\(\int \frac {1}{(a+b \cos (c+d x))^{5/2} \sec ^{\frac {3}{2}}(c+d x)} \, dx\) [767]

Optimal result
Mathematica [A] (verified)
Rubi [A] (verified)
Maple [B] (verified)
Fricas [F]
Sympy [F(-1)]
Maxima [F]
Giac [F]
Mupad [F(-1)]
Reduce [F]

Optimal result

Integrand size = 25, antiderivative size = 382 \[ \int \frac {1}{(a+b \cos (c+d x))^{5/2} \sec ^{\frac {3}{2}}(c+d x)} \, dx=\frac {8 b \sqrt {\cos (c+d x)} \csc (c+d x) E\left (\arcsin \left (\frac {\sqrt {a+b \cos (c+d x)}}{\sqrt {a+b} \sqrt {\cos (c+d x)}}\right )|-\frac {a+b}{a-b}\right ) \sqrt {\frac {a (1-\sec (c+d x))}{a+b}} \sqrt {\frac {a (1+\sec (c+d x))}{a-b}}}{3 a (a-b) (a+b)^{3/2} d \sqrt {\sec (c+d x)}}+\frac {2 (a-3 b) \sqrt {\cos (c+d x)} \csc (c+d x) \operatorname {EllipticF}\left (\arcsin \left (\frac {\sqrt {a+b \cos (c+d x)}}{\sqrt {a+b} \sqrt {\cos (c+d x)}}\right ),-\frac {a+b}{a-b}\right ) \sqrt {\frac {a (1-\sec (c+d x))}{a+b}} \sqrt {\frac {a (1+\sec (c+d x))}{a-b}}}{3 a (a-b) (a+b)^{3/2} d \sqrt {\sec (c+d x)}}+\frac {2 a \sin (c+d x)}{3 \left (a^2-b^2\right ) d (a+b \cos (c+d x))^{3/2} \sqrt {\sec (c+d x)}}-\frac {8 a b \sqrt {\sec (c+d x)} \sin (c+d x)}{3 \left (a^2-b^2\right )^2 d \sqrt {a+b \cos (c+d x)}} \] Output:

8/3*b*cos(d*x+c)^(1/2)*csc(d*x+c)*EllipticE((a+b*cos(d*x+c))^(1/2)/(a+b)^( 
1/2)/cos(d*x+c)^(1/2),(-(a+b)/(a-b))^(1/2))*(a*(1-sec(d*x+c))/(a+b))^(1/2) 
*(a*(1+sec(d*x+c))/(a-b))^(1/2)/a/(a-b)/(a+b)^(3/2)/d/sec(d*x+c)^(1/2)+2/3 
*(a-3*b)*cos(d*x+c)^(1/2)*csc(d*x+c)*EllipticF((a+b*cos(d*x+c))^(1/2)/(a+b 
)^(1/2)/cos(d*x+c)^(1/2),(-(a+b)/(a-b))^(1/2))*(a*(1-sec(d*x+c))/(a+b))^(1 
/2)*(a*(1+sec(d*x+c))/(a-b))^(1/2)/a/(a-b)/(a+b)^(3/2)/d/sec(d*x+c)^(1/2)+ 
2/3*a*sin(d*x+c)/(a^2-b^2)/d/(a+b*cos(d*x+c))^(3/2)/sec(d*x+c)^(1/2)-8/3*a 
*b*sec(d*x+c)^(1/2)*sin(d*x+c)/(a^2-b^2)^2/d/(a+b*cos(d*x+c))^(1/2)
                                                                                    
                                                                                    
 

Mathematica [A] (verified)

Time = 6.70 (sec) , antiderivative size = 359, normalized size of antiderivative = 0.94 \[ \int \frac {1}{(a+b \cos (c+d x))^{5/2} \sec ^{\frac {3}{2}}(c+d x)} \, dx=-\frac {2 \sqrt {\sec (c+d x)} \left (a^2 \left (a^2-b^2\right ) \sin (c+d x)-a \left (a^2-5 b^2\right ) (a+b \cos (c+d x)) \sin (c+d x)-4 b^2 (a+b \cos (c+d x))^2 \sin (c+d x)+2 b \cos ^2\left (\frac {1}{2} (c+d x)\right ) (a+b \cos (c+d x)) \left (4 b (a+b) \sqrt {\frac {\cos (c+d x)}{1+\cos (c+d x)}} \sqrt {\frac {a+b \cos (c+d x)}{(a+b) (1+\cos (c+d x))}} E\left (\arcsin \left (\tan \left (\frac {1}{2} (c+d x)\right )\right )|\frac {-a+b}{a+b}\right )-\left (a^2+4 a b+3 b^2\right ) \sqrt {\frac {\cos (c+d x)}{1+\cos (c+d x)}} \sqrt {\frac {a+b \cos (c+d x)}{(a+b) (1+\cos (c+d x))}} \operatorname {EllipticF}\left (\arcsin \left (\tan \left (\frac {1}{2} (c+d x)\right )\right ),\frac {-a+b}{a+b}\right )-b (a+b \cos (c+d x)) \sec ^3\left (\frac {1}{2} (c+d x)\right ) \left (\sin \left (\frac {1}{2} (c+d x)\right )-\sin \left (\frac {3}{2} (c+d x)\right )\right )\right )\right )}{3 b \left (a^2-b^2\right )^2 d (a+b \cos (c+d x))^{3/2}} \] Input:

Integrate[1/((a + b*Cos[c + d*x])^(5/2)*Sec[c + d*x]^(3/2)),x]
 

Output:

(-2*Sqrt[Sec[c + d*x]]*(a^2*(a^2 - b^2)*Sin[c + d*x] - a*(a^2 - 5*b^2)*(a 
+ b*Cos[c + d*x])*Sin[c + d*x] - 4*b^2*(a + b*Cos[c + d*x])^2*Sin[c + d*x] 
 + 2*b*Cos[(c + d*x)/2]^2*(a + b*Cos[c + d*x])*(4*b*(a + b)*Sqrt[Cos[c + d 
*x]/(1 + Cos[c + d*x])]*Sqrt[(a + b*Cos[c + d*x])/((a + b)*(1 + Cos[c + d* 
x]))]*EllipticE[ArcSin[Tan[(c + d*x)/2]], (-a + b)/(a + b)] - (a^2 + 4*a*b 
 + 3*b^2)*Sqrt[Cos[c + d*x]/(1 + Cos[c + d*x])]*Sqrt[(a + b*Cos[c + d*x])/ 
((a + b)*(1 + Cos[c + d*x]))]*EllipticF[ArcSin[Tan[(c + d*x)/2]], (-a + b) 
/(a + b)] - b*(a + b*Cos[c + d*x])*Sec[(c + d*x)/2]^3*(Sin[(c + d*x)/2] - 
Sin[(3*(c + d*x))/2]))))/(3*b*(a^2 - b^2)^2*d*(a + b*Cos[c + d*x])^(3/2))
 

Rubi [A] (verified)

Time = 1.42 (sec) , antiderivative size = 382, normalized size of antiderivative = 1.00, number of steps used = 12, number of rules used = 12, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.480, Rules used = {3042, 4710, 3042, 3278, 27, 3042, 3472, 3042, 3477, 3042, 3295, 3473}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {1}{\sec ^{\frac {3}{2}}(c+d x) (a+b \cos (c+d x))^{5/2}} \, dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \frac {1}{\csc \left (c+d x+\frac {\pi }{2}\right )^{3/2} \left (a+b \sin \left (c+d x+\frac {\pi }{2}\right )\right )^{5/2}}dx\)

\(\Big \downarrow \) 4710

\(\displaystyle \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \int \frac {\cos ^{\frac {3}{2}}(c+d x)}{(a+b \cos (c+d x))^{5/2}}dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \int \frac {\sin \left (c+d x+\frac {\pi }{2}\right )^{3/2}}{\left (a+b \sin \left (c+d x+\frac {\pi }{2}\right )\right )^{5/2}}dx\)

\(\Big \downarrow \) 3278

\(\displaystyle \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \left (\frac {2 a \sin (c+d x) \sqrt {\cos (c+d x)}}{3 d \left (a^2-b^2\right ) (a+b \cos (c+d x))^{3/2}}-\frac {2 \int -\frac {a-3 b \cos (c+d x)}{2 \sqrt {\cos (c+d x)} (a+b \cos (c+d x))^{3/2}}dx}{3 \left (a^2-b^2\right )}\right )\)

\(\Big \downarrow \) 27

\(\displaystyle \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \left (\frac {\int \frac {a-3 b \cos (c+d x)}{\sqrt {\cos (c+d x)} (a+b \cos (c+d x))^{3/2}}dx}{3 \left (a^2-b^2\right )}+\frac {2 a \sin (c+d x) \sqrt {\cos (c+d x)}}{3 d \left (a^2-b^2\right ) (a+b \cos (c+d x))^{3/2}}\right )\)

\(\Big \downarrow \) 3042

\(\displaystyle \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \left (\frac {\int \frac {a-3 b \sin \left (c+d x+\frac {\pi }{2}\right )}{\sqrt {\sin \left (c+d x+\frac {\pi }{2}\right )} \left (a+b \sin \left (c+d x+\frac {\pi }{2}\right )\right )^{3/2}}dx}{3 \left (a^2-b^2\right )}+\frac {2 a \sin (c+d x) \sqrt {\cos (c+d x)}}{3 d \left (a^2-b^2\right ) (a+b \cos (c+d x))^{3/2}}\right )\)

\(\Big \downarrow \) 3472

\(\displaystyle \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \left (\frac {\frac {\int \frac {4 a b+\left (a^2+3 b^2\right ) \cos (c+d x)}{\cos ^{\frac {3}{2}}(c+d x) \sqrt {a+b \cos (c+d x)}}dx}{a^2-b^2}-\frac {8 a b \sin (c+d x)}{d \left (a^2-b^2\right ) \sqrt {\cos (c+d x)} \sqrt {a+b \cos (c+d x)}}}{3 \left (a^2-b^2\right )}+\frac {2 a \sin (c+d x) \sqrt {\cos (c+d x)}}{3 d \left (a^2-b^2\right ) (a+b \cos (c+d x))^{3/2}}\right )\)

\(\Big \downarrow \) 3042

\(\displaystyle \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \left (\frac {\frac {\int \frac {4 a b+\left (a^2+3 b^2\right ) \sin \left (c+d x+\frac {\pi }{2}\right )}{\sin \left (c+d x+\frac {\pi }{2}\right )^{3/2} \sqrt {a+b \sin \left (c+d x+\frac {\pi }{2}\right )}}dx}{a^2-b^2}-\frac {8 a b \sin (c+d x)}{d \left (a^2-b^2\right ) \sqrt {\cos (c+d x)} \sqrt {a+b \cos (c+d x)}}}{3 \left (a^2-b^2\right )}+\frac {2 a \sin (c+d x) \sqrt {\cos (c+d x)}}{3 d \left (a^2-b^2\right ) (a+b \cos (c+d x))^{3/2}}\right )\)

\(\Big \downarrow \) 3477

\(\displaystyle \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \left (\frac {\frac {4 a b \int \frac {\cos (c+d x)+1}{\cos ^{\frac {3}{2}}(c+d x) \sqrt {a+b \cos (c+d x)}}dx+(a-3 b) (a-b) \int \frac {1}{\sqrt {\cos (c+d x)} \sqrt {a+b \cos (c+d x)}}dx}{a^2-b^2}-\frac {8 a b \sin (c+d x)}{d \left (a^2-b^2\right ) \sqrt {\cos (c+d x)} \sqrt {a+b \cos (c+d x)}}}{3 \left (a^2-b^2\right )}+\frac {2 a \sin (c+d x) \sqrt {\cos (c+d x)}}{3 d \left (a^2-b^2\right ) (a+b \cos (c+d x))^{3/2}}\right )\)

\(\Big \downarrow \) 3042

\(\displaystyle \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \left (\frac {\frac {(a-3 b) (a-b) \int \frac {1}{\sqrt {\sin \left (c+d x+\frac {\pi }{2}\right )} \sqrt {a+b \sin \left (c+d x+\frac {\pi }{2}\right )}}dx+4 a b \int \frac {\sin \left (c+d x+\frac {\pi }{2}\right )+1}{\sin \left (c+d x+\frac {\pi }{2}\right )^{3/2} \sqrt {a+b \sin \left (c+d x+\frac {\pi }{2}\right )}}dx}{a^2-b^2}-\frac {8 a b \sin (c+d x)}{d \left (a^2-b^2\right ) \sqrt {\cos (c+d x)} \sqrt {a+b \cos (c+d x)}}}{3 \left (a^2-b^2\right )}+\frac {2 a \sin (c+d x) \sqrt {\cos (c+d x)}}{3 d \left (a^2-b^2\right ) (a+b \cos (c+d x))^{3/2}}\right )\)

\(\Big \downarrow \) 3295

\(\displaystyle \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \left (\frac {\frac {4 a b \int \frac {\sin \left (c+d x+\frac {\pi }{2}\right )+1}{\sin \left (c+d x+\frac {\pi }{2}\right )^{3/2} \sqrt {a+b \sin \left (c+d x+\frac {\pi }{2}\right )}}dx+\frac {2 (a-3 b) (a-b) \sqrt {a+b} \cot (c+d x) \sqrt {\frac {a (1-\sec (c+d x))}{a+b}} \sqrt {\frac {a (\sec (c+d x)+1)}{a-b}} \operatorname {EllipticF}\left (\arcsin \left (\frac {\sqrt {a+b \cos (c+d x)}}{\sqrt {a+b} \sqrt {\cos (c+d x)}}\right ),-\frac {a+b}{a-b}\right )}{a d}}{a^2-b^2}-\frac {8 a b \sin (c+d x)}{d \left (a^2-b^2\right ) \sqrt {\cos (c+d x)} \sqrt {a+b \cos (c+d x)}}}{3 \left (a^2-b^2\right )}+\frac {2 a \sin (c+d x) \sqrt {\cos (c+d x)}}{3 d \left (a^2-b^2\right ) (a+b \cos (c+d x))^{3/2}}\right )\)

\(\Big \downarrow \) 3473

\(\displaystyle \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \left (\frac {\frac {\frac {2 (a-3 b) (a-b) \sqrt {a+b} \cot (c+d x) \sqrt {\frac {a (1-\sec (c+d x))}{a+b}} \sqrt {\frac {a (\sec (c+d x)+1)}{a-b}} \operatorname {EllipticF}\left (\arcsin \left (\frac {\sqrt {a+b \cos (c+d x)}}{\sqrt {a+b} \sqrt {\cos (c+d x)}}\right ),-\frac {a+b}{a-b}\right )}{a d}+\frac {8 b (a-b) \sqrt {a+b} \cot (c+d x) \sqrt {\frac {a (1-\sec (c+d x))}{a+b}} \sqrt {\frac {a (\sec (c+d x)+1)}{a-b}} E\left (\arcsin \left (\frac {\sqrt {a+b \cos (c+d x)}}{\sqrt {a+b} \sqrt {\cos (c+d x)}}\right )|-\frac {a+b}{a-b}\right )}{a d}}{a^2-b^2}-\frac {8 a b \sin (c+d x)}{d \left (a^2-b^2\right ) \sqrt {\cos (c+d x)} \sqrt {a+b \cos (c+d x)}}}{3 \left (a^2-b^2\right )}+\frac {2 a \sin (c+d x) \sqrt {\cos (c+d x)}}{3 d \left (a^2-b^2\right ) (a+b \cos (c+d x))^{3/2}}\right )\)

Input:

Int[1/((a + b*Cos[c + d*x])^(5/2)*Sec[c + d*x]^(3/2)),x]
 

Output:

Sqrt[Cos[c + d*x]]*Sqrt[Sec[c + d*x]]*((2*a*Sqrt[Cos[c + d*x]]*Sin[c + d*x 
])/(3*(a^2 - b^2)*d*(a + b*Cos[c + d*x])^(3/2)) + (((8*(a - b)*b*Sqrt[a + 
b]*Cot[c + d*x]*EllipticE[ArcSin[Sqrt[a + b*Cos[c + d*x]]/(Sqrt[a + b]*Sqr 
t[Cos[c + d*x]])], -((a + b)/(a - b))]*Sqrt[(a*(1 - Sec[c + d*x]))/(a + b) 
]*Sqrt[(a*(1 + Sec[c + d*x]))/(a - b)])/(a*d) + (2*(a - 3*b)*(a - b)*Sqrt[ 
a + b]*Cot[c + d*x]*EllipticF[ArcSin[Sqrt[a + b*Cos[c + d*x]]/(Sqrt[a + b] 
*Sqrt[Cos[c + d*x]])], -((a + b)/(a - b))]*Sqrt[(a*(1 - Sec[c + d*x]))/(a 
+ b)]*Sqrt[(a*(1 + Sec[c + d*x]))/(a - b)])/(a*d))/(a^2 - b^2) - (8*a*b*Si 
n[c + d*x])/((a^2 - b^2)*d*Sqrt[Cos[c + d*x]]*Sqrt[a + b*Cos[c + d*x]]))/( 
3*(a^2 - b^2)))
 

Defintions of rubi rules used

rule 27
Int[(a_)*(Fx_), x_Symbol] :> Simp[a   Int[Fx, x], x] /; FreeQ[a, x] &&  !Ma 
tchQ[Fx, (b_)*(Gx_) /; FreeQ[b, x]]
 

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 3278
Int[((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((c_.) + (d_.)*sin[(e_.) + 
 (f_.)*(x_)])^(n_), x_Symbol] :> Simp[(-(b*c - a*d))*Cos[e + f*x]*(a + b*Si 
n[e + f*x])^(m + 1)*((c + d*Sin[e + f*x])^(n - 1)/(f*(m + 1)*(a^2 - b^2))), 
 x] + Simp[1/((m + 1)*(a^2 - b^2))   Int[(a + b*Sin[e + f*x])^(m + 1)*(c + 
d*Sin[e + f*x])^(n - 2)*Simp[c*(a*c - b*d)*(m + 1) + d*(b*c - a*d)*(n - 1) 
+ (d*(a*c - b*d)*(m + 1) - c*(b*c - a*d)*(m + 2))*Sin[e + f*x] - d*(b*c - a 
*d)*(m + n + 1)*Sin[e + f*x]^2, x], x], x] /; FreeQ[{a, b, c, d, e, f}, x] 
&& NeQ[b*c - a*d, 0] && NeQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0] && LtQ[m, -1 
] && LtQ[1, n, 2] && IntegersQ[2*m, 2*n]
 

rule 3295
Int[1/(Sqrt[(d_.)*sin[(e_.) + (f_.)*(x_)]]*Sqrt[(a_) + (b_.)*sin[(e_.) + (f 
_.)*(x_)]]), x_Symbol] :> Simp[-2*(Tan[e + f*x]/(a*f))*Rt[(a + b)/d, 2]*Sqr 
t[a*((1 - Csc[e + f*x])/(a + b))]*Sqrt[a*((1 + Csc[e + f*x])/(a - b))]*Elli 
pticF[ArcSin[Sqrt[a + b*Sin[e + f*x]]/Sqrt[d*Sin[e + f*x]]/Rt[(a + b)/d, 2] 
], -(a + b)/(a - b)], x] /; FreeQ[{a, b, d, e, f}, x] && NeQ[a^2 - b^2, 0] 
&& PosQ[(a + b)/d]
 

rule 3472
Int[((A_.) + (B_.)*sin[(e_.) + (f_.)*(x_)])/(Sqrt[(d_.)*sin[(e_.) + (f_.)*( 
x_)]]*((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(3/2)), x_Symbol] :> Simp[2*(A 
*b - a*B)*(Cos[e + f*x]/(f*(a^2 - b^2)*Sqrt[a + b*Sin[e + f*x]]*Sqrt[d*Sin[ 
e + f*x]])), x] + Simp[d/(a^2 - b^2)   Int[(A*b - a*B + (a*A - b*B)*Sin[e + 
 f*x])/(Sqrt[a + b*Sin[e + f*x]]*(d*Sin[e + f*x])^(3/2)), x], x] /; FreeQ[{ 
a, b, d, e, f, A, B}, x] && NeQ[a^2 - b^2, 0]
 

rule 3473
Int[((A_) + (B_.)*sin[(e_.) + (f_.)*(x_)])/(((b_.)*sin[(e_.) + (f_.)*(x_)]) 
^(3/2)*Sqrt[(c_) + (d_.)*sin[(e_.) + (f_.)*(x_)]]), x_Symbol] :> Simp[-2*A* 
(c - d)*(Tan[e + f*x]/(f*b*c^2))*Rt[(c + d)/b, 2]*Sqrt[c*((1 + Csc[e + f*x] 
)/(c - d))]*Sqrt[c*((1 - Csc[e + f*x])/(c + d))]*EllipticE[ArcSin[Sqrt[c + 
d*Sin[e + f*x]]/Sqrt[b*Sin[e + f*x]]/Rt[(c + d)/b, 2]], -(c + d)/(c - d)], 
x] /; FreeQ[{b, c, d, e, f, A, B}, x] && NeQ[c^2 - d^2, 0] && EqQ[A, B] && 
PosQ[(c + d)/b]
 

rule 3477
Int[((A_.) + (B_.)*sin[(e_.) + (f_.)*(x_)])/(((a_.) + (b_.)*sin[(e_.) + (f_ 
.)*(x_)])^(3/2)*Sqrt[(c_) + (d_.)*sin[(e_.) + (f_.)*(x_)]]), x_Symbol] :> S 
imp[(A - B)/(a - b)   Int[1/(Sqrt[a + b*Sin[e + f*x]]*Sqrt[c + d*Sin[e + f* 
x]]), x], x] - Simp[(A*b - a*B)/(a - b)   Int[(1 + Sin[e + f*x])/((a + b*Si 
n[e + f*x])^(3/2)*Sqrt[c + d*Sin[e + f*x]]), x], x] /; FreeQ[{a, b, c, d, e 
, f, A, B}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 
0] && NeQ[A, B]
 

rule 4710
Int[(csc[(a_.) + (b_.)*(x_)]*(c_.))^(m_.)*(u_), x_Symbol] :> Simp[(c*Csc[a 
+ b*x])^m*(c*Sin[a + b*x])^m   Int[ActivateTrig[u]/(c*Sin[a + b*x])^m, x], 
x] /; FreeQ[{a, b, c, m}, x] &&  !IntegerQ[m] && KnownSineIntegrandQ[u, x]
 
Maple [B] (verified)

Leaf count of result is larger than twice the leaf count of optimal. \(876\) vs. \(2(336)=672\).

Time = 13.53 (sec) , antiderivative size = 877, normalized size of antiderivative = 2.30

method result size
default \(\text {Expression too large to display}\) \(877\)

Input:

int(1/(a+cos(d*x+c)*b)^(5/2)/sec(d*x+c)^(3/2),x,method=_RETURNVERBOSE)
 

Output:

2/3/d*(a+cos(d*x+c)*b)^(1/2)/((cos(d*x+c)+1)*a^2+cos(d*x+c)*(2+2*cos(d*x+c 
))*a*b+cos(d*x+c)^2*(cos(d*x+c)+1)*b^2)/sec(d*x+c)^(3/2)*((cos(d*x+c)/(cos 
(d*x+c)+1))^(1/2)*((a+cos(d*x+c)*b)/(cos(d*x+c)+1)/(a+b))^(1/2)*a^2*b*Elli 
pticE(cot(d*x+c)-csc(d*x+c),(-(a-b)/(a+b))^(1/2))*(4+8*sec(d*x+c)+4*sec(d* 
x+c)^2)+4*(cos(d*x+c)/(cos(d*x+c)+1))^(1/2)*((a+cos(d*x+c)*b)/(cos(d*x+c)+ 
1)/(a+b))^(1/2)*(3+cos(d*x+c)+3*sec(d*x+c)+sec(d*x+c)^2)*a*b^2*EllipticE(c 
ot(d*x+c)-csc(d*x+c),(-(a-b)/(a+b))^(1/2))+4*(cos(d*x+c)/(cos(d*x+c)+1))^( 
1/2)*((a+cos(d*x+c)*b)/(cos(d*x+c)+1)/(a+b))^(1/2)*b^3*EllipticE(cot(d*x+c 
)-csc(d*x+c),(-(a-b)/(a+b))^(1/2))*(cos(d*x+c)+2+sec(d*x+c))+(cos(d*x+c)/( 
cos(d*x+c)+1))^(1/2)*((a+cos(d*x+c)*b)/(cos(d*x+c)+1)/(a+b))^(1/2)*a^3*Ell 
ipticF(cot(d*x+c)-csc(d*x+c),(-(a-b)/(a+b))^(1/2))*(-1-2*sec(d*x+c)-sec(d* 
x+c)^2)+(cos(d*x+c)/(cos(d*x+c)+1))^(1/2)*((a+cos(d*x+c)*b)/(cos(d*x+c)+1) 
/(a+b))^(1/2)*a^2*b*EllipticF(cot(d*x+c)-csc(d*x+c),(-(a-b)/(a+b))^(1/2))* 
(-cos(d*x+c)-6-9*sec(d*x+c)-4*sec(d*x+c)^2)+(cos(d*x+c)/(cos(d*x+c)+1))^(1 
/2)*((a+cos(d*x+c)*b)/(cos(d*x+c)+1)/(a+b))^(1/2)*a*b^2*EllipticF(cot(d*x+ 
c)-csc(d*x+c),(-(a-b)/(a+b))^(1/2))*(-4*cos(d*x+c)-11-10*sec(d*x+c)-3*sec( 
d*x+c)^2)-3*(cos(d*x+c)/(cos(d*x+c)+1))^(1/2)*((a+cos(d*x+c)*b)/(cos(d*x+c 
)+1)/(a+b))^(1/2)*(cos(d*x+c)+2+sec(d*x+c))*b^3*EllipticF(cot(d*x+c)-csc(d 
*x+c),(-(a-b)/(a+b))^(1/2))+a^3*(sin(d*x+c)+tan(d*x+c))-4*tan(d*x+c)*a^2*b 
+b^2*a*(-5*sin(d*x+c)+3*tan(d*x+c))+4*sin(d*x+c)*b^3)/(a-b)^2/(a+b)^2
 

Fricas [F]

\[ \int \frac {1}{(a+b \cos (c+d x))^{5/2} \sec ^{\frac {3}{2}}(c+d x)} \, dx=\int { \frac {1}{{\left (b \cos \left (d x + c\right ) + a\right )}^{\frac {5}{2}} \sec \left (d x + c\right )^{\frac {3}{2}}} \,d x } \] Input:

integrate(1/(a+b*cos(d*x+c))^(5/2)/sec(d*x+c)^(3/2),x, algorithm="fricas")
 

Output:

integral(sqrt(b*cos(d*x + c) + a)/((b^3*cos(d*x + c)^3 + 3*a*b^2*cos(d*x + 
 c)^2 + 3*a^2*b*cos(d*x + c) + a^3)*sec(d*x + c)^(3/2)), x)
 

Sympy [F(-1)]

Timed out. \[ \int \frac {1}{(a+b \cos (c+d x))^{5/2} \sec ^{\frac {3}{2}}(c+d x)} \, dx=\text {Timed out} \] Input:

integrate(1/(a+b*cos(d*x+c))**(5/2)/sec(d*x+c)**(3/2),x)
 

Output:

Timed out
 

Maxima [F]

\[ \int \frac {1}{(a+b \cos (c+d x))^{5/2} \sec ^{\frac {3}{2}}(c+d x)} \, dx=\int { \frac {1}{{\left (b \cos \left (d x + c\right ) + a\right )}^{\frac {5}{2}} \sec \left (d x + c\right )^{\frac {3}{2}}} \,d x } \] Input:

integrate(1/(a+b*cos(d*x+c))^(5/2)/sec(d*x+c)^(3/2),x, algorithm="maxima")
 

Output:

integrate(1/((b*cos(d*x + c) + a)^(5/2)*sec(d*x + c)^(3/2)), x)
 

Giac [F]

\[ \int \frac {1}{(a+b \cos (c+d x))^{5/2} \sec ^{\frac {3}{2}}(c+d x)} \, dx=\int { \frac {1}{{\left (b \cos \left (d x + c\right ) + a\right )}^{\frac {5}{2}} \sec \left (d x + c\right )^{\frac {3}{2}}} \,d x } \] Input:

integrate(1/(a+b*cos(d*x+c))^(5/2)/sec(d*x+c)^(3/2),x, algorithm="giac")
 

Output:

integrate(1/((b*cos(d*x + c) + a)^(5/2)*sec(d*x + c)^(3/2)), x)
 

Mupad [F(-1)]

Timed out. \[ \int \frac {1}{(a+b \cos (c+d x))^{5/2} \sec ^{\frac {3}{2}}(c+d x)} \, dx=\int \frac {1}{{\left (\frac {1}{\cos \left (c+d\,x\right )}\right )}^{3/2}\,{\left (a+b\,\cos \left (c+d\,x\right )\right )}^{5/2}} \,d x \] Input:

int(1/((1/cos(c + d*x))^(3/2)*(a + b*cos(c + d*x))^(5/2)),x)
                                                                                    
                                                                                    
 

Output:

int(1/((1/cos(c + d*x))^(3/2)*(a + b*cos(c + d*x))^(5/2)), x)
 

Reduce [F]

\[ \int \frac {1}{(a+b \cos (c+d x))^{5/2} \sec ^{\frac {3}{2}}(c+d x)} \, dx=\int \frac {\sqrt {\sec \left (d x +c \right )}\, \sqrt {\cos \left (d x +c \right ) b +a}}{\cos \left (d x +c \right )^{3} \sec \left (d x +c \right )^{2} b^{3}+3 \cos \left (d x +c \right )^{2} \sec \left (d x +c \right )^{2} a \,b^{2}+3 \cos \left (d x +c \right ) \sec \left (d x +c \right )^{2} a^{2} b +\sec \left (d x +c \right )^{2} a^{3}}d x \] Input:

int(1/(a+b*cos(d*x+c))^(5/2)/sec(d*x+c)^(3/2),x)
 

Output:

int((sqrt(sec(c + d*x))*sqrt(cos(c + d*x)*b + a))/(cos(c + d*x)**3*sec(c + 
 d*x)**2*b**3 + 3*cos(c + d*x)**2*sec(c + d*x)**2*a*b**2 + 3*cos(c + d*x)* 
sec(c + d*x)**2*a**2*b + sec(c + d*x)**2*a**3),x)