\(\int \frac {a B+b B \cos (c+d x)}{\sqrt {a+b \cos (c+d x)}} \, dx\) [794]

Optimal result
Mathematica [A] (verified)
Rubi [A] (verified)
Maple [B] (verified)
Fricas [C] (verification not implemented)
Sympy [F]
Maxima [F]
Giac [F]
Mupad [B] (verification not implemented)
Reduce [F]

Optimal result

Integrand size = 28, antiderivative size = 58 \[ \int \frac {a B+b B \cos (c+d x)}{\sqrt {a+b \cos (c+d x)}} \, dx=\frac {2 B \sqrt {a+b \cos (c+d x)} E\left (\frac {1}{2} (c+d x)|\frac {2 b}{a+b}\right )}{d \sqrt {\frac {a+b \cos (c+d x)}{a+b}}} \] Output:

2*B*(a+b*cos(d*x+c))^(1/2)*EllipticE(sin(1/2*d*x+1/2*c),2^(1/2)*(b/(a+b))^ 
(1/2))/d/((a+b*cos(d*x+c))/(a+b))^(1/2)
 

Mathematica [A] (verified)

Time = 0.10 (sec) , antiderivative size = 58, normalized size of antiderivative = 1.00 \[ \int \frac {a B+b B \cos (c+d x)}{\sqrt {a+b \cos (c+d x)}} \, dx=\frac {2 B \sqrt {a+b \cos (c+d x)} E\left (\frac {1}{2} (c+d x)|\frac {2 b}{a+b}\right )}{d \sqrt {\frac {a+b \cos (c+d x)}{a+b}}} \] Input:

Integrate[(a*B + b*B*Cos[c + d*x])/Sqrt[a + b*Cos[c + d*x]],x]
 

Output:

(2*B*Sqrt[a + b*Cos[c + d*x]]*EllipticE[(c + d*x)/2, (2*b)/(a + b)])/(d*Sq 
rt[(a + b*Cos[c + d*x])/(a + b)])
 

Rubi [A] (verified)

Time = 0.31 (sec) , antiderivative size = 58, normalized size of antiderivative = 1.00, number of steps used = 5, number of rules used = 5, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.179, Rules used = {2011, 3042, 3134, 3042, 3132}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {a B+b B \cos (c+d x)}{\sqrt {a+b \cos (c+d x)}} \, dx\)

\(\Big \downarrow \) 2011

\(\displaystyle B \int \sqrt {a+b \cos (c+d x)}dx\)

\(\Big \downarrow \) 3042

\(\displaystyle B \int \sqrt {a+b \sin \left (c+d x+\frac {\pi }{2}\right )}dx\)

\(\Big \downarrow \) 3134

\(\displaystyle \frac {B \sqrt {a+b \cos (c+d x)} \int \sqrt {\frac {a}{a+b}+\frac {b \cos (c+d x)}{a+b}}dx}{\sqrt {\frac {a+b \cos (c+d x)}{a+b}}}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {B \sqrt {a+b \cos (c+d x)} \int \sqrt {\frac {a}{a+b}+\frac {b \sin \left (c+d x+\frac {\pi }{2}\right )}{a+b}}dx}{\sqrt {\frac {a+b \cos (c+d x)}{a+b}}}\)

\(\Big \downarrow \) 3132

\(\displaystyle \frac {2 B \sqrt {a+b \cos (c+d x)} E\left (\frac {1}{2} (c+d x)|\frac {2 b}{a+b}\right )}{d \sqrt {\frac {a+b \cos (c+d x)}{a+b}}}\)

Input:

Int[(a*B + b*B*Cos[c + d*x])/Sqrt[a + b*Cos[c + d*x]],x]
 

Output:

(2*B*Sqrt[a + b*Cos[c + d*x]]*EllipticE[(c + d*x)/2, (2*b)/(a + b)])/(d*Sq 
rt[(a + b*Cos[c + d*x])/(a + b)])
 

Defintions of rubi rules used

rule 2011
Int[(u_.)*((a_) + (b_.)*(v_))^(m_.)*((c_) + (d_.)*(v_))^(n_.), x_Symbol] :> 
 Simp[(b/d)^m   Int[u*(c + d*v)^(m + n), x], x] /; FreeQ[{a, b, c, d, n}, x 
] && EqQ[b*c - a*d, 0] && IntegerQ[m] && ( !IntegerQ[n] || SimplerQ[c + d*x 
, a + b*x])
 

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 3132
Int[Sqrt[(a_) + (b_.)*sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[2*(Sqrt[a 
 + b]/d)*EllipticE[(1/2)*(c - Pi/2 + d*x), 2*(b/(a + b))], x] /; FreeQ[{a, 
b, c, d}, x] && NeQ[a^2 - b^2, 0] && GtQ[a + b, 0]
 

rule 3134
Int[Sqrt[(a_) + (b_.)*sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[Sqrt[a + 
b*Sin[c + d*x]]/Sqrt[(a + b*Sin[c + d*x])/(a + b)]   Int[Sqrt[a/(a + b) + ( 
b/(a + b))*Sin[c + d*x]], x], x] /; FreeQ[{a, b, c, d}, x] && NeQ[a^2 - b^2 
, 0] &&  !GtQ[a + b, 0]
 
Maple [B] (verified)

Leaf count of result is larger than twice the leaf count of optimal. \(170\) vs. \(2(59)=118\).

Time = 9.52 (sec) , antiderivative size = 171, normalized size of antiderivative = 2.95

method result size
default \(-\frac {2 \sqrt {\left (2 b \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}+a -b \right ) \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}}\, B \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {\frac {2 b \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}+a -b}{a -b}}\, \operatorname {EllipticE}\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {-\frac {2 b}{a -b}}\right ) \left (a -b \right )}{\sqrt {-2 b \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{4}+\left (a +b \right ) \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}}\, \sin \left (\frac {d x}{2}+\frac {c}{2}\right ) \sqrt {-2 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2} b +a +b}\, d}\) \(171\)
parts \(\frac {2 B a \sqrt {\frac {a +\cos \left (d x +c \right ) b}{a +b}}\, \operatorname {InverseJacobiAM}\left (\frac {d x}{2}+\frac {c}{2}, \frac {\sqrt {2}\, \sqrt {b}}{\sqrt {a +b}}\right )}{d \sqrt {a +\cos \left (d x +c \right ) b}}+\frac {2 B \sqrt {\left (2 b \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}+a -b \right ) \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}}\, \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {\frac {2 b \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}+a -b}{a -b}}\, \left (\operatorname {EllipticF}\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {-\frac {2 b}{a -b}}\right ) a -\operatorname {EllipticE}\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {-\frac {2 b}{a -b}}\right ) a +\operatorname {EllipticE}\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {-\frac {2 b}{a -b}}\right ) b \right )}{\sqrt {-2 b \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{4}+\left (a +b \right ) \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}}\, \sin \left (\frac {d x}{2}+\frac {c}{2}\right ) \sqrt {-2 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2} b +a +b}\, d}\) \(277\)
risch \(\text {Expression too large to display}\) \(1068\)

Input:

int((B*a+b*B*cos(d*x+c))/(a+cos(d*x+c)*b)^(1/2),x,method=_RETURNVERBOSE)
 

Output:

-2*((2*b*cos(1/2*d*x+1/2*c)^2+a-b)*sin(1/2*d*x+1/2*c)^2)^(1/2)*B*(sin(1/2* 
d*x+1/2*c)^2)^(1/2)*((2*b*cos(1/2*d*x+1/2*c)^2+a-b)/(a-b))^(1/2)*EllipticE 
(cos(1/2*d*x+1/2*c),(-2*b/(a-b))^(1/2))*(a-b)/(-2*b*sin(1/2*d*x+1/2*c)^4+( 
a+b)*sin(1/2*d*x+1/2*c)^2)^(1/2)/sin(1/2*d*x+1/2*c)/(-2*sin(1/2*d*x+1/2*c) 
^2*b+a+b)^(1/2)/d
 

Fricas [C] (verification not implemented)

Result contains complex when optimal does not.

Time = 0.09 (sec) , antiderivative size = 359, normalized size of antiderivative = 6.19 \[ \int \frac {a B+b B \cos (c+d x)}{\sqrt {a+b \cos (c+d x)}} \, dx=-\frac {2 \, {\left (i \, \sqrt {\frac {1}{2}} B a \sqrt {b} {\rm weierstrassPInverse}\left (\frac {4 \, {\left (4 \, a^{2} - 3 \, b^{2}\right )}}{3 \, b^{2}}, -\frac {8 \, {\left (8 \, a^{3} - 9 \, a b^{2}\right )}}{27 \, b^{3}}, \frac {3 \, b \cos \left (d x + c\right ) + 3 i \, b \sin \left (d x + c\right ) + 2 \, a}{3 \, b}\right ) - i \, \sqrt {\frac {1}{2}} B a \sqrt {b} {\rm weierstrassPInverse}\left (\frac {4 \, {\left (4 \, a^{2} - 3 \, b^{2}\right )}}{3 \, b^{2}}, -\frac {8 \, {\left (8 \, a^{3} - 9 \, a b^{2}\right )}}{27 \, b^{3}}, \frac {3 \, b \cos \left (d x + c\right ) - 3 i \, b \sin \left (d x + c\right ) + 2 \, a}{3 \, b}\right ) - 3 i \, \sqrt {\frac {1}{2}} B b^{\frac {3}{2}} {\rm weierstrassZeta}\left (\frac {4 \, {\left (4 \, a^{2} - 3 \, b^{2}\right )}}{3 \, b^{2}}, -\frac {8 \, {\left (8 \, a^{3} - 9 \, a b^{2}\right )}}{27 \, b^{3}}, {\rm weierstrassPInverse}\left (\frac {4 \, {\left (4 \, a^{2} - 3 \, b^{2}\right )}}{3 \, b^{2}}, -\frac {8 \, {\left (8 \, a^{3} - 9 \, a b^{2}\right )}}{27 \, b^{3}}, \frac {3 \, b \cos \left (d x + c\right ) + 3 i \, b \sin \left (d x + c\right ) + 2 \, a}{3 \, b}\right )\right ) + 3 i \, \sqrt {\frac {1}{2}} B b^{\frac {3}{2}} {\rm weierstrassZeta}\left (\frac {4 \, {\left (4 \, a^{2} - 3 \, b^{2}\right )}}{3 \, b^{2}}, -\frac {8 \, {\left (8 \, a^{3} - 9 \, a b^{2}\right )}}{27 \, b^{3}}, {\rm weierstrassPInverse}\left (\frac {4 \, {\left (4 \, a^{2} - 3 \, b^{2}\right )}}{3 \, b^{2}}, -\frac {8 \, {\left (8 \, a^{3} - 9 \, a b^{2}\right )}}{27 \, b^{3}}, \frac {3 \, b \cos \left (d x + c\right ) - 3 i \, b \sin \left (d x + c\right ) + 2 \, a}{3 \, b}\right )\right )\right )}}{3 \, b d} \] Input:

integrate((a*B+b*B*cos(d*x+c))/(a+b*cos(d*x+c))^(1/2),x, algorithm="fricas 
")
 

Output:

-2/3*(I*sqrt(1/2)*B*a*sqrt(b)*weierstrassPInverse(4/3*(4*a^2 - 3*b^2)/b^2, 
 -8/27*(8*a^3 - 9*a*b^2)/b^3, 1/3*(3*b*cos(d*x + c) + 3*I*b*sin(d*x + c) + 
 2*a)/b) - I*sqrt(1/2)*B*a*sqrt(b)*weierstrassPInverse(4/3*(4*a^2 - 3*b^2) 
/b^2, -8/27*(8*a^3 - 9*a*b^2)/b^3, 1/3*(3*b*cos(d*x + c) - 3*I*b*sin(d*x + 
 c) + 2*a)/b) - 3*I*sqrt(1/2)*B*b^(3/2)*weierstrassZeta(4/3*(4*a^2 - 3*b^2 
)/b^2, -8/27*(8*a^3 - 9*a*b^2)/b^3, weierstrassPInverse(4/3*(4*a^2 - 3*b^2 
)/b^2, -8/27*(8*a^3 - 9*a*b^2)/b^3, 1/3*(3*b*cos(d*x + c) + 3*I*b*sin(d*x 
+ c) + 2*a)/b)) + 3*I*sqrt(1/2)*B*b^(3/2)*weierstrassZeta(4/3*(4*a^2 - 3*b 
^2)/b^2, -8/27*(8*a^3 - 9*a*b^2)/b^3, weierstrassPInverse(4/3*(4*a^2 - 3*b 
^2)/b^2, -8/27*(8*a^3 - 9*a*b^2)/b^3, 1/3*(3*b*cos(d*x + c) - 3*I*b*sin(d* 
x + c) + 2*a)/b)))/(b*d)
 

Sympy [F]

\[ \int \frac {a B+b B \cos (c+d x)}{\sqrt {a+b \cos (c+d x)}} \, dx=B \int \sqrt {a + b \cos {\left (c + d x \right )}}\, dx \] Input:

integrate((a*B+b*B*cos(d*x+c))/(a+b*cos(d*x+c))**(1/2),x)
 

Output:

B*Integral(sqrt(a + b*cos(c + d*x)), x)
 

Maxima [F]

\[ \int \frac {a B+b B \cos (c+d x)}{\sqrt {a+b \cos (c+d x)}} \, dx=\int { \frac {B b \cos \left (d x + c\right ) + B a}{\sqrt {b \cos \left (d x + c\right ) + a}} \,d x } \] Input:

integrate((a*B+b*B*cos(d*x+c))/(a+b*cos(d*x+c))^(1/2),x, algorithm="maxima 
")
 

Output:

integrate((B*b*cos(d*x + c) + B*a)/sqrt(b*cos(d*x + c) + a), x)
 

Giac [F]

\[ \int \frac {a B+b B \cos (c+d x)}{\sqrt {a+b \cos (c+d x)}} \, dx=\int { \frac {B b \cos \left (d x + c\right ) + B a}{\sqrt {b \cos \left (d x + c\right ) + a}} \,d x } \] Input:

integrate((a*B+b*B*cos(d*x+c))/(a+b*cos(d*x+c))^(1/2),x, algorithm="giac")
 

Output:

integrate((B*b*cos(d*x + c) + B*a)/sqrt(b*cos(d*x + c) + a), x)
 

Mupad [B] (verification not implemented)

Time = 43.20 (sec) , antiderivative size = 56, normalized size of antiderivative = 0.97 \[ \int \frac {a B+b B \cos (c+d x)}{\sqrt {a+b \cos (c+d x)}} \, dx=\frac {2\,B\,\mathrm {E}\left (\frac {c}{2}+\frac {d\,x}{2}\middle |\frac {2\,b}{a+b}\right )\,\left (a+b\right )\,\sqrt {\frac {a+b\,\cos \left (c+d\,x\right )}{a+b}}}{d\,\sqrt {a+b\,\cos \left (c+d\,x\right )}} \] Input:

int((B*a + B*b*cos(c + d*x))/(a + b*cos(c + d*x))^(1/2),x)
 

Output:

(2*B*ellipticE(c/2 + (d*x)/2, (2*b)/(a + b))*(a + b)*((a + b*cos(c + d*x)) 
/(a + b))^(1/2))/(d*(a + b*cos(c + d*x))^(1/2))
 

Reduce [F]

\[ \int \frac {a B+b B \cos (c+d x)}{\sqrt {a+b \cos (c+d x)}} \, dx=\left (\int \sqrt {\cos \left (d x +c \right ) b +a}d x \right ) b \] Input:

int((a*B+b*B*cos(d*x+c))/(a+b*cos(d*x+c))^(1/2),x)
 

Output:

int(sqrt(cos(c + d*x)*b + a),x)*b