\(\int (b \cos (c+d x))^{5/2} (A+B \cos (c+d x)) \sec ^3(c+d x) \, dx\) [816]

Optimal result
Mathematica [A] (verified)
Rubi [A] (verified)
Maple [B] (verified)
Fricas [C] (verification not implemented)
Sympy [F(-1)]
Maxima [F]
Giac [F]
Mupad [F(-1)]
Reduce [F]

Optimal result

Integrand size = 31, antiderivative size = 85 \[ \int (b \cos (c+d x))^{5/2} (A+B \cos (c+d x)) \sec ^3(c+d x) \, dx=\frac {2 b^2 B \sqrt {b \cos (c+d x)} E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{d \sqrt {\cos (c+d x)}}+\frac {2 A b^3 \sqrt {\cos (c+d x)} \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),2\right )}{d \sqrt {b \cos (c+d x)}} \] Output:

2*b^2*B*(b*cos(d*x+c))^(1/2)*EllipticE(sin(1/2*d*x+1/2*c),2^(1/2))/d/cos(d 
*x+c)^(1/2)+2*A*b^3*cos(d*x+c)^(1/2)*InverseJacobiAM(1/2*d*x+1/2*c,2^(1/2) 
)/d/(b*cos(d*x+c))^(1/2)
 

Mathematica [A] (verified)

Time = 0.42 (sec) , antiderivative size = 54, normalized size of antiderivative = 0.64 \[ \int (b \cos (c+d x))^{5/2} (A+B \cos (c+d x)) \sec ^3(c+d x) \, dx=\frac {2 (b \cos (c+d x))^{5/2} \left (B E\left (\left .\frac {1}{2} (c+d x)\right |2\right )+A \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),2\right )\right )}{d \cos ^{\frac {5}{2}}(c+d x)} \] Input:

Integrate[(b*Cos[c + d*x])^(5/2)*(A + B*Cos[c + d*x])*Sec[c + d*x]^3,x]
 

Output:

(2*(b*Cos[c + d*x])^(5/2)*(B*EllipticE[(c + d*x)/2, 2] + A*EllipticF[(c + 
d*x)/2, 2]))/(d*Cos[c + d*x]^(5/2))
 

Rubi [A] (verified)

Time = 0.44 (sec) , antiderivative size = 86, normalized size of antiderivative = 1.01, number of steps used = 8, number of rules used = 8, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.258, Rules used = {3042, 2030, 3227, 3042, 3121, 3042, 3119, 3120}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \sec ^3(c+d x) (b \cos (c+d x))^{5/2} (A+B \cos (c+d x)) \, dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \frac {\left (b \sin \left (c+d x+\frac {\pi }{2}\right )\right )^{5/2} \left (A+B \sin \left (c+d x+\frac {\pi }{2}\right )\right )}{\sin \left (c+d x+\frac {\pi }{2}\right )^3}dx\)

\(\Big \downarrow \) 2030

\(\displaystyle b^3 \int \frac {A+B \sin \left (\frac {1}{2} (2 c+\pi )+d x\right )}{\sqrt {b \sin \left (\frac {1}{2} (2 c+\pi )+d x\right )}}dx\)

\(\Big \downarrow \) 3227

\(\displaystyle b^3 \left (A \int \frac {1}{\sqrt {b \cos (c+d x)}}dx+\frac {B \int \sqrt {b \cos (c+d x)}dx}{b}\right )\)

\(\Big \downarrow \) 3042

\(\displaystyle b^3 \left (A \int \frac {1}{\sqrt {b \sin \left (c+d x+\frac {\pi }{2}\right )}}dx+\frac {B \int \sqrt {b \sin \left (c+d x+\frac {\pi }{2}\right )}dx}{b}\right )\)

\(\Big \downarrow \) 3121

\(\displaystyle b^3 \left (\frac {A \sqrt {\cos (c+d x)} \int \frac {1}{\sqrt {\cos (c+d x)}}dx}{\sqrt {b \cos (c+d x)}}+\frac {B \sqrt {b \cos (c+d x)} \int \sqrt {\cos (c+d x)}dx}{b \sqrt {\cos (c+d x)}}\right )\)

\(\Big \downarrow \) 3042

\(\displaystyle b^3 \left (\frac {A \sqrt {\cos (c+d x)} \int \frac {1}{\sqrt {\sin \left (c+d x+\frac {\pi }{2}\right )}}dx}{\sqrt {b \cos (c+d x)}}+\frac {B \sqrt {b \cos (c+d x)} \int \sqrt {\sin \left (c+d x+\frac {\pi }{2}\right )}dx}{b \sqrt {\cos (c+d x)}}\right )\)

\(\Big \downarrow \) 3119

\(\displaystyle b^3 \left (\frac {A \sqrt {\cos (c+d x)} \int \frac {1}{\sqrt {\sin \left (c+d x+\frac {\pi }{2}\right )}}dx}{\sqrt {b \cos (c+d x)}}+\frac {2 B E\left (\left .\frac {1}{2} (c+d x)\right |2\right ) \sqrt {b \cos (c+d x)}}{b d \sqrt {\cos (c+d x)}}\right )\)

\(\Big \downarrow \) 3120

\(\displaystyle b^3 \left (\frac {2 A \sqrt {\cos (c+d x)} \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),2\right )}{d \sqrt {b \cos (c+d x)}}+\frac {2 B E\left (\left .\frac {1}{2} (c+d x)\right |2\right ) \sqrt {b \cos (c+d x)}}{b d \sqrt {\cos (c+d x)}}\right )\)

Input:

Int[(b*Cos[c + d*x])^(5/2)*(A + B*Cos[c + d*x])*Sec[c + d*x]^3,x]
 

Output:

b^3*((2*B*Sqrt[b*Cos[c + d*x]]*EllipticE[(c + d*x)/2, 2])/(b*d*Sqrt[Cos[c 
+ d*x]]) + (2*A*Sqrt[Cos[c + d*x]]*EllipticF[(c + d*x)/2, 2])/(d*Sqrt[b*Co 
s[c + d*x]]))
 

Defintions of rubi rules used

rule 2030
Int[(Fx_.)*(v_)^(m_.)*((b_)*(v_))^(n_), x_Symbol] :> Simp[1/b^m   Int[(b*v) 
^(m + n)*Fx, x], x] /; FreeQ[{b, n}, x] && IntegerQ[m]
 

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 3119
Int[Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2/d)*EllipticE[(1/2)* 
(c - Pi/2 + d*x), 2], x] /; FreeQ[{c, d}, x]
 

rule 3120
Int[1/Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2/d)*EllipticF[(1/2 
)*(c - Pi/2 + d*x), 2], x] /; FreeQ[{c, d}, x]
 

rule 3121
Int[((b_)*sin[(c_.) + (d_.)*(x_)])^(n_), x_Symbol] :> Simp[(b*Sin[c + d*x]) 
^n/Sin[c + d*x]^n   Int[Sin[c + d*x]^n, x], x] /; FreeQ[{b, c, d}, x] && Lt 
Q[-1, n, 1] && IntegerQ[2*n]
 

rule 3227
Int[((b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((c_) + (d_.)*sin[(e_.) + (f_.)*(x 
_)]), x_Symbol] :> Simp[c   Int[(b*Sin[e + f*x])^m, x], x] + Simp[d/b   Int 
[(b*Sin[e + f*x])^(m + 1), x], x] /; FreeQ[{b, c, d, e, f, m}, x]
 
Maple [B] (verified)

Leaf count of result is larger than twice the leaf count of optimal. \(162\) vs. \(2(80)=160\).

Time = 109.00 (sec) , antiderivative size = 163, normalized size of antiderivative = 1.92

method result size
default \(-\frac {2 \sqrt {\left (2 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-1\right ) b \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}}\, b^{3} \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {-2 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}+1}\, \left (A \operatorname {EllipticF}\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right )-B \operatorname {EllipticE}\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right )\right )}{\sqrt {-b \left (2 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{4}-\sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}\right )}\, \sin \left (\frac {d x}{2}+\frac {c}{2}\right ) \sqrt {\left (2 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-1\right ) b}\, d}\) \(163\)
parts \(-\frac {2 A \sqrt {\left (2 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-1\right ) b \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}}\, b^{3} \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {-2 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}+1}\, \operatorname {EllipticF}\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right )}{\sqrt {-b \left (2 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{4}-\sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}\right )}\, \sin \left (\frac {d x}{2}+\frac {c}{2}\right ) \sqrt {\left (2 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-1\right ) b}\, d}+\frac {2 B \sqrt {\left (2 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-1\right ) b \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}}\, b^{3} \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {-2 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}+1}\, \operatorname {EllipticE}\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right )}{\sqrt {-b \left (2 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{4}-\sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}\right )}\, \sin \left (\frac {d x}{2}+\frac {c}{2}\right ) \sqrt {\left (2 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-1\right ) b}\, d}\) \(290\)
risch \(-\frac {i B \,b^{2} \sqrt {2}\, \sqrt {\left ({\mathrm e}^{2 i \left (d x +c \right )}+1\right ) b \,{\mathrm e}^{-i \left (d x +c \right )}}}{d}-\frac {i \left (\frac {i A \sqrt {-i \left ({\mathrm e}^{i \left (d x +c \right )}+i\right )}\, \sqrt {2}\, \sqrt {i \left ({\mathrm e}^{i \left (d x +c \right )}-i\right )}\, \sqrt {i {\mathrm e}^{i \left (d x +c \right )}}\, \operatorname {EllipticF}\left (\sqrt {-i \left ({\mathrm e}^{i \left (d x +c \right )}+i\right )}, \frac {\sqrt {2}}{2}\right )}{\sqrt {b \,{\mathrm e}^{3 i \left (d x +c \right )}+{\mathrm e}^{i \left (d x +c \right )} b}}+B \left (-\frac {2 \left (b \,{\mathrm e}^{2 i \left (d x +c \right )}+b \right )}{b \sqrt {{\mathrm e}^{i \left (d x +c \right )} \left (b \,{\mathrm e}^{2 i \left (d x +c \right )}+b \right )}}+\frac {i \sqrt {-i \left ({\mathrm e}^{i \left (d x +c \right )}+i\right )}\, \sqrt {2}\, \sqrt {i \left ({\mathrm e}^{i \left (d x +c \right )}-i\right )}\, \sqrt {i {\mathrm e}^{i \left (d x +c \right )}}\, \left (-2 i \operatorname {EllipticE}\left (\sqrt {-i \left ({\mathrm e}^{i \left (d x +c \right )}+i\right )}, \frac {\sqrt {2}}{2}\right )+i \operatorname {EllipticF}\left (\sqrt {-i \left ({\mathrm e}^{i \left (d x +c \right )}+i\right )}, \frac {\sqrt {2}}{2}\right )\right )}{\sqrt {b \,{\mathrm e}^{3 i \left (d x +c \right )}+{\mathrm e}^{i \left (d x +c \right )} b}}\right )\right ) b^{2} \sqrt {2}\, \sqrt {\left ({\mathrm e}^{2 i \left (d x +c \right )}+1\right ) b \,{\mathrm e}^{-i \left (d x +c \right )}}\, \sqrt {\left ({\mathrm e}^{2 i \left (d x +c \right )}+1\right ) b \,{\mathrm e}^{i \left (d x +c \right )}}}{d \left ({\mathrm e}^{2 i \left (d x +c \right )}+1\right )}\) \(414\)

Input:

int((cos(d*x+c)*b)^(5/2)*(A+B*cos(d*x+c))*sec(d*x+c)^3,x,method=_RETURNVER 
BOSE)
 

Output:

-2*((2*cos(1/2*d*x+1/2*c)^2-1)*b*sin(1/2*d*x+1/2*c)^2)^(1/2)*b^3*(sin(1/2* 
d*x+1/2*c)^2)^(1/2)*(-2*cos(1/2*d*x+1/2*c)^2+1)^(1/2)*(A*EllipticF(cos(1/2 
*d*x+1/2*c),2^(1/2))-B*EllipticE(cos(1/2*d*x+1/2*c),2^(1/2)))/(-b*(2*sin(1 
/2*d*x+1/2*c)^4-sin(1/2*d*x+1/2*c)^2))^(1/2)/sin(1/2*d*x+1/2*c)/((2*cos(1/ 
2*d*x+1/2*c)^2-1)*b)^(1/2)/d
 

Fricas [C] (verification not implemented)

Result contains complex when optimal does not.

Time = 0.09 (sec) , antiderivative size = 120, normalized size of antiderivative = 1.41 \[ \int (b \cos (c+d x))^{5/2} (A+B \cos (c+d x)) \sec ^3(c+d x) \, dx=-\frac {2 \, {\left (i \, \sqrt {\frac {1}{2}} A b^{\frac {5}{2}} {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) + i \, \sin \left (d x + c\right )\right ) - i \, \sqrt {\frac {1}{2}} A b^{\frac {5}{2}} {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) - i \, \sin \left (d x + c\right )\right ) - i \, \sqrt {\frac {1}{2}} B b^{\frac {5}{2}} {\rm weierstrassZeta}\left (-4, 0, {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) + i \, \sin \left (d x + c\right )\right )\right ) + i \, \sqrt {\frac {1}{2}} B b^{\frac {5}{2}} {\rm weierstrassZeta}\left (-4, 0, {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) - i \, \sin \left (d x + c\right )\right )\right )\right )}}{d} \] Input:

integrate((b*cos(d*x+c))^(5/2)*(A+B*cos(d*x+c))*sec(d*x+c)^3,x, algorithm= 
"fricas")
 

Output:

-2*(I*sqrt(1/2)*A*b^(5/2)*weierstrassPInverse(-4, 0, cos(d*x + c) + I*sin( 
d*x + c)) - I*sqrt(1/2)*A*b^(5/2)*weierstrassPInverse(-4, 0, cos(d*x + c) 
- I*sin(d*x + c)) - I*sqrt(1/2)*B*b^(5/2)*weierstrassZeta(-4, 0, weierstra 
ssPInverse(-4, 0, cos(d*x + c) + I*sin(d*x + c))) + I*sqrt(1/2)*B*b^(5/2)* 
weierstrassZeta(-4, 0, weierstrassPInverse(-4, 0, cos(d*x + c) - I*sin(d*x 
 + c))))/d
 

Sympy [F(-1)]

Timed out. \[ \int (b \cos (c+d x))^{5/2} (A+B \cos (c+d x)) \sec ^3(c+d x) \, dx=\text {Timed out} \] Input:

integrate((b*cos(d*x+c))**(5/2)*(A+B*cos(d*x+c))*sec(d*x+c)**3,x)
 

Output:

Timed out
 

Maxima [F]

\[ \int (b \cos (c+d x))^{5/2} (A+B \cos (c+d x)) \sec ^3(c+d x) \, dx=\int { {\left (B \cos \left (d x + c\right ) + A\right )} \left (b \cos \left (d x + c\right )\right )^{\frac {5}{2}} \sec \left (d x + c\right )^{3} \,d x } \] Input:

integrate((b*cos(d*x+c))^(5/2)*(A+B*cos(d*x+c))*sec(d*x+c)^3,x, algorithm= 
"maxima")
                                                                                    
                                                                                    
 

Output:

integrate((B*cos(d*x + c) + A)*(b*cos(d*x + c))^(5/2)*sec(d*x + c)^3, x)
 

Giac [F]

\[ \int (b \cos (c+d x))^{5/2} (A+B \cos (c+d x)) \sec ^3(c+d x) \, dx=\int { {\left (B \cos \left (d x + c\right ) + A\right )} \left (b \cos \left (d x + c\right )\right )^{\frac {5}{2}} \sec \left (d x + c\right )^{3} \,d x } \] Input:

integrate((b*cos(d*x+c))^(5/2)*(A+B*cos(d*x+c))*sec(d*x+c)^3,x, algorithm= 
"giac")
 

Output:

integrate((B*cos(d*x + c) + A)*(b*cos(d*x + c))^(5/2)*sec(d*x + c)^3, x)
 

Mupad [F(-1)]

Timed out. \[ \int (b \cos (c+d x))^{5/2} (A+B \cos (c+d x)) \sec ^3(c+d x) \, dx=\int \frac {{\left (b\,\cos \left (c+d\,x\right )\right )}^{5/2}\,\left (A+B\,\cos \left (c+d\,x\right )\right )}{{\cos \left (c+d\,x\right )}^3} \,d x \] Input:

int(((b*cos(c + d*x))^(5/2)*(A + B*cos(c + d*x)))/cos(c + d*x)^3,x)
 

Output:

int(((b*cos(c + d*x))^(5/2)*(A + B*cos(c + d*x)))/cos(c + d*x)^3, x)
 

Reduce [F]

\[ \int (b \cos (c+d x))^{5/2} (A+B \cos (c+d x)) \sec ^3(c+d x) \, dx=\sqrt {b}\, b^{2} \left (\left (\int \sqrt {\cos \left (d x +c \right )}\, \cos \left (d x +c \right )^{3} \sec \left (d x +c \right )^{3}d x \right ) b +\left (\int \sqrt {\cos \left (d x +c \right )}\, \cos \left (d x +c \right )^{2} \sec \left (d x +c \right )^{3}d x \right ) a \right ) \] Input:

int((b*cos(d*x+c))^(5/2)*(A+B*cos(d*x+c))*sec(d*x+c)^3,x)
 

Output:

sqrt(b)*b**2*(int(sqrt(cos(c + d*x))*cos(c + d*x)**3*sec(c + d*x)**3,x)*b 
+ int(sqrt(cos(c + d*x))*cos(c + d*x)**2*sec(c + d*x)**3,x)*a)