frac {a (1-\sec (c+d x))}{a+b}} \sqrt {\frac {a (1+\sec (c+d x))}{a-b}}}{3 a^2 (a-b) (a+b)^{3/2} d \sqrt {\sec (c+d x)}}+\frac {2 b^2 \sin (c+d x)}{3 a \left (a^2-b^2\right ) d (a+b \cos (c+d x))^{3/2} \sqrt {\sec (c+d x)}}-\frac {4 b \left (3 a^2-b^2\right ) \sqrt {\sec (c+d x)} \sin (c+d x)}{3 a \left (a^2-b^2\right )^2 d \sqrt {a+b \cos (c+d x)}} \] Output:

4/3*b*(3*a^2-b^2)*cos(d*x+c)^(1/2)*csc(d*x+c)*EllipticE((a+b*cos(d*x+c))^( 
1/2)/(a+b)^(1/2)/cos(d*x+c)^(1/2),(-(a+b)/(a-b))^(1/2))*(a*(1-sec(d*x+c))/ 
(a+b))^(1/2)*(a*(1+sec(d*x+c))/(a-b))^(1/2)/a^3/(a-b)/(a+b)^(3/2)/d/sec(d* 
x+c)^(1/2)+2/3*(3*a^2-3*a*b-2*b^2)*cos(d*x+c)^(1/2)*csc(d*x+c)*EllipticF(( 
a+b*cos(d*x+c))^(1/2)/(a+b)^(1/2)/cos(d*x+c)^(1/2),(-(a+b)/(a-b))^(1/2))*( 
a*(1-sec(d*x+c))/(a+b))^(1/2)*(a*(1+sec(d*x+c))/(a-b))^(1/2)/a^2/(a-b)/(a+ 
b)^(3/2)/d/sec(d*x+c)^(1/2)+2/3*b^2*sin(d*x+c)/a/(a^2-b^2)/d/(a+b*cos(d*x+ 
c))^(3/2)/sec(d*x+c)^(1/2)-4/3*b*(3*a^2-b^2)*sec(d*x+c)^(1/2)*sin(d*x+c)/a 
/(a^2-b^2)^2/d/(a+b*cos(d*x+c))^(1/2)
 

Mathematica [A] (warning: unable to verify)

Time = 11.76 (sec) , antiderivative size = 471, normalized size of antiderivative = 1.12 \[ \int \frac {\sqrt {\sec (c+d x)}}{(a+b \cos (c+d x))^{5/2}} \, dx=\frac {\sqrt {a+b \cos (c+d x)} \sqrt {\sec (c+d x)} \left (\frac {4 b \left (3 a^2-b^2\right ) \sin (c+d x)}{3 a^2 \left (a^2-b^2\right )^2}-\frac {2 b \sin (c+d x)}{3 \left (a^2-b^2\right ) (a+b \cos (c+d x))^2}-\frac {2 \left (5 a^2 b \sin (c+d x)-b^3 \sin (c+d x)\right )}{3 a \left (a^2-b^2\right )^2 (a+b \cos (c+d x))}\right )}{d}+\frac {4 \sqrt {\cos ^2\left (\frac {1}{2} (c+d x)\right ) \sec (c+d x)} \left (2 b \left (-3 a^3-3 a^2 b+a b^2+b^3\right ) \sqrt {\frac {\cos (c+d x)}{1+\cos (c+d x)}} \sqrt {\frac {a+b \cos (c+d x)}{(a+b) (1+\cos (c+d x))}} E\left (\arcsin \left (\tan \left (\frac {1}{2} (c+d x)\right )\right )|\frac {-a+b}{a+b}\right )+a \left (3 a^3+6 a^2 b+a b^2-2 b^3\right ) \sqrt {\frac {\cos (c+d x)}{1+\cos (c+d x)}} \sqrt {\frac {a+b \cos (c+d x)}{(a+b) (1+\cos (c+d x))}} \operatorname {EllipticF}\left (\arcsin \left (\tan \left (\frac {1}{2} (c+d x)\right )\right ),\frac {-a+b}{a+b}\right )+b \left (-3 a^2+b^2\right ) \cos (c+d x) (a+b \cos (c+d x)) \sec ^2\left (\frac {1}{2} (c+d x)\right ) \tan \left (\frac {1}{2} (c+d x)\right )\right )}{3 \left (a^3-a b^2\right )^2 d \sqrt {a+b \cos (c+d x)} \sqrt {\sec ^2\left (\frac {1}{2} (c+d x)\right )}} \] Input:

Integrate[Sqrt[Sec[c + d*x]]/(a + b*Cos[c + d*x])^(5/2),x]
 

Output:

(Sqrt[a + b*Cos[c + d*x]]*Sqrt[Sec[c + d*x]]*((4*b*(3*a^2 - b^2)*Sin[c + d 
*x])/(3*a^2*(a^2 - b^2)^2) - (2*b*Sin[c + d*x])/(3*(a^2 - b^2)*(a + b*Cos[ 
c + d*x])^2) - (2*(5*a^2*b*Sin[c + d*x] - b^3*Sin[c + d*x]))/(3*a*(a^2 - b 
^2)^2*(a + b*Cos[c + d*x]))))/d + (4*Sqrt[Cos[(c + d*x)/2]^2*Sec[c + d*x]] 
*(2*b*(-3*a^3 - 3*a^2*b + a*b^2 + b^3)*Sqrt[Cos[c + d*x]/(1 + Cos[c + d*x] 
)]*Sqrt[(a + b*Cos[c + d*x])/((a + b)*(1 + Cos[c + d*x]))]*EllipticE[ArcSi 
n[Tan[(c + d*x)/2]], (-a + b)/(a + b)] + a*(3*a^3 + 6*a^2*b + a*b^2 - 2*b^ 
3)*Sqrt[Cos[c + d*x]/(1 + Cos[c + d*x])]*Sqrt[(a + b*Cos[c + d*x])/((a + b 
)*(1 + Cos[c + d*x]))]*EllipticF[ArcSin[Tan[(c + d*x)/2]], (-a + b)/(a + b 
)] + b*(-3*a^2 + b^2)*Cos[c + d*x]*(a + b*Cos[c + d*x])*Sec[(c + d*x)/2]^2 
*Tan[(c + d*x)/2]))/(3*(a^3 - a*b^2)^2*d*Sqrt[a + b*Cos[c + d*x]]*Sqrt[Sec 
[(c + d*x)/2]^2])
 

Rubi [A] (verified)

Time = 1.55 (sec) , antiderivative size = 421, normalized size of antiderivative = 1.00, number of steps used = 12, number of rules used = 12, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.480, Rules used = {3042, 4710, 3042, 3281, 27, 3042, 3472, 3042, 3477, 3042, 3295, 3473}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {\sqrt {\sec (c+d x)}}{(a+b \cos (c+d x))^{5/2}} \, dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \frac {\sqrt {\csc \left (c+d x+\frac {\pi }{2}\right )}}{\left (a+b \sin \left (c+d x+\frac {\pi }{2}\right )\right )^{5/2}}dx\)

\(\Big \downarrow \) 4710

\(\displaystyle \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \int \frac {1}{\sqrt {\cos (c+d x)} (a+b \cos (c+d x))^{5/2}}dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \int \frac {1}{\sqrt {\sin \left (c+d x+\frac {\pi }{2}\right )} \left (a+b \sin \left (c+d x+\frac {\pi }{2}\right )\right )^{5/2}}dx\)

\(\Big \downarrow \) 3281

\(\displaystyle \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \left (\frac {2 \int \frac {3 a^2-3 b \cos (c+d x) a-2 b^2}{2 \sqrt {\cos (c+d x)} (a+b \cos (c+d x))^{3/2}}dx}{3 a \left (a^2-b^2\right )}+\frac {2 b^2 \sin (c+d x) \sqrt {\cos (c+d x)}}{3 a d \left (a^2-b^2\right ) (a+b \cos (c+d x))^{3/2}}\right )\)

\(\Big \downarrow \) 27

\(\displaystyle \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \left (\frac {\int \frac {3 a^2-3 b \cos (c+d x) a-2 b^2}{\sqrt {\cos (c+d x)} (a+b \cos (c+d x))^{3/2}}dx}{3 a \left (a^2-b^2\right )}+\frac {2 b^2 \sin (c+d x) \sqrt {\cos (c+d x)}}{3 a d \left (a^2-b^2\right ) (a+b \cos (c+d x))^{3/2}}\right )\)

\(\Big \downarrow \) 3042

\(\displaystyle \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \left (\frac {\int \frac {3 a^2-3 b \sin \left (c+d x+\frac {\pi }{2}\right ) a-2 b^2}{\sqrt {\sin \left (c+d x+\frac {\pi }{2}\right )} \left (a+b \sin \left (c+d x+\frac {\pi }{2}\right )\right )^{3/2}}dx}{3 a \left (a^2-b^2\right )}+\frac {2 b^2 \sin (c+d x) \sqrt {\cos (c+d x)}}{3 a d \left (a^2-b^2\right ) (a+b \cos (c+d x))^{3/2}}\right )\)

\(\Big \downarrow \) 3472

\(\displaystyle \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \left (\frac {\frac {\int \frac {2 b \left (3 a^2-b^2\right )+a \left (3 a^2+b^2\right ) \cos (c+d x)}{\cos ^{\frac {3}{2}}(c+d x) \sqrt {a+b \cos (c+d x)}}dx}{a^2-b^2}-\frac {4 b \left (3 a^2-b^2\right ) \sin (c+d x)}{d \left (a^2-b^2\right ) \sqrt {\cos (c+d x)} \sqrt {a+b \cos (c+d x)}}}{3 a \left (a^2-b^2\right )}+\frac {2 b^2 \sin (c+d x) \sqrt {\cos (c+d x)}}{3 a d \left (a^2-b^2\right ) (a+b \cos (c+d x))^{3/2}}\right )\)

\(\Big \downarrow \) 3042

\(\displaystyle \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \left (\frac {\frac {\int \frac {2 b \left (3 a^2-b^2\right )+a \left (3 a^2+b^2\right ) \sin \left (c+d x+\frac {\pi }{2}\right )}{\sin \left (c+d x+\frac {\pi }{2}\right )^{3/2} \sqrt {a+b \sin \left (c+d x+\frac {\pi }{2}\right )}}dx}{a^2-b^2}-\frac {4 b \left (3 a^2-b^2\right ) \sin (c+d x)}{d \left (a^2-b^2\right ) \sqrt {\cos (c+d x)} \sqrt {a+b \cos (c+d x)}}}{3 a \left (a^2-b^2\right )}+\frac {2 b^2 \sin (c+d x) \sqrt {\cos (c+d x)}}{3 a d \left (a^2-b^2\right ) (a+b \cos (c+d x))^{3/2}}\right )\)

\(\Big \downarrow \) 3477

\(\displaystyle \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \left (\frac {\frac {2 b \left (3 a^2-b^2\right ) \int \frac {\cos (c+d x)+1}{\cos ^{\frac {3}{2}}(c+d x) \sqrt {a+b \cos (c+d x)}}dx+(a-b) \left (3 a^2-3 a b-2 b^2\right ) \int \frac {1}{\sqrt {\cos (c+d x)} \sqrt {a+b \cos (c+d x)}}dx}{a^2-b^2}-\frac {4 b \left (3 a^2-b^2\right ) \sin (c+d x)}{d \left (a^2-b^2\right ) \sqrt {\cos (c+d x)} \sqrt {a+b \cos (c+d x)}}}{3 a \left (a^2-b^2\right )}+\frac {2 b^2 \sin (c+d x) \sqrt {\cos (c+d x)}}{3 a d \left (a^2-b^2\right ) (a+b \cos (c+d x))^{3/2}}\right )\)

\(\Big \downarrow \) 3042

\(\displaystyle \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \left (\frac {\frac {(a-b) \left (3 a^2-3 a b-2 b^2\right ) \int \frac {1}{\sqrt {\sin \left (c+d x+\frac {\pi }{2}\right )} \sqrt {a+b \sin \left (c+d x+\frac {\pi }{2}\right )}}dx+2 b \left (3 a^2-b^2\right ) \int \frac {\sin \left (c+d x+\frac {\pi }{2}\right )+1}{\sin \left (c+d x+\frac {\pi }{2}\right )^{3/2} \sqrt {a+b \sin \left (c+d x+\frac {\pi }{2}\right )}}dx}{a^2-b^2}-\frac {4 b \left (3 a^2-b^2\right ) \sin (c+d x)}{d \left (a^2-b^2\right ) \sqrt {\cos (c+d x)} \sqrt {a+b \cos (c+d x)}}}{3 a \left (a^2-b^2\right )}+\frac {2 b^2 \sin (c+d x) \sqrt {\cos (c+d x)}}{3 a d \left (a^2-b^2\right ) (a+b \cos (c+d x))^{3/2}}\right )\)

\(\Big \downarrow \) 3295

\(\displaystyle \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \left (\frac {\frac {2 b \left (3 a^2-b^2\right ) \int \frac {\sin \left (c+d x+\frac {\pi }{2}\right )+1}{\sin \left (c+d x+\frac {\pi }{2}\right )^{3/2} \sqrt {a+b \sin \left (c+d x+\frac {\pi }{2}\right )}}dx+\frac {2 (a-b) \sqrt {a+b} \left (3 a^2-3 a b-2 b^2\right ) \cot (c+d x) \sqrt {\frac {a (1-\sec (c+d x))}{a+b}} \sqrt {\frac {a (\sec (c+d x)+1)}{a-b}} \operatorname {EllipticF}\left (\arcsin \left (\frac {\sqrt {a+b \cos (c+d x)}}{\sqrt {a+b} \sqrt {\cos (c+d x)}}\right ),-\frac {a+b}{a-b}\right )}{a d}}{a^2-b^2}-\frac {4 b \left (3 a^2-b^2\right ) \sin (c+d x)}{d \left (a^2-b^2\right ) \sqrt {\cos (c+d x)} \sqrt {a+b \cos (c+d x)}}}{3 a \left (a^2-b^2\right )}+\frac {2 b^2 \sin (c+d x) \sqrt {\cos (c+d x)}}{3 a d \left (a^2-b^2\right ) (a+b \cos (c+d x))^{3/2}}\right )\)

\(\Big \downarrow \) 3473

\(\displaystyle \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \left (\frac {\frac {\frac {2 (a-b) \sqrt {a+b} \left (3 a^2-3 a b-2 b^2\right ) \cot (c+d x) \sqrt {\frac {a (1-\sec (c+d x))}{a+b}} \sqrt {\frac {a (\sec (c+d x)+1)}{a-b}} \operatorname {EllipticF}\left (\arcsin \left (\frac {\sqrt {a+b \cos (c+d x)}}{\sqrt {a+b} \sqrt {\cos (c+d x)}}\right ),-\frac {a+b}{a-b}\right )}{a d}+\frac {4 b (a-b) \sqrt {a+b} \left (3 a^2-b^2\right ) \cot (c+d x) \sqrt {\frac {a (1-\sec (c+d x))}{a+b}} \sqrt {\frac {a (\sec (c+d x)+1)}{a-b}} E\left (\arcsin \left (\frac {\sqrt {a+b \cos (c+d x)}}{\sqrt {a+b} \sqrt {\cos (c+d x)}}\right )|-\frac {a+b}{a-b}\right )}{a^2 d}}{a^2-b^2}-\frac {4 b \left (3 a^2-b^2\right ) \sin (c+d x)}{d \left (a^2-b^2\right ) \sqrt {\cos (c+d x)} \sqrt {a+b \cos (c+d x)}}}{3 a \left (a^2-b^2\right )}+\frac {2 b^2 \sin (c+d x) \sqrt {\cos (c+d x)}}{3 a d \left (a^2-b^2\right ) (a+b \cos (c+d x))^{3/2}}\right )\)

Input:

Int[Sqrt[Sec[c + d*x]]/(a + b*Cos[c + d*x])^(5/2),x]
 

Output:

Sqrt[Cos[c + d*x]]*Sqrt[Sec[c + d*x]]*((2*b^2*Sqrt[Cos[c + d*x]]*Sin[c + d 
*x])/(3*a*(a^2 - b^2)*d*(a + b*Cos[c + d*x])^(3/2)) + (((4*(a - b)*b*Sqrt[ 
a + b]*(3*a^2 - b^2)*Cot[c + d*x]*EllipticE[ArcSin[Sqrt[a + b*Cos[c + d*x] 
]/(Sqrt[a + b]*Sqrt[Cos[c + d*x]])], -((a + b)/(a - b))]*Sqrt[(a*(1 - Sec[ 
c + d*x]))/(a + b)]*Sqrt[(a*(1 + Sec[c + d*x]))/(a - b)])/(a^2*d) + (2*(a 
- b)*Sqrt[a + b]*(3*a^2 - 3*a*b - 2*b^2)*Cot[c + d*x]*EllipticF[ArcSin[Sqr 
t[a + b*Cos[c + d*x]]/(Sqrt[a + b]*Sqrt[Cos[c + d*x]])], -((a + b)/(a - b) 
)]*Sqrt[(a*(1 - Sec[c + d*x]))/(a + b)]*Sqrt[(a*(1 + Sec[c + d*x]))/(a - b 
)])/(a*d))/(a^2 - b^2) - (4*b*(3*a^2 - b^2)*Sin[c + d*x])/((a^2 - b^2)*d*S 
qrt[Cos[c + d*x]]*Sqrt[a + b*Cos[c + d*x]]))/(3*a*(a^2 - b^2)))
 

Defintions of rubi rules used

rule 27
Int[(a_)*(Fx_), x_Symbol] :> Simp[a   Int[Fx, x], x] /; FreeQ[a, x] &&  !Ma 
tchQ[Fx, (b_)*(Gx_) /; FreeQ[b, x]]
 

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 3281
Int[((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((c_.) + (d_.)*sin[(e_.) + 
 (f_.)*(x_)])^(n_), x_Symbol] :> Simp[(-b^2)*Cos[e + f*x]*(a + b*Sin[e + f* 
x])^(m + 1)*((c + d*Sin[e + f*x])^(n + 1)/(f*(m + 1)*(b*c - a*d)*(a^2 - b^2 
))), x] + Simp[1/((m + 1)*(b*c - a*d)*(a^2 - b^2))   Int[(a + b*Sin[e + f*x 
])^(m + 1)*(c + d*Sin[e + f*x])^n*Simp[a*(b*c - a*d)*(m + 1) + b^2*d*(m + n 
 + 2) - (b^2*c + b*(b*c - a*d)*(m + 1))*Sin[e + f*x] - b^2*d*(m + n + 3)*Si 
n[e + f*x]^2, x], x], x] /; FreeQ[{a, b, c, d, e, f, n}, x] && NeQ[b*c - a* 
d, 0] && NeQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0] && LtQ[m, -1] && IntegersQ[ 
2*m, 2*n] && ((EqQ[a, 0] && IntegerQ[m] &&  !IntegerQ[n]) ||  !(IntegerQ[2* 
n] && LtQ[n, -1] && ((IntegerQ[n] &&  !IntegerQ[m]) || EqQ[a, 0])))
 

rule 3295
Int[1/(Sqrt[(d_.)*sin[(e_.) + (f_.)*(x_)]]*Sqrt[(a_) + (b_.)*sin[(e_.) + (f 
_.)*(x_)]]), x_Symbol] :> Simp[-2*(Tan[e + f*x]/(a*f))*Rt[(a + b)/d, 2]*Sqr 
t[a*((1 - Csc[e + f*x])/(a + b))]*Sqrt[a*((1 + Csc[e + f*x])/(a - b))]*Elli 
pticF[ArcSin[Sqrt[a + b*Sin[e + f*x]]/Sqrt[d*Sin[e + f*x]]/Rt[(a + b)/d, 2] 
], -(a + b)/(a - b)], x] /; FreeQ[{a, b, d, e, f}, x] && NeQ[a^2 - b^2, 0] 
&& PosQ[(a + b)/d]
 

rule 3472
Int[((A_.) + (B_.)*sin[(e_.) + (f_.)*(x_)])/(Sqrt[(d_.)*sin[(e_.) + (f_.)*( 
x_)]]*((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(3/2)), x_Symbol] :> Simp[2*(A 
*b - a*B)*(Cos[e + f*x]/(f*(a^2 - b^2)*Sqrt[a + b*Sin[e + f*x]]*Sqrt[d*Sin[ 
e + f*x]])), x] + Simp[d/(a^2 - b^2)   Int[(A*b - a*B + (a*A - b*B)*Sin[e + 
 f*x])/(Sqrt[a + b*Sin[e + f*x]]*(d*Sin[e + f*x])^(3/2)), x], x] /; FreeQ[{ 
a, b, d, e, f, A, B}, x] && NeQ[a^2 - b^2, 0]
 

rule 3473
Int[((A_) + (B_.)*sin[(e_.) + (f_.)*(x_)])/(((b_.)*sin[(e_.) + (f_.)*(x_)]) 
^(3/2)*Sqrt[(c_) + (d_.)*sin[(e_.) + (f_.)*(x_)]]), x_Symbol] :> Simp[-2*A* 
(c - d)*(Tan[e + f*x]/(f*b*c^2))*Rt[(c + d)/b, 2]*Sqrt[c*((1 + Csc[e + f*x] 
)/(c - d))]*Sqrt[c*((1 - Csc[e + f*x])/(c + d))]*EllipticE[ArcSin[Sqrt[c + 
d*Sin[e + f*x]]/Sqrt[b*Sin[e + f*x]]/Rt[(c + d)/b, 2]], -(c + d)/(c - d)], 
x] /; FreeQ[{b, c, d, e, f, A, B}, x] && NeQ[c^2 - d^2, 0] && EqQ[A, B] && 
PosQ[(c + d)/b]
 

rule 3477
Int[((A_.) + (B_.)*sin[(e_.) + (f_.)*(x_)])/(((a_.) + (b_.)*sin[(e_.) + (f_ 
.)*(x_)])^(3/2)*Sqrt[(c_) + (d_.)*sin[(e_.) + (f_.)*(x_)]]), x_Symbol] :> S 
imp[(A - B)/(a - b)   Int[1/(Sqrt[a + b*Sin[e + f*x]]*Sqrt[c + d*Sin[e + f* 
x]]), x], x] - Simp[(A*b - a*B)/(a - b)   Int[(1 + Sin[e + f*x])/((a + b*Si 
n[e + f*x])^(3/2)*Sqrt[c + d*Sin[e + f*x]]), x], x] /; FreeQ[{a, b, c, d, e 
, f, A, B}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 
0] && NeQ[A, B]
 

rule 4710
Int[(csc[(a_.) + (b_.)*(x_)]*(c_.))^(m_.)*(u_), x_Symbol] :> Simp[(c*Csc[a 
+ b*x])^m*(c*Sin[a + b*x])^m   Int[ActivateTrig[u]/(c*Sin[a + b*x])^m, x], 
x] /; FreeQ[{a, b, c, m}, x] &&  !IntegerQ[m] && KnownSineIntegrandQ[u, x]
 
Maple [B] (verified)

Leaf count of result is larger than twice the leaf count of optimal. \(1309\) vs. \(2(375)=750\).

Time = 19.94 (sec) , antiderivative size = 1310, normalized size of antiderivative = 3.11

method result size
default \(\text {Expression too large to display}\) \(1310\)

Input:

int(sec(d*x+c)^(1/2)/(a+cos(d*x+c)*b)^(5/2),x,method=_RETURNVERBOSE)
 

Output:

2/3/d*((6*cos(d*x+c)^2+12*cos(d*x+c)+6)*((a+cos(d*x+c)*b)/(cos(d*x+c)+1)/( 
a+b))^(1/2)*(cos(d*x+c)/(cos(d*x+c)+1))^(1/2)*a^4*b*EllipticE(cot(d*x+c)-c 
sc(d*x+c),(-(a-b)/(a+b))^(1/2))+(6*cos(d*x+c)^3+18*cos(d*x+c)^2+18*cos(d*x 
+c)+6)*((a+cos(d*x+c)*b)/(cos(d*x+c)+1)/(a+b))^(1/2)*(cos(d*x+c)/(cos(d*x+ 
c)+1))^(1/2)*a^3*b^2*EllipticE(cot(d*x+c)-csc(d*x+c),(-(a-b)/(a+b))^(1/2)) 
+(6*cos(d*x+c)^3+10*cos(d*x+c)^2+2*cos(d*x+c)-2)*((a+cos(d*x+c)*b)/(cos(d* 
x+c)+1)/(a+b))^(1/2)*(cos(d*x+c)/(cos(d*x+c)+1))^(1/2)*a^2*b^3*EllipticE(c 
ot(d*x+c)-csc(d*x+c),(-(a-b)/(a+b))^(1/2))+(-2*cos(d*x+c)^3-6*cos(d*x+c)^2 
-6*cos(d*x+c)-2)*((a+cos(d*x+c)*b)/(cos(d*x+c)+1)/(a+b))^(1/2)*(cos(d*x+c) 
/(cos(d*x+c)+1))^(1/2)*a*b^4*EllipticE(cot(d*x+c)-csc(d*x+c),(-(a-b)/(a+b) 
)^(1/2))+((a+cos(d*x+c)*b)/(cos(d*x+c)+1)/(a+b))^(1/2)*(cos(d*x+c)/(cos(d* 
x+c)+1))^(1/2)*b^5*EllipticE(cot(d*x+c)-csc(d*x+c),(-(a-b)/(a+b))^(1/2))*( 
-2*cos(d*x+c)^3-4*cos(d*x+c)^2-2*cos(d*x+c))+(-3*cos(d*x+c)^2-6*cos(d*x+c) 
-3)*((a+cos(d*x+c)*b)/(cos(d*x+c)+1)/(a+b))^(1/2)*(cos(d*x+c)/(cos(d*x+c)+ 
1))^(1/2)*a^5*EllipticF(cot(d*x+c)-csc(d*x+c),(-(a-b)/(a+b))^(1/2))+(-3*co 
s(d*x+c)^3-12*cos(d*x+c)^2-15*cos(d*x+c)-6)*((a+cos(d*x+c)*b)/(cos(d*x+c)+ 
1)/(a+b))^(1/2)*(cos(d*x+c)/(cos(d*x+c)+1))^(1/2)*a^4*b*EllipticF(cot(d*x+ 
c)-csc(d*x+c),(-(a-b)/(a+b))^(1/2))+(-6*cos(d*x+c)^3-13*cos(d*x+c)^2-8*cos 
(d*x+c)-1)*((a+cos(d*x+c)*b)/(cos(d*x+c)+1)/(a+b))^(1/2)*(cos(d*x+c)/(cos( 
d*x+c)+1))^(1/2)*a^3*b^2*EllipticF(cot(d*x+c)-csc(d*x+c),(-(a-b)/(a+b))...
 

Fricas [F]

\[ \int \frac {\sqrt {\sec (c+d x)}}{(a+b \cos (c+d x))^{5/2}} \, dx=\int { \frac {\sqrt {\sec \left (d x + c\right )}}{{\left (b \cos \left (d x + c\right ) + a\right )}^{\frac {5}{2}}} \,d x } \] Input:

integrate(sec(d*x+c)^(1/2)/(a+b*cos(d*x+c))^(5/2),x, algorithm="fricas")
 

Output:

integral(sqrt(b*cos(d*x + c) + a)*sqrt(sec(d*x + c))/(b^3*cos(d*x + c)^3 + 
 3*a*b^2*cos(d*x + c)^2 + 3*a^2*b*cos(d*x + c) + a^3), x)
 

Sympy [F(-1)]

Timed out. \[ \int \frac {\sqrt {\sec (c+d x)}}{(a+b \cos (c+d x))^{5/2}} \, dx=\text {Timed out} \] Input:

integrate(sec(d*x+c)**(1/2)/(a+b*cos(d*x+c))**(5/2),x)
 

Output:

Timed out
 

Maxima [F]

\[ \int \frac {\sqrt {\sec (c+d x)}}{(a+b \cos (c+d x))^{5/2}} \, dx=\int { \frac {\sqrt {\sec \left (d x + c\right )}}{{\left (b \cos \left (d x + c\right ) + a\right )}^{\frac {5}{2}}} \,d x } \] Input:

integrate(sec(d*x+c)^(1/2)/(a+b*cos(d*x+c))^(5/2),x, algorithm="maxima")
 

Output:

integrate(sqrt(sec(d*x + c))/(b*cos(d*x + c) + a)^(5/2), x)
 

Giac [F]

\[ \int \frac {\sqrt {\sec (c+d x)}}{(a+b \cos (c+d x))^{5/2}} \, dx=\int { \frac {\sqrt {\sec \left (d x + c\right )}}{{\left (b \cos \left (d x + c\right ) + a\right )}^{\frac {5}{2}}} \,d x } \] Input:

integrate(sec(d*x+c)^(1/2)/(a+b*cos(d*x+c))^(5/2),x, algorithm="giac")
 

Output:

integrate(sqrt(sec(d*x + c))/(b*cos(d*x + c) + a)^(5/2), x)
 

Mupad [F(-1)]

Timed out. \[ \int \frac {\sqrt {\sec (c+d x)}}{(a+b \cos (c+d x))^{5/2}} \, dx=\int \frac {\sqrt {\frac {1}{\cos \left (c+d\,x\right )}}}{{\left (a+b\,\cos \left (c+d\,x\right )\right )}^{5/2}} \,d x \] Input:

int((1/cos(c + d*x))^(1/2)/(a + b*cos(c + d*x))^(5/2),x)
                                                                                    
                                                                                    
 

Output:

int((1/cos(c + d*x))^(1/2)/(a + b*cos(c + d*x))^(5/2), x)
 

Reduce [F]

\[ \int \frac {\sqrt {\sec (c+d x)}}{(a+b \cos (c+d x))^{5/2}} \, dx=\int \frac {\sqrt {\sec \left (d x +c \right )}\, \sqrt {\cos \left (d x +c \right ) b +a}}{\cos \left (d x +c \right )^{3} b^{3}+3 \cos \left (d x +c \right )^{2} a \,b^{2}+3 \cos \left (d x +c \right ) a^{2} b +a^{3}}d x \] Input:

int(sec(d*x+c)^(1/2)/(a+b*cos(d*x+c))^(5/2),x)
 

Output:

int((sqrt(sec(c + d*x))*sqrt(cos(c + d*x)*b + a))/(cos(c + d*x)**3*b**3 + 
3*cos(c + d*x)**2*a*b**2 + 3*cos(c + d*x)*a**2*b + a**3),x)