\(\int (b \cos (c+d x))^{3/2} (A+B \cos (c+d x)) \sec (c+d x) \, dx\) [808]

Optimal result
Mathematica [A] (verified)
Rubi [A] (verified)
Maple [B] (verified)
Fricas [C] (verification not implemented)
Sympy [F(-1)]
Maxima [F]
Giac [F]
Mupad [F(-1)]
Reduce [F]

Optimal result

Integrand size = 29, antiderivative size = 112 \[ \int (b \cos (c+d x))^{3/2} (A+B \cos (c+d x)) \sec (c+d x) \, dx=\frac {2 A b \sqrt {b \cos (c+d x)} E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{d \sqrt {\cos (c+d x)}}+\frac {2 b^2 B \sqrt {\cos (c+d x)} \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),2\right )}{3 d \sqrt {b \cos (c+d x)}}+\frac {2 b B \sqrt {b \cos (c+d x)} \sin (c+d x)}{3 d} \] Output:

2*A*b*(b*cos(d*x+c))^(1/2)*EllipticE(sin(1/2*d*x+1/2*c),2^(1/2))/d/cos(d*x 
+c)^(1/2)+2/3*b^2*B*cos(d*x+c)^(1/2)*InverseJacobiAM(1/2*d*x+1/2*c,2^(1/2) 
)/d/(b*cos(d*x+c))^(1/2)+2/3*b*B*(b*cos(d*x+c))^(1/2)*sin(d*x+c)/d
 

Mathematica [A] (verified)

Time = 0.05 (sec) , antiderivative size = 76, normalized size of antiderivative = 0.68 \[ \int (b \cos (c+d x))^{3/2} (A+B \cos (c+d x)) \sec (c+d x) \, dx=\frac {2 b \sqrt {b \cos (c+d x)} \left (3 A E\left (\left .\frac {1}{2} (c+d x)\right |2\right )+B \left (\operatorname {EllipticF}\left (\frac {1}{2} (c+d x),2\right )+\sqrt {\cos (c+d x)} \sin (c+d x)\right )\right )}{3 d \sqrt {\cos (c+d x)}} \] Input:

Integrate[(b*Cos[c + d*x])^(3/2)*(A + B*Cos[c + d*x])*Sec[c + d*x],x]
 

Output:

(2*b*Sqrt[b*Cos[c + d*x]]*(3*A*EllipticE[(c + d*x)/2, 2] + B*(EllipticF[(c 
 + d*x)/2, 2] + Sqrt[Cos[c + d*x]]*Sin[c + d*x])))/(3*d*Sqrt[Cos[c + d*x]] 
)
 

Rubi [A] (verified)

Time = 0.54 (sec) , antiderivative size = 117, normalized size of antiderivative = 1.04, number of steps used = 10, number of rules used = 10, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.345, Rules used = {3042, 2030, 3227, 3042, 3115, 3042, 3121, 3042, 3119, 3120}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \sec (c+d x) (b \cos (c+d x))^{3/2} (A+B \cos (c+d x)) \, dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \frac {\left (b \sin \left (c+d x+\frac {\pi }{2}\right )\right )^{3/2} \left (A+B \sin \left (c+d x+\frac {\pi }{2}\right )\right )}{\sin \left (c+d x+\frac {\pi }{2}\right )}dx\)

\(\Big \downarrow \) 2030

\(\displaystyle b \int \sqrt {b \sin \left (\frac {1}{2} (2 c+\pi )+d x\right )} \left (A+B \sin \left (\frac {1}{2} (2 c+\pi )+d x\right )\right )dx\)

\(\Big \downarrow \) 3227

\(\displaystyle b \left (A \int \sqrt {b \cos (c+d x)}dx+\frac {B \int (b \cos (c+d x))^{3/2}dx}{b}\right )\)

\(\Big \downarrow \) 3042

\(\displaystyle b \left (A \int \sqrt {b \sin \left (c+d x+\frac {\pi }{2}\right )}dx+\frac {B \int \left (b \sin \left (c+d x+\frac {\pi }{2}\right )\right )^{3/2}dx}{b}\right )\)

\(\Big \downarrow \) 3115

\(\displaystyle b \left (A \int \sqrt {b \sin \left (c+d x+\frac {\pi }{2}\right )}dx+\frac {B \left (\frac {1}{3} b^2 \int \frac {1}{\sqrt {b \cos (c+d x)}}dx+\frac {2 b \sin (c+d x) \sqrt {b \cos (c+d x)}}{3 d}\right )}{b}\right )\)

\(\Big \downarrow \) 3042

\(\displaystyle b \left (A \int \sqrt {b \sin \left (c+d x+\frac {\pi }{2}\right )}dx+\frac {B \left (\frac {1}{3} b^2 \int \frac {1}{\sqrt {b \sin \left (c+d x+\frac {\pi }{2}\right )}}dx+\frac {2 b \sin (c+d x) \sqrt {b \cos (c+d x)}}{3 d}\right )}{b}\right )\)

\(\Big \downarrow \) 3121

\(\displaystyle b \left (\frac {A \sqrt {b \cos (c+d x)} \int \sqrt {\cos (c+d x)}dx}{\sqrt {\cos (c+d x)}}+\frac {B \left (\frac {b^2 \sqrt {\cos (c+d x)} \int \frac {1}{\sqrt {\cos (c+d x)}}dx}{3 \sqrt {b \cos (c+d x)}}+\frac {2 b \sin (c+d x) \sqrt {b \cos (c+d x)}}{3 d}\right )}{b}\right )\)

\(\Big \downarrow \) 3042

\(\displaystyle b \left (\frac {A \sqrt {b \cos (c+d x)} \int \sqrt {\sin \left (c+d x+\frac {\pi }{2}\right )}dx}{\sqrt {\cos (c+d x)}}+\frac {B \left (\frac {b^2 \sqrt {\cos (c+d x)} \int \frac {1}{\sqrt {\sin \left (c+d x+\frac {\pi }{2}\right )}}dx}{3 \sqrt {b \cos (c+d x)}}+\frac {2 b \sin (c+d x) \sqrt {b \cos (c+d x)}}{3 d}\right )}{b}\right )\)

\(\Big \downarrow \) 3119

\(\displaystyle b \left (\frac {B \left (\frac {b^2 \sqrt {\cos (c+d x)} \int \frac {1}{\sqrt {\sin \left (c+d x+\frac {\pi }{2}\right )}}dx}{3 \sqrt {b \cos (c+d x)}}+\frac {2 b \sin (c+d x) \sqrt {b \cos (c+d x)}}{3 d}\right )}{b}+\frac {2 A E\left (\left .\frac {1}{2} (c+d x)\right |2\right ) \sqrt {b \cos (c+d x)}}{d \sqrt {\cos (c+d x)}}\right )\)

\(\Big \downarrow \) 3120

\(\displaystyle b \left (\frac {2 A E\left (\left .\frac {1}{2} (c+d x)\right |2\right ) \sqrt {b \cos (c+d x)}}{d \sqrt {\cos (c+d x)}}+\frac {B \left (\frac {2 b^2 \sqrt {\cos (c+d x)} \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),2\right )}{3 d \sqrt {b \cos (c+d x)}}+\frac {2 b \sin (c+d x) \sqrt {b \cos (c+d x)}}{3 d}\right )}{b}\right )\)

Input:

Int[(b*Cos[c + d*x])^(3/2)*(A + B*Cos[c + d*x])*Sec[c + d*x],x]
 

Output:

b*((2*A*Sqrt[b*Cos[c + d*x]]*EllipticE[(c + d*x)/2, 2])/(d*Sqrt[Cos[c + d* 
x]]) + (B*((2*b^2*Sqrt[Cos[c + d*x]]*EllipticF[(c + d*x)/2, 2])/(3*d*Sqrt[ 
b*Cos[c + d*x]]) + (2*b*Sqrt[b*Cos[c + d*x]]*Sin[c + d*x])/(3*d)))/b)
 

Defintions of rubi rules used

rule 2030
Int[(Fx_.)*(v_)^(m_.)*((b_)*(v_))^(n_), x_Symbol] :> Simp[1/b^m   Int[(b*v) 
^(m + n)*Fx, x], x] /; FreeQ[{b, n}, x] && IntegerQ[m]
 

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 3115
Int[((b_.)*sin[(c_.) + (d_.)*(x_)])^(n_), x_Symbol] :> Simp[(-b)*Cos[c + d* 
x]*((b*Sin[c + d*x])^(n - 1)/(d*n)), x] + Simp[b^2*((n - 1)/n)   Int[(b*Sin 
[c + d*x])^(n - 2), x], x] /; FreeQ[{b, c, d}, x] && GtQ[n, 1] && IntegerQ[ 
2*n]
 

rule 3119
Int[Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2/d)*EllipticE[(1/2)* 
(c - Pi/2 + d*x), 2], x] /; FreeQ[{c, d}, x]
 

rule 3120
Int[1/Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2/d)*EllipticF[(1/2 
)*(c - Pi/2 + d*x), 2], x] /; FreeQ[{c, d}, x]
 

rule 3121
Int[((b_)*sin[(c_.) + (d_.)*(x_)])^(n_), x_Symbol] :> Simp[(b*Sin[c + d*x]) 
^n/Sin[c + d*x]^n   Int[Sin[c + d*x]^n, x], x] /; FreeQ[{b, c, d}, x] && Lt 
Q[-1, n, 1] && IntegerQ[2*n]
 

rule 3227
Int[((b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((c_) + (d_.)*sin[(e_.) + (f_.)*(x 
_)]), x_Symbol] :> Simp[c   Int[(b*Sin[e + f*x])^m, x], x] + Simp[d/b   Int 
[(b*Sin[e + f*x])^(m + 1), x], x] /; FreeQ[{b, c, d, e, f, m}, x]
 
Maple [B] (verified)

Leaf count of result is larger than twice the leaf count of optimal. \(239\) vs. \(2(101)=202\).

Time = 9.62 (sec) , antiderivative size = 240, normalized size of antiderivative = 2.14

method result size
default \(\frac {2 \sqrt {\left (2 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-1\right ) b \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}}\, b^{2} \left (-4 B \cos \left (\frac {d x}{2}+\frac {c}{2}\right ) \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{4}+3 A \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {2 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-1}\, \operatorname {EllipticE}\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right )+2 B \cos \left (\frac {d x}{2}+\frac {c}{2}\right ) \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-B \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {2 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-1}\, \operatorname {EllipticF}\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right )\right )}{3 \sqrt {-b \left (2 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{4}-\sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}\right )}\, \sin \left (\frac {d x}{2}+\frac {c}{2}\right ) \sqrt {\left (2 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-1\right ) b}\, d}\) \(240\)
parts \(\frac {2 A \sqrt {\left (2 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-1\right ) b \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}}\, b^{2} \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {-2 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}+1}\, \operatorname {EllipticE}\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right )}{\sqrt {-b \left (2 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{4}-\sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}\right )}\, \sin \left (\frac {d x}{2}+\frac {c}{2}\right ) \sqrt {\left (2 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-1\right ) b}\, d}-\frac {2 B \sqrt {\left (2 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-1\right ) b \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}}\, b^{2} \left (4 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{4} \cos \left (\frac {d x}{2}+\frac {c}{2}\right )-2 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2} \cos \left (\frac {d x}{2}+\frac {c}{2}\right )+\sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {2 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-1}\, \operatorname {EllipticF}\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right )\right )}{3 \sqrt {-b \left (2 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{4}-\sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}\right )}\, \sin \left (\frac {d x}{2}+\frac {c}{2}\right ) \sqrt {\left (2 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-1\right ) b}\, d}\) \(336\)

Input:

int((cos(d*x+c)*b)^(3/2)*(A+B*cos(d*x+c))*sec(d*x+c),x,method=_RETURNVERBO 
SE)
 

Output:

2/3*((2*cos(1/2*d*x+1/2*c)^2-1)*b*sin(1/2*d*x+1/2*c)^2)^(1/2)*b^2*(-4*B*co 
s(1/2*d*x+1/2*c)*sin(1/2*d*x+1/2*c)^4+3*A*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(2* 
sin(1/2*d*x+1/2*c)^2-1)^(1/2)*EllipticE(cos(1/2*d*x+1/2*c),2^(1/2))+2*B*co 
s(1/2*d*x+1/2*c)*sin(1/2*d*x+1/2*c)^2-B*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(2*si 
n(1/2*d*x+1/2*c)^2-1)^(1/2)*EllipticF(cos(1/2*d*x+1/2*c),2^(1/2)))/(-b*(2* 
sin(1/2*d*x+1/2*c)^4-sin(1/2*d*x+1/2*c)^2))^(1/2)/sin(1/2*d*x+1/2*c)/((2*c 
os(1/2*d*x+1/2*c)^2-1)*b)^(1/2)/d
 

Fricas [C] (verification not implemented)

Result contains complex when optimal does not.

Time = 0.09 (sec) , antiderivative size = 140, normalized size of antiderivative = 1.25 \[ \int (b \cos (c+d x))^{3/2} (A+B \cos (c+d x)) \sec (c+d x) \, dx=-\frac {2 \, {\left (i \, \sqrt {\frac {1}{2}} B b^{\frac {3}{2}} {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) + i \, \sin \left (d x + c\right )\right ) - i \, \sqrt {\frac {1}{2}} B b^{\frac {3}{2}} {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) - i \, \sin \left (d x + c\right )\right ) - 3 i \, \sqrt {\frac {1}{2}} A b^{\frac {3}{2}} {\rm weierstrassZeta}\left (-4, 0, {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) + i \, \sin \left (d x + c\right )\right )\right ) + 3 i \, \sqrt {\frac {1}{2}} A b^{\frac {3}{2}} {\rm weierstrassZeta}\left (-4, 0, {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) - i \, \sin \left (d x + c\right )\right )\right ) - \sqrt {b \cos \left (d x + c\right )} B b \sin \left (d x + c\right )\right )}}{3 \, d} \] Input:

integrate((b*cos(d*x+c))^(3/2)*(A+B*cos(d*x+c))*sec(d*x+c),x, algorithm="f 
ricas")
 

Output:

-2/3*(I*sqrt(1/2)*B*b^(3/2)*weierstrassPInverse(-4, 0, cos(d*x + c) + I*si 
n(d*x + c)) - I*sqrt(1/2)*B*b^(3/2)*weierstrassPInverse(-4, 0, cos(d*x + c 
) - I*sin(d*x + c)) - 3*I*sqrt(1/2)*A*b^(3/2)*weierstrassZeta(-4, 0, weier 
strassPInverse(-4, 0, cos(d*x + c) + I*sin(d*x + c))) + 3*I*sqrt(1/2)*A*b^ 
(3/2)*weierstrassZeta(-4, 0, weierstrassPInverse(-4, 0, cos(d*x + c) - I*s 
in(d*x + c))) - sqrt(b*cos(d*x + c))*B*b*sin(d*x + c))/d
 

Sympy [F(-1)]

Timed out. \[ \int (b \cos (c+d x))^{3/2} (A+B \cos (c+d x)) \sec (c+d x) \, dx=\text {Timed out} \] Input:

integrate((b*cos(d*x+c))**(3/2)*(A+B*cos(d*x+c))*sec(d*x+c),x)
 

Output:

Timed out
 

Maxima [F]

\[ \int (b \cos (c+d x))^{3/2} (A+B \cos (c+d x)) \sec (c+d x) \, dx=\int { {\left (B \cos \left (d x + c\right ) + A\right )} \left (b \cos \left (d x + c\right )\right )^{\frac {3}{2}} \sec \left (d x + c\right ) \,d x } \] Input:

integrate((b*cos(d*x+c))^(3/2)*(A+B*cos(d*x+c))*sec(d*x+c),x, algorithm="m 
axima")
 

Output:

integrate((B*cos(d*x + c) + A)*(b*cos(d*x + c))^(3/2)*sec(d*x + c), x)
 

Giac [F]

\[ \int (b \cos (c+d x))^{3/2} (A+B \cos (c+d x)) \sec (c+d x) \, dx=\int { {\left (B \cos \left (d x + c\right ) + A\right )} \left (b \cos \left (d x + c\right )\right )^{\frac {3}{2}} \sec \left (d x + c\right ) \,d x } \] Input:

integrate((b*cos(d*x+c))^(3/2)*(A+B*cos(d*x+c))*sec(d*x+c),x, algorithm="g 
iac")
 

Output:

integrate((B*cos(d*x + c) + A)*(b*cos(d*x + c))^(3/2)*sec(d*x + c), x)
 

Mupad [F(-1)]

Timed out. \[ \int (b \cos (c+d x))^{3/2} (A+B \cos (c+d x)) \sec (c+d x) \, dx=\int \frac {{\left (b\,\cos \left (c+d\,x\right )\right )}^{3/2}\,\left (A+B\,\cos \left (c+d\,x\right )\right )}{\cos \left (c+d\,x\right )} \,d x \] Input:

int(((b*cos(c + d*x))^(3/2)*(A + B*cos(c + d*x)))/cos(c + d*x),x)
                                                                                    
                                                                                    
 

Output:

int(((b*cos(c + d*x))^(3/2)*(A + B*cos(c + d*x)))/cos(c + d*x), x)
 

Reduce [F]

\[ \int (b \cos (c+d x))^{3/2} (A+B \cos (c+d x)) \sec (c+d x) \, dx=\sqrt {b}\, b \left (\left (\int \sqrt {\cos \left (d x +c \right )}\, \cos \left (d x +c \right ) \sec \left (d x +c \right )d x \right ) a +\left (\int \sqrt {\cos \left (d x +c \right )}\, \cos \left (d x +c \right )^{2} \sec \left (d x +c \right )d x \right ) b \right ) \] Input:

int((b*cos(d*x+c))^(3/2)*(A+B*cos(d*x+c))*sec(d*x+c),x)
 

Output:

sqrt(b)*b*(int(sqrt(cos(c + d*x))*cos(c + d*x)*sec(c + d*x),x)*a + int(sqr 
t(cos(c + d*x))*cos(c + d*x)**2*sec(c + d*x),x)*b)