\(\int (b \cos (c+d x))^{5/2} (A+B \cos (c+d x)) \, dx\) [813]

Optimal result
Mathematica [A] (verified)
Rubi [A] (verified)
Maple [A] (verified)
Fricas [C] (verification not implemented)
Sympy [F(-1)]
Maxima [F]
Giac [F]
Mupad [F(-1)]
Reduce [F]

Optimal result

Integrand size = 23, antiderivative size = 171 \[ \int (b \cos (c+d x))^{5/2} (A+B \cos (c+d x)) \, dx=\frac {6 A b^2 \sqrt {b \cos (c+d x)} E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{5 d \sqrt {\cos (c+d x)}}+\frac {10 b^3 B \sqrt {\cos (c+d x)} \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),2\right )}{21 d \sqrt {b \cos (c+d x)}}+\frac {10 b^2 B \sqrt {b \cos (c+d x)} \sin (c+d x)}{21 d}+\frac {2 A b (b \cos (c+d x))^{3/2} \sin (c+d x)}{5 d}+\frac {2 B (b \cos (c+d x))^{5/2} \sin (c+d x)}{7 d} \] Output:

6/5*A*b^2*(b*cos(d*x+c))^(1/2)*EllipticE(sin(1/2*d*x+1/2*c),2^(1/2))/d/cos 
(d*x+c)^(1/2)+10/21*b^3*B*cos(d*x+c)^(1/2)*InverseJacobiAM(1/2*d*x+1/2*c,2 
^(1/2))/d/(b*cos(d*x+c))^(1/2)+10/21*b^2*B*(b*cos(d*x+c))^(1/2)*sin(d*x+c) 
/d+2/5*A*b*(b*cos(d*x+c))^(3/2)*sin(d*x+c)/d+2/7*B*(b*cos(d*x+c))^(5/2)*si 
n(d*x+c)/d
 

Mathematica [A] (verified)

Time = 0.31 (sec) , antiderivative size = 100, normalized size of antiderivative = 0.58 \[ \int (b \cos (c+d x))^{5/2} (A+B \cos (c+d x)) \, dx=\frac {(b \cos (c+d x))^{5/2} \left (252 A E\left (\left .\frac {1}{2} (c+d x)\right |2\right )+100 B \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),2\right )+2 \sqrt {\cos (c+d x)} (65 B+42 A \cos (c+d x)+15 B \cos (2 (c+d x))) \sin (c+d x)\right )}{210 d \cos ^{\frac {5}{2}}(c+d x)} \] Input:

Integrate[(b*Cos[c + d*x])^(5/2)*(A + B*Cos[c + d*x]),x]
 

Output:

((b*Cos[c + d*x])^(5/2)*(252*A*EllipticE[(c + d*x)/2, 2] + 100*B*EllipticF 
[(c + d*x)/2, 2] + 2*Sqrt[Cos[c + d*x]]*(65*B + 42*A*Cos[c + d*x] + 15*B*C 
os[2*(c + d*x)])*Sin[c + d*x]))/(210*d*Cos[c + d*x]^(5/2))
 

Rubi [A] (verified)

Time = 0.68 (sec) , antiderivative size = 182, normalized size of antiderivative = 1.06, number of steps used = 11, number of rules used = 11, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.478, Rules used = {3042, 3227, 3042, 3115, 3042, 3115, 3042, 3121, 3042, 3119, 3120}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int (b \cos (c+d x))^{5/2} (A+B \cos (c+d x)) \, dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \left (b \sin \left (c+d x+\frac {\pi }{2}\right )\right )^{5/2} \left (A+B \sin \left (c+d x+\frac {\pi }{2}\right )\right )dx\)

\(\Big \downarrow \) 3227

\(\displaystyle A \int (b \cos (c+d x))^{5/2}dx+\frac {B \int (b \cos (c+d x))^{7/2}dx}{b}\)

\(\Big \downarrow \) 3042

\(\displaystyle A \int \left (b \sin \left (c+d x+\frac {\pi }{2}\right )\right )^{5/2}dx+\frac {B \int \left (b \sin \left (c+d x+\frac {\pi }{2}\right )\right )^{7/2}dx}{b}\)

\(\Big \downarrow \) 3115

\(\displaystyle A \left (\frac {3}{5} b^2 \int \sqrt {b \cos (c+d x)}dx+\frac {2 b \sin (c+d x) (b \cos (c+d x))^{3/2}}{5 d}\right )+\frac {B \left (\frac {5}{7} b^2 \int (b \cos (c+d x))^{3/2}dx+\frac {2 b \sin (c+d x) (b \cos (c+d x))^{5/2}}{7 d}\right )}{b}\)

\(\Big \downarrow \) 3042

\(\displaystyle A \left (\frac {3}{5} b^2 \int \sqrt {b \sin \left (c+d x+\frac {\pi }{2}\right )}dx+\frac {2 b \sin (c+d x) (b \cos (c+d x))^{3/2}}{5 d}\right )+\frac {B \left (\frac {5}{7} b^2 \int \left (b \sin \left (c+d x+\frac {\pi }{2}\right )\right )^{3/2}dx+\frac {2 b \sin (c+d x) (b \cos (c+d x))^{5/2}}{7 d}\right )}{b}\)

\(\Big \downarrow \) 3115

\(\displaystyle A \left (\frac {3}{5} b^2 \int \sqrt {b \sin \left (c+d x+\frac {\pi }{2}\right )}dx+\frac {2 b \sin (c+d x) (b \cos (c+d x))^{3/2}}{5 d}\right )+\frac {B \left (\frac {5}{7} b^2 \left (\frac {1}{3} b^2 \int \frac {1}{\sqrt {b \cos (c+d x)}}dx+\frac {2 b \sin (c+d x) \sqrt {b \cos (c+d x)}}{3 d}\right )+\frac {2 b \sin (c+d x) (b \cos (c+d x))^{5/2}}{7 d}\right )}{b}\)

\(\Big \downarrow \) 3042

\(\displaystyle A \left (\frac {3}{5} b^2 \int \sqrt {b \sin \left (c+d x+\frac {\pi }{2}\right )}dx+\frac {2 b \sin (c+d x) (b \cos (c+d x))^{3/2}}{5 d}\right )+\frac {B \left (\frac {5}{7} b^2 \left (\frac {1}{3} b^2 \int \frac {1}{\sqrt {b \sin \left (c+d x+\frac {\pi }{2}\right )}}dx+\frac {2 b \sin (c+d x) \sqrt {b \cos (c+d x)}}{3 d}\right )+\frac {2 b \sin (c+d x) (b \cos (c+d x))^{5/2}}{7 d}\right )}{b}\)

\(\Big \downarrow \) 3121

\(\displaystyle A \left (\frac {3 b^2 \sqrt {b \cos (c+d x)} \int \sqrt {\cos (c+d x)}dx}{5 \sqrt {\cos (c+d x)}}+\frac {2 b \sin (c+d x) (b \cos (c+d x))^{3/2}}{5 d}\right )+\frac {B \left (\frac {5}{7} b^2 \left (\frac {b^2 \sqrt {\cos (c+d x)} \int \frac {1}{\sqrt {\cos (c+d x)}}dx}{3 \sqrt {b \cos (c+d x)}}+\frac {2 b \sin (c+d x) \sqrt {b \cos (c+d x)}}{3 d}\right )+\frac {2 b \sin (c+d x) (b \cos (c+d x))^{5/2}}{7 d}\right )}{b}\)

\(\Big \downarrow \) 3042

\(\displaystyle A \left (\frac {3 b^2 \sqrt {b \cos (c+d x)} \int \sqrt {\sin \left (c+d x+\frac {\pi }{2}\right )}dx}{5 \sqrt {\cos (c+d x)}}+\frac {2 b \sin (c+d x) (b \cos (c+d x))^{3/2}}{5 d}\right )+\frac {B \left (\frac {5}{7} b^2 \left (\frac {b^2 \sqrt {\cos (c+d x)} \int \frac {1}{\sqrt {\sin \left (c+d x+\frac {\pi }{2}\right )}}dx}{3 \sqrt {b \cos (c+d x)}}+\frac {2 b \sin (c+d x) \sqrt {b \cos (c+d x)}}{3 d}\right )+\frac {2 b \sin (c+d x) (b \cos (c+d x))^{5/2}}{7 d}\right )}{b}\)

\(\Big \downarrow \) 3119

\(\displaystyle \frac {B \left (\frac {5}{7} b^2 \left (\frac {b^2 \sqrt {\cos (c+d x)} \int \frac {1}{\sqrt {\sin \left (c+d x+\frac {\pi }{2}\right )}}dx}{3 \sqrt {b \cos (c+d x)}}+\frac {2 b \sin (c+d x) \sqrt {b \cos (c+d x)}}{3 d}\right )+\frac {2 b \sin (c+d x) (b \cos (c+d x))^{5/2}}{7 d}\right )}{b}+A \left (\frac {6 b^2 E\left (\left .\frac {1}{2} (c+d x)\right |2\right ) \sqrt {b \cos (c+d x)}}{5 d \sqrt {\cos (c+d x)}}+\frac {2 b \sin (c+d x) (b \cos (c+d x))^{3/2}}{5 d}\right )\)

\(\Big \downarrow \) 3120

\(\displaystyle A \left (\frac {6 b^2 E\left (\left .\frac {1}{2} (c+d x)\right |2\right ) \sqrt {b \cos (c+d x)}}{5 d \sqrt {\cos (c+d x)}}+\frac {2 b \sin (c+d x) (b \cos (c+d x))^{3/2}}{5 d}\right )+\frac {B \left (\frac {5}{7} b^2 \left (\frac {2 b^2 \sqrt {\cos (c+d x)} \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),2\right )}{3 d \sqrt {b \cos (c+d x)}}+\frac {2 b \sin (c+d x) \sqrt {b \cos (c+d x)}}{3 d}\right )+\frac {2 b \sin (c+d x) (b \cos (c+d x))^{5/2}}{7 d}\right )}{b}\)

Input:

Int[(b*Cos[c + d*x])^(5/2)*(A + B*Cos[c + d*x]),x]
 

Output:

A*((6*b^2*Sqrt[b*Cos[c + d*x]]*EllipticE[(c + d*x)/2, 2])/(5*d*Sqrt[Cos[c 
+ d*x]]) + (2*b*(b*Cos[c + d*x])^(3/2)*Sin[c + d*x])/(5*d)) + (B*((2*b*(b* 
Cos[c + d*x])^(5/2)*Sin[c + d*x])/(7*d) + (5*b^2*((2*b^2*Sqrt[Cos[c + d*x] 
]*EllipticF[(c + d*x)/2, 2])/(3*d*Sqrt[b*Cos[c + d*x]]) + (2*b*Sqrt[b*Cos[ 
c + d*x]]*Sin[c + d*x])/(3*d)))/7))/b
 

Defintions of rubi rules used

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 3115
Int[((b_.)*sin[(c_.) + (d_.)*(x_)])^(n_), x_Symbol] :> Simp[(-b)*Cos[c + d* 
x]*((b*Sin[c + d*x])^(n - 1)/(d*n)), x] + Simp[b^2*((n - 1)/n)   Int[(b*Sin 
[c + d*x])^(n - 2), x], x] /; FreeQ[{b, c, d}, x] && GtQ[n, 1] && IntegerQ[ 
2*n]
 

rule 3119
Int[Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2/d)*EllipticE[(1/2)* 
(c - Pi/2 + d*x), 2], x] /; FreeQ[{c, d}, x]
 

rule 3120
Int[1/Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2/d)*EllipticF[(1/2 
)*(c - Pi/2 + d*x), 2], x] /; FreeQ[{c, d}, x]
 

rule 3121
Int[((b_)*sin[(c_.) + (d_.)*(x_)])^(n_), x_Symbol] :> Simp[(b*Sin[c + d*x]) 
^n/Sin[c + d*x]^n   Int[Sin[c + d*x]^n, x], x] /; FreeQ[{b, c, d}, x] && Lt 
Q[-1, n, 1] && IntegerQ[2*n]
 

rule 3227
Int[((b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((c_) + (d_.)*sin[(e_.) + (f_.)*(x 
_)]), x_Symbol] :> Simp[c   Int[(b*Sin[e + f*x])^m, x], x] + Simp[d/b   Int 
[(b*Sin[e + f*x])^(m + 1), x], x] /; FreeQ[{b, c, d, e, f, m}, x]
 
Maple [A] (verified)

Time = 16.67 (sec) , antiderivative size = 301, normalized size of antiderivative = 1.76

method result size
default \(-\frac {2 \sqrt {\left (2 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-1\right ) b \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}}\, b^{3} \left (240 B \cos \left (\frac {d x}{2}+\frac {c}{2}\right ) \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{8}+\left (-168 A -360 B \right ) \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{6} \cos \left (\frac {d x}{2}+\frac {c}{2}\right )+\left (168 A +280 B \right ) \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{4} \cos \left (\frac {d x}{2}+\frac {c}{2}\right )+\left (-42 A -80 B \right ) \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2} \cos \left (\frac {d x}{2}+\frac {c}{2}\right )-63 A \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {2 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-1}\, \operatorname {EllipticE}\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right )+25 B \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {2 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-1}\, \operatorname {EllipticF}\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right )\right )}{105 \sqrt {-b \left (2 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{4}-\sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}\right )}\, \sin \left (\frac {d x}{2}+\frac {c}{2}\right ) \sqrt {\left (2 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-1\right ) b}\, d}\) \(301\)
parts \(-\frac {2 A \sqrt {\left (2 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-1\right ) b \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}}\, b^{3} \left (-8 \cos \left (\frac {d x}{2}+\frac {c}{2}\right ) \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{6}+8 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{4} \cos \left (\frac {d x}{2}+\frac {c}{2}\right )-2 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2} \cos \left (\frac {d x}{2}+\frac {c}{2}\right )-3 \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {2 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-1}\, \operatorname {EllipticE}\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right )\right )}{5 \sqrt {-b \left (2 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{4}-\sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}\right )}\, \sin \left (\frac {d x}{2}+\frac {c}{2}\right ) \sqrt {\left (2 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-1\right ) b}\, d}-\frac {2 B \sqrt {\left (2 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-1\right ) b \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}}\, b^{3} \left (48 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{9}-120 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{7}+128 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{5}-72 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{3}+5 \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {-2 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}+1}\, \operatorname {EllipticF}\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right )+16 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{21 \sqrt {-b \left (2 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{4}-\sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}\right )}\, \sin \left (\frac {d x}{2}+\frac {c}{2}\right ) \sqrt {\left (2 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-1\right ) b}\, d}\) \(425\)

Input:

int((cos(d*x+c)*b)^(5/2)*(A+B*cos(d*x+c)),x,method=_RETURNVERBOSE)
 

Output:

-2/105*((2*cos(1/2*d*x+1/2*c)^2-1)*b*sin(1/2*d*x+1/2*c)^2)^(1/2)*b^3*(240* 
B*cos(1/2*d*x+1/2*c)*sin(1/2*d*x+1/2*c)^8+(-168*A-360*B)*sin(1/2*d*x+1/2*c 
)^6*cos(1/2*d*x+1/2*c)+(168*A+280*B)*sin(1/2*d*x+1/2*c)^4*cos(1/2*d*x+1/2* 
c)+(-42*A-80*B)*sin(1/2*d*x+1/2*c)^2*cos(1/2*d*x+1/2*c)-63*A*(sin(1/2*d*x+ 
1/2*c)^2)^(1/2)*(2*sin(1/2*d*x+1/2*c)^2-1)^(1/2)*EllipticE(cos(1/2*d*x+1/2 
*c),2^(1/2))+25*B*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(2*sin(1/2*d*x+1/2*c)^2-1)^ 
(1/2)*EllipticF(cos(1/2*d*x+1/2*c),2^(1/2)))/(-b*(2*sin(1/2*d*x+1/2*c)^4-s 
in(1/2*d*x+1/2*c)^2))^(1/2)/sin(1/2*d*x+1/2*c)/((2*cos(1/2*d*x+1/2*c)^2-1) 
*b)^(1/2)/d
 

Fricas [C] (verification not implemented)

Result contains complex when optimal does not.

Time = 0.09 (sec) , antiderivative size = 171, normalized size of antiderivative = 1.00 \[ \int (b \cos (c+d x))^{5/2} (A+B \cos (c+d x)) \, dx=-\frac {2 \, {\left (25 i \, \sqrt {\frac {1}{2}} B b^{\frac {5}{2}} {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) + i \, \sin \left (d x + c\right )\right ) - 25 i \, \sqrt {\frac {1}{2}} B b^{\frac {5}{2}} {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) - i \, \sin \left (d x + c\right )\right ) - 63 i \, \sqrt {\frac {1}{2}} A b^{\frac {5}{2}} {\rm weierstrassZeta}\left (-4, 0, {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) + i \, \sin \left (d x + c\right )\right )\right ) + 63 i \, \sqrt {\frac {1}{2}} A b^{\frac {5}{2}} {\rm weierstrassZeta}\left (-4, 0, {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) - i \, \sin \left (d x + c\right )\right )\right ) - {\left (15 \, B b^{2} \cos \left (d x + c\right )^{2} + 21 \, A b^{2} \cos \left (d x + c\right ) + 25 \, B b^{2}\right )} \sqrt {b \cos \left (d x + c\right )} \sin \left (d x + c\right )\right )}}{105 \, d} \] Input:

integrate((b*cos(d*x+c))^(5/2)*(A+B*cos(d*x+c)),x, algorithm="fricas")
 

Output:

-2/105*(25*I*sqrt(1/2)*B*b^(5/2)*weierstrassPInverse(-4, 0, cos(d*x + c) + 
 I*sin(d*x + c)) - 25*I*sqrt(1/2)*B*b^(5/2)*weierstrassPInverse(-4, 0, cos 
(d*x + c) - I*sin(d*x + c)) - 63*I*sqrt(1/2)*A*b^(5/2)*weierstrassZeta(-4, 
 0, weierstrassPInverse(-4, 0, cos(d*x + c) + I*sin(d*x + c))) + 63*I*sqrt 
(1/2)*A*b^(5/2)*weierstrassZeta(-4, 0, weierstrassPInverse(-4, 0, cos(d*x 
+ c) - I*sin(d*x + c))) - (15*B*b^2*cos(d*x + c)^2 + 21*A*b^2*cos(d*x + c) 
 + 25*B*b^2)*sqrt(b*cos(d*x + c))*sin(d*x + c))/d
 

Sympy [F(-1)]

Timed out. \[ \int (b \cos (c+d x))^{5/2} (A+B \cos (c+d x)) \, dx=\text {Timed out} \] Input:

integrate((b*cos(d*x+c))**(5/2)*(A+B*cos(d*x+c)),x)
 

Output:

Timed out
 

Maxima [F]

\[ \int (b \cos (c+d x))^{5/2} (A+B \cos (c+d x)) \, dx=\int { {\left (B \cos \left (d x + c\right ) + A\right )} \left (b \cos \left (d x + c\right )\right )^{\frac {5}{2}} \,d x } \] Input:

integrate((b*cos(d*x+c))^(5/2)*(A+B*cos(d*x+c)),x, algorithm="maxima")
 

Output:

integrate((B*cos(d*x + c) + A)*(b*cos(d*x + c))^(5/2), x)
 

Giac [F]

\[ \int (b \cos (c+d x))^{5/2} (A+B \cos (c+d x)) \, dx=\int { {\left (B \cos \left (d x + c\right ) + A\right )} \left (b \cos \left (d x + c\right )\right )^{\frac {5}{2}} \,d x } \] Input:

integrate((b*cos(d*x+c))^(5/2)*(A+B*cos(d*x+c)),x, algorithm="giac")
 

Output:

integrate((B*cos(d*x + c) + A)*(b*cos(d*x + c))^(5/2), x)
 

Mupad [F(-1)]

Timed out. \[ \int (b \cos (c+d x))^{5/2} (A+B \cos (c+d x)) \, dx=\int {\left (b\,\cos \left (c+d\,x\right )\right )}^{5/2}\,\left (A+B\,\cos \left (c+d\,x\right )\right ) \,d x \] Input:

int((b*cos(c + d*x))^(5/2)*(A + B*cos(c + d*x)),x)
 

Output:

int((b*cos(c + d*x))^(5/2)*(A + B*cos(c + d*x)), x)
                                                                                    
                                                                                    
 

Reduce [F]

\[ \int (b \cos (c+d x))^{5/2} (A+B \cos (c+d x)) \, dx=\sqrt {b}\, b^{2} \left (\left (\int \sqrt {\cos \left (d x +c \right )}\, \cos \left (d x +c \right )^{3}d x \right ) b +\left (\int \sqrt {\cos \left (d x +c \right )}\, \cos \left (d x +c \right )^{2}d x \right ) a \right ) \] Input:

int((b*cos(d*x+c))^(5/2)*(A+B*cos(d*x+c)),x)
 

Output:

sqrt(b)*b**2*(int(sqrt(cos(c + d*x))*cos(c + d*x)**3,x)*b + int(sqrt(cos(c 
 + d*x))*cos(c + d*x)**2,x)*a)