\(\int \frac {\sqrt {b \cos (c+d x)} (A+B \cos (c+d x))}{\cos ^{\frac {7}{2}}(c+d x)} \, dx\) [848]

Optimal result
Mathematica [A] (verified)
Rubi [A] (verified)
Maple [A] (verified)
Fricas [A] (verification not implemented)
Sympy [F(-1)]
Maxima [B] (verification not implemented)
Giac [A] (verification not implemented)
Mupad [F(-1)]
Reduce [B] (verification not implemented)

Optimal result

Integrand size = 33, antiderivative size = 107 \[ \int \frac {\sqrt {b \cos (c+d x)} (A+B \cos (c+d x))}{\cos ^{\frac {7}{2}}(c+d x)} \, dx=\frac {A \text {arctanh}(\sin (c+d x)) \sqrt {b \cos (c+d x)}}{2 d \sqrt {\cos (c+d x)}}+\frac {A \sqrt {b \cos (c+d x)} \sin (c+d x)}{2 d \cos ^{\frac {5}{2}}(c+d x)}+\frac {B \sqrt {b \cos (c+d x)} \sin (c+d x)}{d \cos ^{\frac {3}{2}}(c+d x)} \] Output:

1/2*A*arctanh(sin(d*x+c))*(b*cos(d*x+c))^(1/2)/d/cos(d*x+c)^(1/2)+1/2*A*(b 
*cos(d*x+c))^(1/2)*sin(d*x+c)/d/cos(d*x+c)^(5/2)+B*(b*cos(d*x+c))^(1/2)*si 
n(d*x+c)/d/cos(d*x+c)^(3/2)
                                                                                    
                                                                                    
 

Mathematica [A] (verified)

Time = 0.11 (sec) , antiderivative size = 65, normalized size of antiderivative = 0.61 \[ \int \frac {\sqrt {b \cos (c+d x)} (A+B \cos (c+d x))}{\cos ^{\frac {7}{2}}(c+d x)} \, dx=\frac {\sqrt {b \cos (c+d x)} \left (A \text {arctanh}(\sin (c+d x)) \cos ^2(c+d x)+(A+2 B \cos (c+d x)) \sin (c+d x)\right )}{2 d \cos ^{\frac {5}{2}}(c+d x)} \] Input:

Integrate[(Sqrt[b*Cos[c + d*x]]*(A + B*Cos[c + d*x]))/Cos[c + d*x]^(7/2),x 
]
 

Output:

(Sqrt[b*Cos[c + d*x]]*(A*ArcTanh[Sin[c + d*x]]*Cos[c + d*x]^2 + (A + 2*B*C 
os[c + d*x])*Sin[c + d*x]))/(2*d*Cos[c + d*x]^(5/2))
 

Rubi [A] (verified)

Time = 0.44 (sec) , antiderivative size = 71, normalized size of antiderivative = 0.66, number of steps used = 10, number of rules used = 9, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.273, Rules used = {2031, 3042, 3227, 3042, 4254, 24, 4255, 3042, 4257}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {\sqrt {b \cos (c+d x)} (A+B \cos (c+d x))}{\cos ^{\frac {7}{2}}(c+d x)} \, dx\)

\(\Big \downarrow \) 2031

\(\displaystyle \frac {\sqrt {b \cos (c+d x)} \int (A+B \cos (c+d x)) \sec ^3(c+d x)dx}{\sqrt {\cos (c+d x)}}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {\sqrt {b \cos (c+d x)} \int \frac {A+B \sin \left (c+d x+\frac {\pi }{2}\right )}{\sin \left (c+d x+\frac {\pi }{2}\right )^3}dx}{\sqrt {\cos (c+d x)}}\)

\(\Big \downarrow \) 3227

\(\displaystyle \frac {\sqrt {b \cos (c+d x)} \left (A \int \sec ^3(c+d x)dx+B \int \sec ^2(c+d x)dx\right )}{\sqrt {\cos (c+d x)}}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {\sqrt {b \cos (c+d x)} \left (A \int \csc \left (c+d x+\frac {\pi }{2}\right )^3dx+B \int \csc \left (c+d x+\frac {\pi }{2}\right )^2dx\right )}{\sqrt {\cos (c+d x)}}\)

\(\Big \downarrow \) 4254

\(\displaystyle \frac {\sqrt {b \cos (c+d x)} \left (A \int \csc \left (c+d x+\frac {\pi }{2}\right )^3dx-\frac {B \int 1d(-\tan (c+d x))}{d}\right )}{\sqrt {\cos (c+d x)}}\)

\(\Big \downarrow \) 24

\(\displaystyle \frac {\sqrt {b \cos (c+d x)} \left (A \int \csc \left (c+d x+\frac {\pi }{2}\right )^3dx+\frac {B \tan (c+d x)}{d}\right )}{\sqrt {\cos (c+d x)}}\)

\(\Big \downarrow \) 4255

\(\displaystyle \frac {\sqrt {b \cos (c+d x)} \left (A \left (\frac {1}{2} \int \sec (c+d x)dx+\frac {\tan (c+d x) \sec (c+d x)}{2 d}\right )+\frac {B \tan (c+d x)}{d}\right )}{\sqrt {\cos (c+d x)}}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {\sqrt {b \cos (c+d x)} \left (A \left (\frac {1}{2} \int \csc \left (c+d x+\frac {\pi }{2}\right )dx+\frac {\tan (c+d x) \sec (c+d x)}{2 d}\right )+\frac {B \tan (c+d x)}{d}\right )}{\sqrt {\cos (c+d x)}}\)

\(\Big \downarrow \) 4257

\(\displaystyle \frac {\sqrt {b \cos (c+d x)} \left (A \left (\frac {\text {arctanh}(\sin (c+d x))}{2 d}+\frac {\tan (c+d x) \sec (c+d x)}{2 d}\right )+\frac {B \tan (c+d x)}{d}\right )}{\sqrt {\cos (c+d x)}}\)

Input:

Int[(Sqrt[b*Cos[c + d*x]]*(A + B*Cos[c + d*x]))/Cos[c + d*x]^(7/2),x]
 

Output:

(Sqrt[b*Cos[c + d*x]]*((B*Tan[c + d*x])/d + A*(ArcTanh[Sin[c + d*x]]/(2*d) 
 + (Sec[c + d*x]*Tan[c + d*x])/(2*d))))/Sqrt[Cos[c + d*x]]
 

Defintions of rubi rules used

rule 24
Int[a_, x_Symbol] :> Simp[a*x, x] /; FreeQ[a, x]
 

rule 2031
Int[(Fx_.)*((a_.)*(v_))^(m_)*((b_.)*(v_))^(n_), x_Symbol] :> Simp[a^(m + 1/ 
2)*b^(n - 1/2)*(Sqrt[b*v]/Sqrt[a*v])   Int[v^(m + n)*Fx, x], x] /; FreeQ[{a 
, b, m}, x] &&  !IntegerQ[m] && IGtQ[n + 1/2, 0] && IntegerQ[m + n]
 

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 3227
Int[((b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((c_) + (d_.)*sin[(e_.) + (f_.)*(x 
_)]), x_Symbol] :> Simp[c   Int[(b*Sin[e + f*x])^m, x], x] + Simp[d/b   Int 
[(b*Sin[e + f*x])^(m + 1), x], x] /; FreeQ[{b, c, d, e, f, m}, x]
 

rule 4254
Int[csc[(c_.) + (d_.)*(x_)]^(n_), x_Symbol] :> Simp[-d^(-1)   Subst[Int[Exp 
andIntegrand[(1 + x^2)^(n/2 - 1), x], x], x, Cot[c + d*x]], x] /; FreeQ[{c, 
 d}, x] && IGtQ[n/2, 0]
 

rule 4255
Int[(csc[(c_.) + (d_.)*(x_)]*(b_.))^(n_), x_Symbol] :> Simp[(-b)*Cos[c + d* 
x]*((b*Csc[c + d*x])^(n - 1)/(d*(n - 1))), x] + Simp[b^2*((n - 2)/(n - 1)) 
  Int[(b*Csc[c + d*x])^(n - 2), x], x] /; FreeQ[{b, c, d}, x] && GtQ[n, 1] 
&& IntegerQ[2*n]
 

rule 4257
Int[csc[(c_.) + (d_.)*(x_)], x_Symbol] :> Simp[-ArcTanh[Cos[c + d*x]]/d, x] 
 /; FreeQ[{c, d}, x]
 
Maple [A] (verified)

Time = 8.96 (sec) , antiderivative size = 104, normalized size of antiderivative = 0.97

method result size
default \(-\frac {\left (A \cos \left (d x +c \right )^{2} \ln \left (-\cot \left (d x +c \right )+\csc \left (d x +c \right )-1\right )-A \cos \left (d x +c \right )^{2} \ln \left (-\cot \left (d x +c \right )+\csc \left (d x +c \right )+1\right )-2 B \cos \left (d x +c \right ) \sin \left (d x +c \right )-A \sin \left (d x +c \right )\right ) \sqrt {\cos \left (d x +c \right ) b}}{2 d \cos \left (d x +c \right )^{\frac {5}{2}}}\) \(104\)
parts \(\frac {B \sqrt {\cos \left (d x +c \right ) b}\, \sin \left (d x +c \right )}{d \cos \left (d x +c \right )^{\frac {3}{2}}}+\frac {A \left (\cos \left (d x +c \right )^{2} \ln \left (-\cot \left (d x +c \right )+\csc \left (d x +c \right )+1\right )-\cos \left (d x +c \right )^{2} \ln \left (-\cot \left (d x +c \right )+\csc \left (d x +c \right )-1\right )+\sin \left (d x +c \right )\right ) \sqrt {\cos \left (d x +c \right ) b}}{2 d \cos \left (d x +c \right )^{\frac {5}{2}}}\) \(115\)
risch \(-\frac {i \sqrt {\cos \left (d x +c \right ) b}\, \left (A \,{\mathrm e}^{3 i \left (d x +c \right )}-2 B \,{\mathrm e}^{2 i \left (d x +c \right )}-A \,{\mathrm e}^{i \left (d x +c \right )}-2 B \right )}{\sqrt {\cos \left (d x +c \right )}\, d \left ({\mathrm e}^{2 i \left (d x +c \right )}+1\right )^{2}}+\frac {\sqrt {\cos \left (d x +c \right ) b}\, A \ln \left ({\mathrm e}^{i \left (d x +c \right )}+i\right )}{2 \sqrt {\cos \left (d x +c \right )}\, d}-\frac {\sqrt {\cos \left (d x +c \right ) b}\, A \ln \left ({\mathrm e}^{i \left (d x +c \right )}-i\right )}{2 \sqrt {\cos \left (d x +c \right )}\, d}\) \(152\)

Input:

int((cos(d*x+c)*b)^(1/2)*(A+B*cos(d*x+c))/cos(d*x+c)^(7/2),x,method=_RETUR 
NVERBOSE)
 

Output:

-1/2/d*(A*cos(d*x+c)^2*ln(-cot(d*x+c)+csc(d*x+c)-1)-A*cos(d*x+c)^2*ln(-cot 
(d*x+c)+csc(d*x+c)+1)-2*B*cos(d*x+c)*sin(d*x+c)-A*sin(d*x+c))*(cos(d*x+c)* 
b)^(1/2)/cos(d*x+c)^(5/2)
 

Fricas [A] (verification not implemented)

Time = 0.12 (sec) , antiderivative size = 225, normalized size of antiderivative = 2.10 \[ \int \frac {\sqrt {b \cos (c+d x)} (A+B \cos (c+d x))}{\cos ^{\frac {7}{2}}(c+d x)} \, dx=\left [\frac {A \sqrt {b} \cos \left (d x + c\right )^{3} \log \left (-\frac {b \cos \left (d x + c\right )^{3} - 2 \, \sqrt {b \cos \left (d x + c\right )} \sqrt {b} \sqrt {\cos \left (d x + c\right )} \sin \left (d x + c\right ) - 2 \, b \cos \left (d x + c\right )}{\cos \left (d x + c\right )^{3}}\right ) + 2 \, {\left (2 \, B \cos \left (d x + c\right ) + A\right )} \sqrt {b \cos \left (d x + c\right )} \sqrt {\cos \left (d x + c\right )} \sin \left (d x + c\right )}{4 \, d \cos \left (d x + c\right )^{3}}, -\frac {A \sqrt {-b} \arctan \left (\frac {\sqrt {b \cos \left (d x + c\right )} \sqrt {-b} \sin \left (d x + c\right )}{b \sqrt {\cos \left (d x + c\right )}}\right ) \cos \left (d x + c\right )^{3} - {\left (2 \, B \cos \left (d x + c\right ) + A\right )} \sqrt {b \cos \left (d x + c\right )} \sqrt {\cos \left (d x + c\right )} \sin \left (d x + c\right )}{2 \, d \cos \left (d x + c\right )^{3}}\right ] \] Input:

integrate((b*cos(d*x+c))^(1/2)*(A+B*cos(d*x+c))/cos(d*x+c)^(7/2),x, algori 
thm="fricas")
 

Output:

[1/4*(A*sqrt(b)*cos(d*x + c)^3*log(-(b*cos(d*x + c)^3 - 2*sqrt(b*cos(d*x + 
 c))*sqrt(b)*sqrt(cos(d*x + c))*sin(d*x + c) - 2*b*cos(d*x + c))/cos(d*x + 
 c)^3) + 2*(2*B*cos(d*x + c) + A)*sqrt(b*cos(d*x + c))*sqrt(cos(d*x + c))* 
sin(d*x + c))/(d*cos(d*x + c)^3), -1/2*(A*sqrt(-b)*arctan(sqrt(b*cos(d*x + 
 c))*sqrt(-b)*sin(d*x + c)/(b*sqrt(cos(d*x + c))))*cos(d*x + c)^3 - (2*B*c 
os(d*x + c) + A)*sqrt(b*cos(d*x + c))*sqrt(cos(d*x + c))*sin(d*x + c))/(d* 
cos(d*x + c)^3)]
 

Sympy [F(-1)]

Timed out. \[ \int \frac {\sqrt {b \cos (c+d x)} (A+B \cos (c+d x))}{\cos ^{\frac {7}{2}}(c+d x)} \, dx=\text {Timed out} \] Input:

integrate((b*cos(d*x+c))**(1/2)*(A+B*cos(d*x+c))/cos(d*x+c)**(7/2),x)
 

Output:

Timed out
 

Maxima [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 716 vs. \(2 (91) = 182\).

Time = 0.33 (sec) , antiderivative size = 716, normalized size of antiderivative = 6.69 \[ \int \frac {\sqrt {b \cos (c+d x)} (A+B \cos (c+d x))}{\cos ^{\frac {7}{2}}(c+d x)} \, dx=\text {Too large to display} \] Input:

integrate((b*cos(d*x+c))^(1/2)*(A+B*cos(d*x+c))/cos(d*x+c)^(7/2),x, algori 
thm="maxima")
 

Output:

-1/4*((4*(sin(4*d*x + 4*c) + 2*sin(2*d*x + 2*c))*cos(3/2*arctan2(sin(2*d*x 
 + 2*c), cos(2*d*x + 2*c))) - 4*(sin(4*d*x + 4*c) + 2*sin(2*d*x + 2*c))*co 
s(1/2*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c))) - (2*(2*cos(2*d*x + 2*c 
) + 1)*cos(4*d*x + 4*c) + cos(4*d*x + 4*c)^2 + 4*cos(2*d*x + 2*c)^2 + sin( 
4*d*x + 4*c)^2 + 4*sin(4*d*x + 4*c)*sin(2*d*x + 2*c) + 4*sin(2*d*x + 2*c)^ 
2 + 4*cos(2*d*x + 2*c) + 1)*log(cos(1/2*arctan2(sin(2*d*x + 2*c), cos(2*d* 
x + 2*c)))^2 + sin(1/2*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c)))^2 + 2* 
sin(1/2*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c))) + 1) + (2*(2*cos(2*d* 
x + 2*c) + 1)*cos(4*d*x + 4*c) + cos(4*d*x + 4*c)^2 + 4*cos(2*d*x + 2*c)^2 
 + sin(4*d*x + 4*c)^2 + 4*sin(4*d*x + 4*c)*sin(2*d*x + 2*c) + 4*sin(2*d*x 
+ 2*c)^2 + 4*cos(2*d*x + 2*c) + 1)*log(cos(1/2*arctan2(sin(2*d*x + 2*c), c 
os(2*d*x + 2*c)))^2 + sin(1/2*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c))) 
^2 - 2*sin(1/2*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c))) + 1) - 4*(cos( 
4*d*x + 4*c) + 2*cos(2*d*x + 2*c) + 1)*sin(3/2*arctan2(sin(2*d*x + 2*c), c 
os(2*d*x + 2*c))) + 4*(cos(4*d*x + 4*c) + 2*cos(2*d*x + 2*c) + 1)*sin(1/2* 
arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c))))*A*sqrt(b)/(2*(2*cos(2*d*x + 
2*c) + 1)*cos(4*d*x + 4*c) + cos(4*d*x + 4*c)^2 + 4*cos(2*d*x + 2*c)^2 + s 
in(4*d*x + 4*c)^2 + 4*sin(4*d*x + 4*c)*sin(2*d*x + 2*c) + 4*sin(2*d*x + 2* 
c)^2 + 4*cos(2*d*x + 2*c) + 1) - 8*B*sqrt(b)*sin(2*d*x + 2*c)/(cos(2*d*x + 
 2*c)^2 + sin(2*d*x + 2*c)^2 + 2*cos(2*d*x + 2*c) + 1))/d
 

Giac [A] (verification not implemented)

Time = 0.37 (sec) , antiderivative size = 119, normalized size of antiderivative = 1.11 \[ \int \frac {\sqrt {b \cos (c+d x)} (A+B \cos (c+d x))}{\cos ^{\frac {7}{2}}(c+d x)} \, dx=\frac {{\left (A \log \left (\tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) + 1\right ) - A \log \left (\tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) - 1\right ) + \frac {2 \, {\left (A \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{3} - 2 \, B \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{3} + A \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) + 2 \, B \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )\right )}}{\tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{4} - 2 \, \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{2} + 1}\right )} \sqrt {b}}{2 \, d} \] Input:

integrate((b*cos(d*x+c))^(1/2)*(A+B*cos(d*x+c))/cos(d*x+c)^(7/2),x, algori 
thm="giac")
 

Output:

1/2*(A*log(tan(1/2*d*x + 1/2*c) + 1) - A*log(tan(1/2*d*x + 1/2*c) - 1) + 2 
*(A*tan(1/2*d*x + 1/2*c)^3 - 2*B*tan(1/2*d*x + 1/2*c)^3 + A*tan(1/2*d*x + 
1/2*c) + 2*B*tan(1/2*d*x + 1/2*c))/(tan(1/2*d*x + 1/2*c)^4 - 2*tan(1/2*d*x 
 + 1/2*c)^2 + 1))*sqrt(b)/d
 

Mupad [F(-1)]

Timed out. \[ \int \frac {\sqrt {b \cos (c+d x)} (A+B \cos (c+d x))}{\cos ^{\frac {7}{2}}(c+d x)} \, dx=\int \frac {\sqrt {b\,\cos \left (c+d\,x\right )}\,\left (A+B\,\cos \left (c+d\,x\right )\right )}{{\cos \left (c+d\,x\right )}^{7/2}} \,d x \] Input:

int(((b*cos(c + d*x))^(1/2)*(A + B*cos(c + d*x)))/cos(c + d*x)^(7/2),x)
 

Output:

int(((b*cos(c + d*x))^(1/2)*(A + B*cos(c + d*x)))/cos(c + d*x)^(7/2), x)
 

Reduce [B] (verification not implemented)

Time = 0.16 (sec) , antiderivative size = 118, normalized size of antiderivative = 1.10 \[ \int \frac {\sqrt {b \cos (c+d x)} (A+B \cos (c+d x))}{\cos ^{\frac {7}{2}}(c+d x)} \, dx=\frac {\sqrt {b}\, \left (-2 \cos \left (d x +c \right ) \sin \left (d x +c \right ) b -\mathrm {log}\left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )-1\right ) \sin \left (d x +c \right )^{2} a +\mathrm {log}\left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )-1\right ) a +\mathrm {log}\left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )+1\right ) \sin \left (d x +c \right )^{2} a -\mathrm {log}\left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )+1\right ) a -\sin \left (d x +c \right ) a \right )}{2 d \left (\sin \left (d x +c \right )^{2}-1\right )} \] Input:

int((b*cos(d*x+c))^(1/2)*(A+B*cos(d*x+c))/cos(d*x+c)^(7/2),x)
 

Output:

(sqrt(b)*( - 2*cos(c + d*x)*sin(c + d*x)*b - log(tan((c + d*x)/2) - 1)*sin 
(c + d*x)**2*a + log(tan((c + d*x)/2) - 1)*a + log(tan((c + d*x)/2) + 1)*s 
in(c + d*x)**2*a - log(tan((c + d*x)/2) + 1)*a - sin(c + d*x)*a))/(2*d*(si 
n(c + d*x)**2 - 1))