\(\int \frac {A+B \cos (c+d x)}{\cos ^{\frac {5}{2}}(c+d x) \sqrt {b \cos (c+d x)}} \, dx\) [871]

Optimal result
Mathematica [A] (verified)
Rubi [A] (verified)
Maple [A] (verified)
Fricas [A] (verification not implemented)
Sympy [F(-1)]
Maxima [B] (verification not implemented)
Giac [F(-2)]
Mupad [F(-1)]
Reduce [B] (verification not implemented)

Optimal result

Integrand size = 33, antiderivative size = 107 \[ \int \frac {A+B \cos (c+d x)}{\cos ^{\frac {5}{2}}(c+d x) \sqrt {b \cos (c+d x)}} \, dx=\frac {A \text {arctanh}(\sin (c+d x)) \sqrt {\cos (c+d x)}}{2 d \sqrt {b \cos (c+d x)}}+\frac {A \sin (c+d x)}{2 d \cos ^{\frac {3}{2}}(c+d x) \sqrt {b \cos (c+d x)}}+\frac {B \sin (c+d x)}{d \sqrt {\cos (c+d x)} \sqrt {b \cos (c+d x)}} \] Output:

1/2*A*arctanh(sin(d*x+c))*cos(d*x+c)^(1/2)/d/(b*cos(d*x+c))^(1/2)+1/2*A*si 
n(d*x+c)/d/cos(d*x+c)^(3/2)/(b*cos(d*x+c))^(1/2)+B*sin(d*x+c)/d/cos(d*x+c) 
^(1/2)/(b*cos(d*x+c))^(1/2)
                                                                                    
                                                                                    
 

Mathematica [A] (verified)

Time = 0.07 (sec) , antiderivative size = 65, normalized size of antiderivative = 0.61 \[ \int \frac {A+B \cos (c+d x)}{\cos ^{\frac {5}{2}}(c+d x) \sqrt {b \cos (c+d x)}} \, dx=\frac {A \text {arctanh}(\sin (c+d x)) \cos ^2(c+d x)+(A+2 B \cos (c+d x)) \sin (c+d x)}{2 d \cos ^{\frac {3}{2}}(c+d x) \sqrt {b \cos (c+d x)}} \] Input:

Integrate[(A + B*Cos[c + d*x])/(Cos[c + d*x]^(5/2)*Sqrt[b*Cos[c + d*x]]),x 
]
 

Output:

(A*ArcTanh[Sin[c + d*x]]*Cos[c + d*x]^2 + (A + 2*B*Cos[c + d*x])*Sin[c + d 
*x])/(2*d*Cos[c + d*x]^(3/2)*Sqrt[b*Cos[c + d*x]])
 

Rubi [A] (verified)

Time = 0.44 (sec) , antiderivative size = 71, normalized size of antiderivative = 0.66, number of steps used = 10, number of rules used = 9, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.273, Rules used = {2032, 3042, 3227, 3042, 4254, 24, 4255, 3042, 4257}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {A+B \cos (c+d x)}{\cos ^{\frac {5}{2}}(c+d x) \sqrt {b \cos (c+d x)}} \, dx\)

\(\Big \downarrow \) 2032

\(\displaystyle \frac {\sqrt {\cos (c+d x)} \int (A+B \cos (c+d x)) \sec ^3(c+d x)dx}{\sqrt {b \cos (c+d x)}}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {\sqrt {\cos (c+d x)} \int \frac {A+B \sin \left (c+d x+\frac {\pi }{2}\right )}{\sin \left (c+d x+\frac {\pi }{2}\right )^3}dx}{\sqrt {b \cos (c+d x)}}\)

\(\Big \downarrow \) 3227

\(\displaystyle \frac {\sqrt {\cos (c+d x)} \left (A \int \sec ^3(c+d x)dx+B \int \sec ^2(c+d x)dx\right )}{\sqrt {b \cos (c+d x)}}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {\sqrt {\cos (c+d x)} \left (A \int \csc \left (c+d x+\frac {\pi }{2}\right )^3dx+B \int \csc \left (c+d x+\frac {\pi }{2}\right )^2dx\right )}{\sqrt {b \cos (c+d x)}}\)

\(\Big \downarrow \) 4254

\(\displaystyle \frac {\sqrt {\cos (c+d x)} \left (A \int \csc \left (c+d x+\frac {\pi }{2}\right )^3dx-\frac {B \int 1d(-\tan (c+d x))}{d}\right )}{\sqrt {b \cos (c+d x)}}\)

\(\Big \downarrow \) 24

\(\displaystyle \frac {\sqrt {\cos (c+d x)} \left (A \int \csc \left (c+d x+\frac {\pi }{2}\right )^3dx+\frac {B \tan (c+d x)}{d}\right )}{\sqrt {b \cos (c+d x)}}\)

\(\Big \downarrow \) 4255

\(\displaystyle \frac {\sqrt {\cos (c+d x)} \left (A \left (\frac {1}{2} \int \sec (c+d x)dx+\frac {\tan (c+d x) \sec (c+d x)}{2 d}\right )+\frac {B \tan (c+d x)}{d}\right )}{\sqrt {b \cos (c+d x)}}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {\sqrt {\cos (c+d x)} \left (A \left (\frac {1}{2} \int \csc \left (c+d x+\frac {\pi }{2}\right )dx+\frac {\tan (c+d x) \sec (c+d x)}{2 d}\right )+\frac {B \tan (c+d x)}{d}\right )}{\sqrt {b \cos (c+d x)}}\)

\(\Big \downarrow \) 4257

\(\displaystyle \frac {\sqrt {\cos (c+d x)} \left (A \left (\frac {\text {arctanh}(\sin (c+d x))}{2 d}+\frac {\tan (c+d x) \sec (c+d x)}{2 d}\right )+\frac {B \tan (c+d x)}{d}\right )}{\sqrt {b \cos (c+d x)}}\)

Input:

Int[(A + B*Cos[c + d*x])/(Cos[c + d*x]^(5/2)*Sqrt[b*Cos[c + d*x]]),x]
 

Output:

(Sqrt[Cos[c + d*x]]*((B*Tan[c + d*x])/d + A*(ArcTanh[Sin[c + d*x]]/(2*d) + 
 (Sec[c + d*x]*Tan[c + d*x])/(2*d))))/Sqrt[b*Cos[c + d*x]]
 

Defintions of rubi rules used

rule 24
Int[a_, x_Symbol] :> Simp[a*x, x] /; FreeQ[a, x]
 

rule 2032
Int[(Fx_.)*((a_.)*(v_))^(m_)*((b_.)*(v_))^(n_), x_Symbol] :> Simp[a^(m - 1/ 
2)*b^(n + 1/2)*(Sqrt[a*v]/Sqrt[b*v])   Int[v^(m + n)*Fx, x], x] /; FreeQ[{a 
, b, m}, x] &&  !IntegerQ[m] && ILtQ[n - 1/2, 0] && IntegerQ[m + n]
 

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 3227
Int[((b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((c_) + (d_.)*sin[(e_.) + (f_.)*(x 
_)]), x_Symbol] :> Simp[c   Int[(b*Sin[e + f*x])^m, x], x] + Simp[d/b   Int 
[(b*Sin[e + f*x])^(m + 1), x], x] /; FreeQ[{b, c, d, e, f, m}, x]
 

rule 4254
Int[csc[(c_.) + (d_.)*(x_)]^(n_), x_Symbol] :> Simp[-d^(-1)   Subst[Int[Exp 
andIntegrand[(1 + x^2)^(n/2 - 1), x], x], x, Cot[c + d*x]], x] /; FreeQ[{c, 
 d}, x] && IGtQ[n/2, 0]
 

rule 4255
Int[(csc[(c_.) + (d_.)*(x_)]*(b_.))^(n_), x_Symbol] :> Simp[(-b)*Cos[c + d* 
x]*((b*Csc[c + d*x])^(n - 1)/(d*(n - 1))), x] + Simp[b^2*((n - 2)/(n - 1)) 
  Int[(b*Csc[c + d*x])^(n - 2), x], x] /; FreeQ[{b, c, d}, x] && GtQ[n, 1] 
&& IntegerQ[2*n]
 

rule 4257
Int[csc[(c_.) + (d_.)*(x_)], x_Symbol] :> Simp[-ArcTanh[Cos[c + d*x]]/d, x] 
 /; FreeQ[{c, d}, x]
 
Maple [A] (verified)

Time = 8.43 (sec) , antiderivative size = 103, normalized size of antiderivative = 0.96

method result size
default \(\frac {A \cos \left (d x +c \right )^{2} \ln \left (-\cot \left (d x +c \right )+\csc \left (d x +c \right )+1\right )-A \cos \left (d x +c \right )^{2} \ln \left (-\cot \left (d x +c \right )+\csc \left (d x +c \right )-1\right )+2 B \cos \left (d x +c \right ) \sin \left (d x +c \right )+A \sin \left (d x +c \right )}{2 d \cos \left (d x +c \right )^{\frac {3}{2}} \sqrt {\cos \left (d x +c \right ) b}}\) \(103\)
parts \(\frac {A \left (\cos \left (d x +c \right )^{2} \ln \left (-\cot \left (d x +c \right )+\csc \left (d x +c \right )+1\right )-\cos \left (d x +c \right )^{2} \ln \left (-\cot \left (d x +c \right )+\csc \left (d x +c \right )-1\right )+\sin \left (d x +c \right )\right )}{2 d \cos \left (d x +c \right )^{\frac {3}{2}} \sqrt {\cos \left (d x +c \right ) b}}+\frac {B \sin \left (d x +c \right )}{d \sqrt {\cos \left (d x +c \right )}\, \sqrt {\cos \left (d x +c \right ) b}}\) \(115\)
risch \(-\frac {i \left (A \,{\mathrm e}^{2 i \left (d x +c \right )}-A -4 B \cos \left (d x +c \right )\right )}{2 \sqrt {\cos \left (d x +c \right ) b}\, \sqrt {\cos \left (d x +c \right )}\, \left ({\mathrm e}^{2 i \left (d x +c \right )}+1\right ) d}+\frac {\sqrt {\cos \left (d x +c \right )}\, A \ln \left ({\mathrm e}^{i \left (d x +c \right )}+i\right )}{2 \sqrt {\cos \left (d x +c \right ) b}\, d}-\frac {\sqrt {\cos \left (d x +c \right )}\, A \ln \left ({\mathrm e}^{i \left (d x +c \right )}-i\right )}{2 \sqrt {\cos \left (d x +c \right ) b}\, d}\) \(137\)

Input:

int((A+B*cos(d*x+c))/cos(d*x+c)^(5/2)/(cos(d*x+c)*b)^(1/2),x,method=_RETUR 
NVERBOSE)
 

Output:

1/2/d*(A*cos(d*x+c)^2*ln(-cot(d*x+c)+csc(d*x+c)+1)-A*cos(d*x+c)^2*ln(-cot( 
d*x+c)+csc(d*x+c)-1)+2*B*cos(d*x+c)*sin(d*x+c)+A*sin(d*x+c))/cos(d*x+c)^(3 
/2)/(cos(d*x+c)*b)^(1/2)
 

Fricas [A] (verification not implemented)

Time = 0.11 (sec) , antiderivative size = 231, normalized size of antiderivative = 2.16 \[ \int \frac {A+B \cos (c+d x)}{\cos ^{\frac {5}{2}}(c+d x) \sqrt {b \cos (c+d x)}} \, dx=\left [\frac {A \sqrt {b} \cos \left (d x + c\right )^{3} \log \left (-\frac {b \cos \left (d x + c\right )^{3} - 2 \, \sqrt {b \cos \left (d x + c\right )} \sqrt {b} \sqrt {\cos \left (d x + c\right )} \sin \left (d x + c\right ) - 2 \, b \cos \left (d x + c\right )}{\cos \left (d x + c\right )^{3}}\right ) + 2 \, {\left (2 \, B \cos \left (d x + c\right ) + A\right )} \sqrt {b \cos \left (d x + c\right )} \sqrt {\cos \left (d x + c\right )} \sin \left (d x + c\right )}{4 \, b d \cos \left (d x + c\right )^{3}}, -\frac {A \sqrt {-b} \arctan \left (\frac {\sqrt {b \cos \left (d x + c\right )} \sqrt {-b} \sin \left (d x + c\right )}{b \sqrt {\cos \left (d x + c\right )}}\right ) \cos \left (d x + c\right )^{3} - {\left (2 \, B \cos \left (d x + c\right ) + A\right )} \sqrt {b \cos \left (d x + c\right )} \sqrt {\cos \left (d x + c\right )} \sin \left (d x + c\right )}{2 \, b d \cos \left (d x + c\right )^{3}}\right ] \] Input:

integrate((A+B*cos(d*x+c))/cos(d*x+c)^(5/2)/(b*cos(d*x+c))^(1/2),x, algori 
thm="fricas")
 

Output:

[1/4*(A*sqrt(b)*cos(d*x + c)^3*log(-(b*cos(d*x + c)^3 - 2*sqrt(b*cos(d*x + 
 c))*sqrt(b)*sqrt(cos(d*x + c))*sin(d*x + c) - 2*b*cos(d*x + c))/cos(d*x + 
 c)^3) + 2*(2*B*cos(d*x + c) + A)*sqrt(b*cos(d*x + c))*sqrt(cos(d*x + c))* 
sin(d*x + c))/(b*d*cos(d*x + c)^3), -1/2*(A*sqrt(-b)*arctan(sqrt(b*cos(d*x 
 + c))*sqrt(-b)*sin(d*x + c)/(b*sqrt(cos(d*x + c))))*cos(d*x + c)^3 - (2*B 
*cos(d*x + c) + A)*sqrt(b*cos(d*x + c))*sqrt(cos(d*x + c))*sin(d*x + c))/( 
b*d*cos(d*x + c)^3)]
 

Sympy [F(-1)]

Timed out. \[ \int \frac {A+B \cos (c+d x)}{\cos ^{\frac {5}{2}}(c+d x) \sqrt {b \cos (c+d x)}} \, dx=\text {Timed out} \] Input:

integrate((A+B*cos(d*x+c))/cos(d*x+c)**(5/2)/(b*cos(d*x+c))**(1/2),x)
 

Output:

Timed out
 

Maxima [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 722 vs. \(2 (91) = 182\).

Time = 0.30 (sec) , antiderivative size = 722, normalized size of antiderivative = 6.75 \[ \int \frac {A+B \cos (c+d x)}{\cos ^{\frac {5}{2}}(c+d x) \sqrt {b \cos (c+d x)}} \, dx=\text {Too large to display} \] Input:

integrate((A+B*cos(d*x+c))/cos(d*x+c)^(5/2)/(b*cos(d*x+c))^(1/2),x, algori 
thm="maxima")
 

Output:

1/4*(8*B*sqrt(b)*sin(2*d*x + 2*c)/(b*cos(2*d*x + 2*c)^2 + b*sin(2*d*x + 2* 
c)^2 + 2*b*cos(2*d*x + 2*c) + b) - (4*(sin(4*d*x + 4*c) + 2*sin(2*d*x + 2* 
c))*cos(3/2*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c))) - 4*(sin(4*d*x + 
4*c) + 2*sin(2*d*x + 2*c))*cos(1/2*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2 
*c))) - (2*(2*cos(2*d*x + 2*c) + 1)*cos(4*d*x + 4*c) + cos(4*d*x + 4*c)^2 
+ 4*cos(2*d*x + 2*c)^2 + sin(4*d*x + 4*c)^2 + 4*sin(4*d*x + 4*c)*sin(2*d*x 
 + 2*c) + 4*sin(2*d*x + 2*c)^2 + 4*cos(2*d*x + 2*c) + 1)*log(cos(1/2*arcta 
n2(sin(2*d*x + 2*c), cos(2*d*x + 2*c)))^2 + sin(1/2*arctan2(sin(2*d*x + 2* 
c), cos(2*d*x + 2*c)))^2 + 2*sin(1/2*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 
 2*c))) + 1) + (2*(2*cos(2*d*x + 2*c) + 1)*cos(4*d*x + 4*c) + cos(4*d*x + 
4*c)^2 + 4*cos(2*d*x + 2*c)^2 + sin(4*d*x + 4*c)^2 + 4*sin(4*d*x + 4*c)*si 
n(2*d*x + 2*c) + 4*sin(2*d*x + 2*c)^2 + 4*cos(2*d*x + 2*c) + 1)*log(cos(1/ 
2*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c)))^2 + sin(1/2*arctan2(sin(2*d 
*x + 2*c), cos(2*d*x + 2*c)))^2 - 2*sin(1/2*arctan2(sin(2*d*x + 2*c), cos( 
2*d*x + 2*c))) + 1) - 4*(cos(4*d*x + 4*c) + 2*cos(2*d*x + 2*c) + 1)*sin(3/ 
2*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c))) + 4*(cos(4*d*x + 4*c) + 2*c 
os(2*d*x + 2*c) + 1)*sin(1/2*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c)))) 
*A/((2*(2*cos(2*d*x + 2*c) + 1)*cos(4*d*x + 4*c) + cos(4*d*x + 4*c)^2 + 4* 
cos(2*d*x + 2*c)^2 + sin(4*d*x + 4*c)^2 + 4*sin(4*d*x + 4*c)*sin(2*d*x + 2 
*c) + 4*sin(2*d*x + 2*c)^2 + 4*cos(2*d*x + 2*c) + 1)*sqrt(b)))/d
 

Giac [F(-2)]

Exception generated. \[ \int \frac {A+B \cos (c+d x)}{\cos ^{\frac {5}{2}}(c+d x) \sqrt {b \cos (c+d x)}} \, dx=\text {Exception raised: TypeError} \] Input:

integrate((A+B*cos(d*x+c))/cos(d*x+c)^(5/2)/(b*cos(d*x+c))^(1/2),x, algori 
thm="giac")
 

Output:

Exception raised: TypeError >> an error occurred running a Giac command:IN 
PUT:sage2:=int(sage0,sageVARx):;OUTPUT:sym2poly/r2sym(const gen & e,const 
index_m & i,const vecteur & l) Error: Bad Argument Value
 

Mupad [F(-1)]

Timed out. \[ \int \frac {A+B \cos (c+d x)}{\cos ^{\frac {5}{2}}(c+d x) \sqrt {b \cos (c+d x)}} \, dx=\int \frac {A+B\,\cos \left (c+d\,x\right )}{{\cos \left (c+d\,x\right )}^{5/2}\,\sqrt {b\,\cos \left (c+d\,x\right )}} \,d x \] Input:

int((A + B*cos(c + d*x))/(cos(c + d*x)^(5/2)*(b*cos(c + d*x))^(1/2)),x)
 

Output:

int((A + B*cos(c + d*x))/(cos(c + d*x)^(5/2)*(b*cos(c + d*x))^(1/2)), x)
 

Reduce [B] (verification not implemented)

Time = 0.18 (sec) , antiderivative size = 121, normalized size of antiderivative = 1.13 \[ \int \frac {A+B \cos (c+d x)}{\cos ^{\frac {5}{2}}(c+d x) \sqrt {b \cos (c+d x)}} \, dx=\frac {\sqrt {b}\, \left (-2 \cos \left (d x +c \right ) \sin \left (d x +c \right ) b -\mathrm {log}\left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )-1\right ) \sin \left (d x +c \right )^{2} a +\mathrm {log}\left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )-1\right ) a +\mathrm {log}\left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )+1\right ) \sin \left (d x +c \right )^{2} a -\mathrm {log}\left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )+1\right ) a -\sin \left (d x +c \right ) a \right )}{2 b d \left (\sin \left (d x +c \right )^{2}-1\right )} \] Input:

int((A+B*cos(d*x+c))/cos(d*x+c)^(5/2)/(b*cos(d*x+c))^(1/2),x)
 

Output:

(sqrt(b)*( - 2*cos(c + d*x)*sin(c + d*x)*b - log(tan((c + d*x)/2) - 1)*sin 
(c + d*x)**2*a + log(tan((c + d*x)/2) - 1)*a + log(tan((c + d*x)/2) + 1)*s 
in(c + d*x)**2*a - log(tan((c + d*x)/2) + 1)*a - sin(c + d*x)*a))/(2*b*d*( 
sin(c + d*x)**2 - 1))