\(\int \frac {(A+B \cos (c+d x)) \sec ^3(c+d x)}{(b \cos (c+d x))^{4/3}} \, dx\) [910]

Optimal result
Mathematica [A] (verified)
Rubi [A] (verified)
Maple [F]
Fricas [F]
Sympy [F]
Maxima [F]
Giac [F]
Mupad [F(-1)]
Reduce [F]

Optimal result

Integrand size = 31, antiderivative size = 117 \[ \int \frac {(A+B \cos (c+d x)) \sec ^3(c+d x)}{(b \cos (c+d x))^{4/3}} \, dx=\frac {3 A b^2 \operatorname {Hypergeometric2F1}\left (-\frac {5}{3},\frac {1}{2},-\frac {2}{3},\cos ^2(c+d x)\right ) \sin (c+d x)}{10 d (b \cos (c+d x))^{10/3} \sqrt {\sin ^2(c+d x)}}+\frac {3 b B \operatorname {Hypergeometric2F1}\left (-\frac {7}{6},\frac {1}{2},-\frac {1}{6},\cos ^2(c+d x)\right ) \sin (c+d x)}{7 d (b \cos (c+d x))^{7/3} \sqrt {\sin ^2(c+d x)}} \] Output:

3/10*A*b^2*hypergeom([-5/3, 1/2],[-2/3],cos(d*x+c)^2)*sin(d*x+c)/d/(b*cos( 
d*x+c))^(10/3)/(sin(d*x+c)^2)^(1/2)+3/7*b*B*hypergeom([-7/6, 1/2],[-1/6],c 
os(d*x+c)^2)*sin(d*x+c)/d/(b*cos(d*x+c))^(7/3)/(sin(d*x+c)^2)^(1/2)
 

Mathematica [A] (verified)

Time = 0.15 (sec) , antiderivative size = 89, normalized size of antiderivative = 0.76 \[ \int \frac {(A+B \cos (c+d x)) \sec ^3(c+d x)}{(b \cos (c+d x))^{4/3}} \, dx=\frac {3 b^2 \csc (c+d x) \left (7 A \operatorname {Hypergeometric2F1}\left (-\frac {5}{3},\frac {1}{2},-\frac {2}{3},\cos ^2(c+d x)\right )+10 B \cos (c+d x) \operatorname {Hypergeometric2F1}\left (-\frac {7}{6},\frac {1}{2},-\frac {1}{6},\cos ^2(c+d x)\right )\right ) \sqrt {\sin ^2(c+d x)}}{70 d (b \cos (c+d x))^{10/3}} \] Input:

Integrate[((A + B*Cos[c + d*x])*Sec[c + d*x]^3)/(b*Cos[c + d*x])^(4/3),x]
 

Output:

(3*b^2*Csc[c + d*x]*(7*A*Hypergeometric2F1[-5/3, 1/2, -2/3, Cos[c + d*x]^2 
] + 10*B*Cos[c + d*x]*Hypergeometric2F1[-7/6, 1/2, -1/6, Cos[c + d*x]^2])* 
Sqrt[Sin[c + d*x]^2])/(70*d*(b*Cos[c + d*x])^(10/3))
 

Rubi [A] (verified)

Time = 0.37 (sec) , antiderivative size = 123, normalized size of antiderivative = 1.05, number of steps used = 5, number of rules used = 5, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.161, Rules used = {3042, 2030, 3227, 3042, 3122}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {\sec ^3(c+d x) (A+B \cos (c+d x))}{(b \cos (c+d x))^{4/3}} \, dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \frac {A+B \sin \left (c+d x+\frac {\pi }{2}\right )}{\sin \left (c+d x+\frac {\pi }{2}\right )^3 \left (b \sin \left (c+d x+\frac {\pi }{2}\right )\right )^{4/3}}dx\)

\(\Big \downarrow \) 2030

\(\displaystyle b^3 \int \frac {A+B \sin \left (\frac {1}{2} (2 c+\pi )+d x\right )}{\left (b \sin \left (\frac {1}{2} (2 c+\pi )+d x\right )\right )^{13/3}}dx\)

\(\Big \downarrow \) 3227

\(\displaystyle b^3 \left (A \int \frac {1}{(b \cos (c+d x))^{13/3}}dx+\frac {B \int \frac {1}{(b \cos (c+d x))^{10/3}}dx}{b}\right )\)

\(\Big \downarrow \) 3042

\(\displaystyle b^3 \left (A \int \frac {1}{\left (b \sin \left (c+d x+\frac {\pi }{2}\right )\right )^{13/3}}dx+\frac {B \int \frac {1}{\left (b \sin \left (c+d x+\frac {\pi }{2}\right )\right )^{10/3}}dx}{b}\right )\)

\(\Big \downarrow \) 3122

\(\displaystyle b^3 \left (\frac {3 A \sin (c+d x) \operatorname {Hypergeometric2F1}\left (-\frac {5}{3},\frac {1}{2},-\frac {2}{3},\cos ^2(c+d x)\right )}{10 b d \sqrt {\sin ^2(c+d x)} (b \cos (c+d x))^{10/3}}+\frac {3 B \sin (c+d x) \operatorname {Hypergeometric2F1}\left (-\frac {7}{6},\frac {1}{2},-\frac {1}{6},\cos ^2(c+d x)\right )}{7 b^2 d \sqrt {\sin ^2(c+d x)} (b \cos (c+d x))^{7/3}}\right )\)

Input:

Int[((A + B*Cos[c + d*x])*Sec[c + d*x]^3)/(b*Cos[c + d*x])^(4/3),x]
 

Output:

b^3*((3*A*Hypergeometric2F1[-5/3, 1/2, -2/3, Cos[c + d*x]^2]*Sin[c + d*x]) 
/(10*b*d*(b*Cos[c + d*x])^(10/3)*Sqrt[Sin[c + d*x]^2]) + (3*B*Hypergeometr 
ic2F1[-7/6, 1/2, -1/6, Cos[c + d*x]^2]*Sin[c + d*x])/(7*b^2*d*(b*Cos[c + d 
*x])^(7/3)*Sqrt[Sin[c + d*x]^2]))
 

Defintions of rubi rules used

rule 2030
Int[(Fx_.)*(v_)^(m_.)*((b_)*(v_))^(n_), x_Symbol] :> Simp[1/b^m   Int[(b*v) 
^(m + n)*Fx, x], x] /; FreeQ[{b, n}, x] && IntegerQ[m]
 

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 3122
Int[((b_.)*sin[(c_.) + (d_.)*(x_)])^(n_), x_Symbol] :> Simp[Cos[c + d*x]*(( 
b*Sin[c + d*x])^(n + 1)/(b*d*(n + 1)*Sqrt[Cos[c + d*x]^2]))*Hypergeometric2 
F1[1/2, (n + 1)/2, (n + 3)/2, Sin[c + d*x]^2], x] /; FreeQ[{b, c, d, n}, x] 
 &&  !IntegerQ[2*n]
 

rule 3227
Int[((b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((c_) + (d_.)*sin[(e_.) + (f_.)*(x 
_)]), x_Symbol] :> Simp[c   Int[(b*Sin[e + f*x])^m, x], x] + Simp[d/b   Int 
[(b*Sin[e + f*x])^(m + 1), x], x] /; FreeQ[{b, c, d, e, f, m}, x]
 
Maple [F]

\[\int \frac {\left (A +B \cos \left (d x +c \right )\right ) \sec \left (d x +c \right )^{3}}{\left (\cos \left (d x +c \right ) b \right )^{\frac {4}{3}}}d x\]

Input:

int((A+B*cos(d*x+c))*sec(d*x+c)^3/(cos(d*x+c)*b)^(4/3),x)
 

Output:

int((A+B*cos(d*x+c))*sec(d*x+c)^3/(cos(d*x+c)*b)^(4/3),x)
 

Fricas [F]

\[ \int \frac {(A+B \cos (c+d x)) \sec ^3(c+d x)}{(b \cos (c+d x))^{4/3}} \, dx=\int { \frac {{\left (B \cos \left (d x + c\right ) + A\right )} \sec \left (d x + c\right )^{3}}{\left (b \cos \left (d x + c\right )\right )^{\frac {4}{3}}} \,d x } \] Input:

integrate((A+B*cos(d*x+c))*sec(d*x+c)^3/(b*cos(d*x+c))^(4/3),x, algorithm= 
"fricas")
 

Output:

integral((B*cos(d*x + c) + A)*(b*cos(d*x + c))^(2/3)*sec(d*x + c)^3/(b^2*c 
os(d*x + c)^2), x)
 

Sympy [F]

\[ \int \frac {(A+B \cos (c+d x)) \sec ^3(c+d x)}{(b \cos (c+d x))^{4/3}} \, dx=\int \frac {\left (A + B \cos {\left (c + d x \right )}\right ) \sec ^{3}{\left (c + d x \right )}}{\left (b \cos {\left (c + d x \right )}\right )^{\frac {4}{3}}}\, dx \] Input:

integrate((A+B*cos(d*x+c))*sec(d*x+c)**3/(b*cos(d*x+c))**(4/3),x)
 

Output:

Integral((A + B*cos(c + d*x))*sec(c + d*x)**3/(b*cos(c + d*x))**(4/3), x)
 

Maxima [F]

\[ \int \frac {(A+B \cos (c+d x)) \sec ^3(c+d x)}{(b \cos (c+d x))^{4/3}} \, dx=\int { \frac {{\left (B \cos \left (d x + c\right ) + A\right )} \sec \left (d x + c\right )^{3}}{\left (b \cos \left (d x + c\right )\right )^{\frac {4}{3}}} \,d x } \] Input:

integrate((A+B*cos(d*x+c))*sec(d*x+c)^3/(b*cos(d*x+c))^(4/3),x, algorithm= 
"maxima")
 

Output:

integrate((B*cos(d*x + c) + A)*sec(d*x + c)^3/(b*cos(d*x + c))^(4/3), x)
 

Giac [F]

\[ \int \frac {(A+B \cos (c+d x)) \sec ^3(c+d x)}{(b \cos (c+d x))^{4/3}} \, dx=\int { \frac {{\left (B \cos \left (d x + c\right ) + A\right )} \sec \left (d x + c\right )^{3}}{\left (b \cos \left (d x + c\right )\right )^{\frac {4}{3}}} \,d x } \] Input:

integrate((A+B*cos(d*x+c))*sec(d*x+c)^3/(b*cos(d*x+c))^(4/3),x, algorithm= 
"giac")
 

Output:

integrate((B*cos(d*x + c) + A)*sec(d*x + c)^3/(b*cos(d*x + c))^(4/3), x)
 

Mupad [F(-1)]

Timed out. \[ \int \frac {(A+B \cos (c+d x)) \sec ^3(c+d x)}{(b \cos (c+d x))^{4/3}} \, dx=\int \frac {A+B\,\cos \left (c+d\,x\right )}{{\cos \left (c+d\,x\right )}^3\,{\left (b\,\cos \left (c+d\,x\right )\right )}^{4/3}} \,d x \] Input:

int((A + B*cos(c + d*x))/(cos(c + d*x)^3*(b*cos(c + d*x))^(4/3)),x)
 

Output:

int((A + B*cos(c + d*x))/(cos(c + d*x)^3*(b*cos(c + d*x))^(4/3)), x)
 

Reduce [F]

\[ \int \frac {(A+B \cos (c+d x)) \sec ^3(c+d x)}{(b \cos (c+d x))^{4/3}} \, dx=\frac {\left (\int \frac {\sec \left (d x +c \right )^{3}}{\cos \left (d x +c \right )^{\frac {1}{3}}}d x \right ) b +\left (\int \frac {\sec \left (d x +c \right )^{3}}{\cos \left (d x +c \right )^{\frac {4}{3}}}d x \right ) a}{b^{\frac {4}{3}}} \] Input:

int((A+B*cos(d*x+c))*sec(d*x+c)^3/(b*cos(d*x+c))^(4/3),x)
 

Output:

(int(sec(c + d*x)**3/cos(c + d*x)**(1/3),x)*b + int(sec(c + d*x)**3/(cos(c 
 + d*x)**(1/3)*cos(c + d*x)),x)*a)/(b**(1/3)*b)