\(\int \frac {(A+B \cos (c+d x)) \sec ^2(c+d x)}{\sqrt {a+a \cos (c+d x)}} \, dx\) [105]

Optimal result
Mathematica [A] (verified)
Rubi [A] (verified)
Maple [B] (verified)
Fricas [B] (verification not implemented)
Sympy [F]
Maxima [B] (verification not implemented)
Giac [F(-2)]
Mupad [F(-1)]
Reduce [F]

Optimal result

Integrand size = 33, antiderivative size = 119 \[ \int \frac {(A+B \cos (c+d x)) \sec ^2(c+d x)}{\sqrt {a+a \cos (c+d x)}} \, dx=-\frac {(A-2 B) \text {arctanh}\left (\frac {\sqrt {a} \sin (c+d x)}{\sqrt {a+a \cos (c+d x)}}\right )}{\sqrt {a} d}+\frac {\sqrt {2} (A-B) \text {arctanh}\left (\frac {\sqrt {a} \sin (c+d x)}{\sqrt {2} \sqrt {a+a \cos (c+d x)}}\right )}{\sqrt {a} d}+\frac {A \tan (c+d x)}{d \sqrt {a+a \cos (c+d x)}} \] Output:

-(A-2*B)*arctanh(a^(1/2)*sin(d*x+c)/(a+a*cos(d*x+c))^(1/2))/a^(1/2)/d+2^(1 
/2)*(A-B)*arctanh(1/2*a^(1/2)*sin(d*x+c)*2^(1/2)/(a+a*cos(d*x+c))^(1/2))/a 
^(1/2)/d+A*tan(d*x+c)/d/(a+a*cos(d*x+c))^(1/2)
 

Mathematica [A] (verified)

Time = 0.41 (sec) , antiderivative size = 95, normalized size of antiderivative = 0.80 \[ \int \frac {(A+B \cos (c+d x)) \sec ^2(c+d x)}{\sqrt {a+a \cos (c+d x)}} \, dx=\frac {\cos \left (\frac {1}{2} (c+d x)\right ) \left (2 (A-B) \text {arctanh}\left (\sin \left (\frac {1}{2} (c+d x)\right )\right )-\sqrt {2} (A-2 B) \text {arctanh}\left (\sqrt {2} \sin \left (\frac {1}{2} (c+d x)\right )\right )+2 A \sec (c+d x) \sin \left (\frac {1}{2} (c+d x)\right )\right )}{d \sqrt {a (1+\cos (c+d x))}} \] Input:

Integrate[((A + B*Cos[c + d*x])*Sec[c + d*x]^2)/Sqrt[a + a*Cos[c + d*x]],x 
]
 

Output:

(Cos[(c + d*x)/2]*(2*(A - B)*ArcTanh[Sin[(c + d*x)/2]] - Sqrt[2]*(A - 2*B) 
*ArcTanh[Sqrt[2]*Sin[(c + d*x)/2]] + 2*A*Sec[c + d*x]*Sin[(c + d*x)/2]))/( 
d*Sqrt[a*(1 + Cos[c + d*x])])
 

Rubi [A] (verified)

Time = 0.74 (sec) , antiderivative size = 128, normalized size of antiderivative = 1.08, number of steps used = 11, number of rules used = 10, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.303, Rules used = {3042, 3463, 27, 3042, 3464, 3042, 3128, 219, 3252, 219}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {\sec ^2(c+d x) (A+B \cos (c+d x))}{\sqrt {a \cos (c+d x)+a}} \, dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \frac {A+B \sin \left (c+d x+\frac {\pi }{2}\right )}{\sin \left (c+d x+\frac {\pi }{2}\right )^2 \sqrt {a \sin \left (c+d x+\frac {\pi }{2}\right )+a}}dx\)

\(\Big \downarrow \) 3463

\(\displaystyle \frac {\int -\frac {(a (A-2 B)-a A \cos (c+d x)) \sec (c+d x)}{2 \sqrt {\cos (c+d x) a+a}}dx}{a}+\frac {A \tan (c+d x)}{d \sqrt {a \cos (c+d x)+a}}\)

\(\Big \downarrow \) 27

\(\displaystyle \frac {A \tan (c+d x)}{d \sqrt {a \cos (c+d x)+a}}-\frac {\int \frac {(a (A-2 B)-a A \cos (c+d x)) \sec (c+d x)}{\sqrt {\cos (c+d x) a+a}}dx}{2 a}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {A \tan (c+d x)}{d \sqrt {a \cos (c+d x)+a}}-\frac {\int \frac {a (A-2 B)-a A \sin \left (c+d x+\frac {\pi }{2}\right )}{\sin \left (c+d x+\frac {\pi }{2}\right ) \sqrt {\sin \left (c+d x+\frac {\pi }{2}\right ) a+a}}dx}{2 a}\)

\(\Big \downarrow \) 3464

\(\displaystyle \frac {A \tan (c+d x)}{d \sqrt {a \cos (c+d x)+a}}-\frac {(A-2 B) \int \sqrt {\cos (c+d x) a+a} \sec (c+d x)dx-2 a (A-B) \int \frac {1}{\sqrt {\cos (c+d x) a+a}}dx}{2 a}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {A \tan (c+d x)}{d \sqrt {a \cos (c+d x)+a}}-\frac {(A-2 B) \int \frac {\sqrt {\sin \left (c+d x+\frac {\pi }{2}\right ) a+a}}{\sin \left (c+d x+\frac {\pi }{2}\right )}dx-2 a (A-B) \int \frac {1}{\sqrt {\sin \left (c+d x+\frac {\pi }{2}\right ) a+a}}dx}{2 a}\)

\(\Big \downarrow \) 3128

\(\displaystyle \frac {A \tan (c+d x)}{d \sqrt {a \cos (c+d x)+a}}-\frac {\frac {4 a (A-B) \int \frac {1}{2 a-\frac {a^2 \sin ^2(c+d x)}{\cos (c+d x) a+a}}d\left (-\frac {a \sin (c+d x)}{\sqrt {\cos (c+d x) a+a}}\right )}{d}+(A-2 B) \int \frac {\sqrt {\sin \left (c+d x+\frac {\pi }{2}\right ) a+a}}{\sin \left (c+d x+\frac {\pi }{2}\right )}dx}{2 a}\)

\(\Big \downarrow \) 219

\(\displaystyle \frac {A \tan (c+d x)}{d \sqrt {a \cos (c+d x)+a}}-\frac {(A-2 B) \int \frac {\sqrt {\sin \left (c+d x+\frac {\pi }{2}\right ) a+a}}{\sin \left (c+d x+\frac {\pi }{2}\right )}dx-\frac {2 \sqrt {2} \sqrt {a} (A-B) \text {arctanh}\left (\frac {\sqrt {a} \sin (c+d x)}{\sqrt {2} \sqrt {a \cos (c+d x)+a}}\right )}{d}}{2 a}\)

\(\Big \downarrow \) 3252

\(\displaystyle \frac {A \tan (c+d x)}{d \sqrt {a \cos (c+d x)+a}}-\frac {-\frac {2 a (A-2 B) \int \frac {1}{a-\frac {a^2 \sin ^2(c+d x)}{\cos (c+d x) a+a}}d\left (-\frac {a \sin (c+d x)}{\sqrt {\cos (c+d x) a+a}}\right )}{d}-\frac {2 \sqrt {2} \sqrt {a} (A-B) \text {arctanh}\left (\frac {\sqrt {a} \sin (c+d x)}{\sqrt {2} \sqrt {a \cos (c+d x)+a}}\right )}{d}}{2 a}\)

\(\Big \downarrow \) 219

\(\displaystyle \frac {A \tan (c+d x)}{d \sqrt {a \cos (c+d x)+a}}-\frac {\frac {2 \sqrt {a} (A-2 B) \text {arctanh}\left (\frac {\sqrt {a} \sin (c+d x)}{\sqrt {a \cos (c+d x)+a}}\right )}{d}-\frac {2 \sqrt {2} \sqrt {a} (A-B) \text {arctanh}\left (\frac {\sqrt {a} \sin (c+d x)}{\sqrt {2} \sqrt {a \cos (c+d x)+a}}\right )}{d}}{2 a}\)

Input:

Int[((A + B*Cos[c + d*x])*Sec[c + d*x]^2)/Sqrt[a + a*Cos[c + d*x]],x]
 

Output:

-1/2*((2*Sqrt[a]*(A - 2*B)*ArcTanh[(Sqrt[a]*Sin[c + d*x])/Sqrt[a + a*Cos[c 
 + d*x]]])/d - (2*Sqrt[2]*Sqrt[a]*(A - B)*ArcTanh[(Sqrt[a]*Sin[c + d*x])/( 
Sqrt[2]*Sqrt[a + a*Cos[c + d*x]])])/d)/a + (A*Tan[c + d*x])/(d*Sqrt[a + a* 
Cos[c + d*x]])
 

Defintions of rubi rules used

rule 27
Int[(a_)*(Fx_), x_Symbol] :> Simp[a   Int[Fx, x], x] /; FreeQ[a, x] &&  !Ma 
tchQ[Fx, (b_)*(Gx_) /; FreeQ[b, x]]
 

rule 219
Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1/(Rt[a, 2]*Rt[-b, 2]))* 
ArcTanh[Rt[-b, 2]*(x/Rt[a, 2])], x] /; FreeQ[{a, b}, x] && NegQ[a/b] && (Gt 
Q[a, 0] || LtQ[b, 0])
 

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 3128
Int[1/Sqrt[(a_) + (b_.)*sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[-2/d 
Subst[Int[1/(2*a - x^2), x], x, b*(Cos[c + d*x]/Sqrt[a + b*Sin[c + d*x]])], 
 x] /; FreeQ[{a, b, c, d}, x] && EqQ[a^2 - b^2, 0]
 

rule 3252
Int[Sqrt[(a_) + (b_.)*sin[(e_.) + (f_.)*(x_)]]/((c_.) + (d_.)*sin[(e_.) + ( 
f_.)*(x_)]), x_Symbol] :> Simp[-2*(b/f)   Subst[Int[1/(b*c + a*d - d*x^2), 
x], x, b*(Cos[e + f*x]/Sqrt[a + b*Sin[e + f*x]])], x] /; FreeQ[{a, b, c, d, 
 e, f}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0]
 

rule 3463
Int[((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((A_.) + (B_.)*sin[(e_.) + 
(f_.)*(x_)])*((c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)])^(n_), x_Symbol] :> Sim 
p[(B*c - A*d)*Cos[e + f*x]*(a + b*Sin[e + f*x])^m*((c + d*Sin[e + f*x])^(n 
+ 1)/(f*(n + 1)*(c^2 - d^2))), x] + Simp[1/(b*(n + 1)*(c^2 - d^2))   Int[(a 
 + b*Sin[e + f*x])^m*(c + d*Sin[e + f*x])^(n + 1)*Simp[A*(a*d*m + b*c*(n + 
1)) - B*(a*c*m + b*d*(n + 1)) + b*(B*c - A*d)*(m + n + 2)*Sin[e + f*x], x], 
 x], x] /; FreeQ[{a, b, c, d, e, f, A, B, m}, x] && NeQ[b*c - a*d, 0] && Eq 
Q[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0] && LtQ[n, -1] && (IntegerQ[n] || EqQ[m 
 + 1/2, 0])
 

rule 3464
Int[((A_.) + (B_.)*sin[(e_.) + (f_.)*(x_)])/(Sqrt[(a_) + (b_.)*sin[(e_.) + 
(f_.)*(x_)]]*((c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)])), x_Symbol] :> Simp[(A 
*b - a*B)/(b*c - a*d)   Int[1/Sqrt[a + b*Sin[e + f*x]], x], x] + Simp[(B*c 
- A*d)/(b*c - a*d)   Int[Sqrt[a + b*Sin[e + f*x]]/(c + d*Sin[e + f*x]), x], 
 x] /; FreeQ[{a, b, c, d, e, f, A, B}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 - 
 b^2, 0] && NeQ[c^2 - d^2, 0]
 
Maple [B] (verified)

Leaf count of result is larger than twice the leaf count of optimal. \(702\) vs. \(2(102)=204\).

Time = 3.52 (sec) , antiderivative size = 703, normalized size of antiderivative = 5.91

method result size
parts \(\frac {A \cos \left (\frac {d x}{2}+\frac {c}{2}\right ) \sqrt {a \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}}\, \left (-2 a \left (2 \sqrt {2}\, \ln \left (\frac {4 \sqrt {a}\, \sqrt {a \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}}+4 a}{\cos \left (\frac {d x}{2}+\frac {c}{2}\right )}\right )-\ln \left (\frac {4 a \sqrt {2}\, \cos \left (\frac {d x}{2}+\frac {c}{2}\right )+4 \sqrt {2}\, \sqrt {a \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}}\, \sqrt {a}+8 a}{2 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )+\sqrt {2}}\right )-\ln \left (-\frac {4 \left (a \sqrt {2}\, \cos \left (\frac {d x}{2}+\frac {c}{2}\right )-\sqrt {2}\, \sqrt {a \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}}\, \sqrt {a}-2 a \right )}{2 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )-\sqrt {2}}\right )\right ) \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}+2 \sqrt {2}\, \ln \left (\frac {4 \sqrt {a}\, \sqrt {a \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}}+4 a}{\cos \left (\frac {d x}{2}+\frac {c}{2}\right )}\right ) a -\ln \left (-\frac {4 \left (a \sqrt {2}\, \cos \left (\frac {d x}{2}+\frac {c}{2}\right )-\sqrt {2}\, \sqrt {a \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}}\, \sqrt {a}-2 a \right )}{2 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )-\sqrt {2}}\right ) a -\ln \left (\frac {4 a \sqrt {2}\, \cos \left (\frac {d x}{2}+\frac {c}{2}\right )+4 \sqrt {2}\, \sqrt {a \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}}\, \sqrt {a}+8 a}{2 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )+\sqrt {2}}\right ) a +2 \sqrt {2}\, \sqrt {a \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}}\, \sqrt {a}\right )}{a^{\frac {3}{2}} \left (2 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )-\sqrt {2}\right ) \left (2 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )+\sqrt {2}\right ) \sin \left (\frac {d x}{2}+\frac {c}{2}\right ) \sqrt {a \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}}\, d}+\frac {B \cos \left (\frac {d x}{2}+\frac {c}{2}\right ) \sqrt {a \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}}\, \left (\sqrt {2}\, \ln \left (-\frac {2 \left (a \sqrt {2}\, \cos \left (\frac {d x}{2}+\frac {c}{2}\right )-\sqrt {2}\, \sqrt {a \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}}\, \sqrt {a}-2 a \right )}{2 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )-\sqrt {2}}\right )+\sqrt {2}\, \ln \left (\frac {2 a \sqrt {2}\, \cos \left (\frac {d x}{2}+\frac {c}{2}\right )+2 \sqrt {2}\, \sqrt {a \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}}\, \sqrt {a}+4 a}{2 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )+\sqrt {2}}\right )-2 \ln \left (\frac {2 \sqrt {a}\, \sqrt {a \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}}+2 a}{\cos \left (\frac {d x}{2}+\frac {c}{2}\right )}\right )\right ) \sqrt {2}}{2 \sqrt {a}\, \sin \left (\frac {d x}{2}+\frac {c}{2}\right ) \sqrt {a \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}}\, d}\) \(703\)
default \(\text {Expression too large to display}\) \(818\)

Input:

int((A+B*cos(d*x+c))*sec(d*x+c)^2/(a+a*cos(d*x+c))^(1/2),x,method=_RETURNV 
ERBOSE)
 

Output:

A*cos(1/2*d*x+1/2*c)*(a*sin(1/2*d*x+1/2*c)^2)^(1/2)*(-2*a*(2*2^(1/2)*ln(4* 
(a^(1/2)*(a*sin(1/2*d*x+1/2*c)^2)^(1/2)+a)/cos(1/2*d*x+1/2*c))-ln(4/(2*cos 
(1/2*d*x+1/2*c)+2^(1/2))*(a*2^(1/2)*cos(1/2*d*x+1/2*c)+2^(1/2)*(a*sin(1/2* 
d*x+1/2*c)^2)^(1/2)*a^(1/2)+2*a))-ln(-4/(2*cos(1/2*d*x+1/2*c)-2^(1/2))*(a* 
2^(1/2)*cos(1/2*d*x+1/2*c)-2^(1/2)*(a*sin(1/2*d*x+1/2*c)^2)^(1/2)*a^(1/2)- 
2*a)))*sin(1/2*d*x+1/2*c)^2+2*2^(1/2)*ln(4*(a^(1/2)*(a*sin(1/2*d*x+1/2*c)^ 
2)^(1/2)+a)/cos(1/2*d*x+1/2*c))*a-ln(-4/(2*cos(1/2*d*x+1/2*c)-2^(1/2))*(a* 
2^(1/2)*cos(1/2*d*x+1/2*c)-2^(1/2)*(a*sin(1/2*d*x+1/2*c)^2)^(1/2)*a^(1/2)- 
2*a))*a-ln(4/(2*cos(1/2*d*x+1/2*c)+2^(1/2))*(a*2^(1/2)*cos(1/2*d*x+1/2*c)+ 
2^(1/2)*(a*sin(1/2*d*x+1/2*c)^2)^(1/2)*a^(1/2)+2*a))*a+2*2^(1/2)*(a*sin(1/ 
2*d*x+1/2*c)^2)^(1/2)*a^(1/2))/a^(3/2)/(2*cos(1/2*d*x+1/2*c)-2^(1/2))/(2*c 
os(1/2*d*x+1/2*c)+2^(1/2))/sin(1/2*d*x+1/2*c)/(a*cos(1/2*d*x+1/2*c)^2)^(1/ 
2)/d+1/2*B*cos(1/2*d*x+1/2*c)*(a*sin(1/2*d*x+1/2*c)^2)^(1/2)*(2^(1/2)*ln(- 
2/(2*cos(1/2*d*x+1/2*c)-2^(1/2))*(a*2^(1/2)*cos(1/2*d*x+1/2*c)-2^(1/2)*(a* 
sin(1/2*d*x+1/2*c)^2)^(1/2)*a^(1/2)-2*a))+2^(1/2)*ln(2/(2*cos(1/2*d*x+1/2* 
c)+2^(1/2))*(a*2^(1/2)*cos(1/2*d*x+1/2*c)+2^(1/2)*(a*sin(1/2*d*x+1/2*c)^2) 
^(1/2)*a^(1/2)+2*a))-2*ln(2*(a^(1/2)*(a*sin(1/2*d*x+1/2*c)^2)^(1/2)+a)/cos 
(1/2*d*x+1/2*c)))/a^(1/2)/sin(1/2*d*x+1/2*c)*2^(1/2)/(a*cos(1/2*d*x+1/2*c) 
^2)^(1/2)/d
 

Fricas [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 259 vs. \(2 (102) = 204\).

Time = 0.11 (sec) , antiderivative size = 259, normalized size of antiderivative = 2.18 \[ \int \frac {(A+B \cos (c+d x)) \sec ^2(c+d x)}{\sqrt {a+a \cos (c+d x)}} \, dx=-\frac {{\left ({\left (A - 2 \, B\right )} \cos \left (d x + c\right )^{2} + {\left (A - 2 \, B\right )} \cos \left (d x + c\right )\right )} \sqrt {a} \log \left (\frac {a \cos \left (d x + c\right )^{3} - 7 \, a \cos \left (d x + c\right )^{2} - 4 \, \sqrt {a \cos \left (d x + c\right ) + a} \sqrt {a} {\left (\cos \left (d x + c\right ) - 2\right )} \sin \left (d x + c\right ) + 8 \, a}{\cos \left (d x + c\right )^{3} + \cos \left (d x + c\right )^{2}}\right ) - 4 \, \sqrt {a \cos \left (d x + c\right ) + a} A \sin \left (d x + c\right ) + \frac {2 \, \sqrt {2} {\left ({\left (A - B\right )} a \cos \left (d x + c\right )^{2} + {\left (A - B\right )} a \cos \left (d x + c\right )\right )} \log \left (-\frac {\cos \left (d x + c\right )^{2} + \frac {2 \, \sqrt {2} \sqrt {a \cos \left (d x + c\right ) + a} \sin \left (d x + c\right )}{\sqrt {a}} - 2 \, \cos \left (d x + c\right ) - 3}{\cos \left (d x + c\right )^{2} + 2 \, \cos \left (d x + c\right ) + 1}\right )}{\sqrt {a}}}{4 \, {\left (a d \cos \left (d x + c\right )^{2} + a d \cos \left (d x + c\right )\right )}} \] Input:

integrate((A+B*cos(d*x+c))*sec(d*x+c)^2/(a+a*cos(d*x+c))^(1/2),x, algorith 
m="fricas")
 

Output:

-1/4*(((A - 2*B)*cos(d*x + c)^2 + (A - 2*B)*cos(d*x + c))*sqrt(a)*log((a*c 
os(d*x + c)^3 - 7*a*cos(d*x + c)^2 - 4*sqrt(a*cos(d*x + c) + a)*sqrt(a)*(c 
os(d*x + c) - 2)*sin(d*x + c) + 8*a)/(cos(d*x + c)^3 + cos(d*x + c)^2)) - 
4*sqrt(a*cos(d*x + c) + a)*A*sin(d*x + c) + 2*sqrt(2)*((A - B)*a*cos(d*x + 
 c)^2 + (A - B)*a*cos(d*x + c))*log(-(cos(d*x + c)^2 + 2*sqrt(2)*sqrt(a*co 
s(d*x + c) + a)*sin(d*x + c)/sqrt(a) - 2*cos(d*x + c) - 3)/(cos(d*x + c)^2 
 + 2*cos(d*x + c) + 1))/sqrt(a))/(a*d*cos(d*x + c)^2 + a*d*cos(d*x + c))
 

Sympy [F]

\[ \int \frac {(A+B \cos (c+d x)) \sec ^2(c+d x)}{\sqrt {a+a \cos (c+d x)}} \, dx=\int \frac {\left (A + B \cos {\left (c + d x \right )}\right ) \sec ^{2}{\left (c + d x \right )}}{\sqrt {a \left (\cos {\left (c + d x \right )} + 1\right )}}\, dx \] Input:

integrate((A+B*cos(d*x+c))*sec(d*x+c)**2/(a+a*cos(d*x+c))**(1/2),x)
 

Output:

Integral((A + B*cos(c + d*x))*sec(c + d*x)**2/sqrt(a*(cos(c + d*x) + 1)), 
x)
 

Maxima [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 18436 vs. \(2 (102) = 204\).

Time = 0.39 (sec) , antiderivative size = 18436, normalized size of antiderivative = 154.92 \[ \int \frac {(A+B \cos (c+d x)) \sec ^2(c+d x)}{\sqrt {a+a \cos (c+d x)}} \, dx=\text {Too large to display} \] Input:

integrate((A+B*cos(d*x+c))*sec(d*x+c)^2/(a+a*cos(d*x+c))^(1/2),x, algorith 
m="maxima")
 

Output:

1/4*((2*sqrt(2)*log(cos(1/2*d*x + 1/2*c)^2 + sin(1/2*d*x + 1/2*c)^2 + 2*si 
n(1/2*d*x + 1/2*c) + 1) - 2*sqrt(2)*log(cos(1/2*d*x + 1/2*c)^2 + sin(1/2*d 
*x + 1/2*c)^2 - 2*sin(1/2*d*x + 1/2*c) + 1) - log(2*cos(1/2*d*x + 1/2*c)^2 
 + 2*sin(1/2*d*x + 1/2*c)^2 + 2*sqrt(2)*cos(1/2*d*x + 1/2*c) + 2*sqrt(2)*s 
in(1/2*d*x + 1/2*c) + 2) + log(2*cos(1/2*d*x + 1/2*c)^2 + 2*sin(1/2*d*x + 
1/2*c)^2 + 2*sqrt(2)*cos(1/2*d*x + 1/2*c) - 2*sqrt(2)*sin(1/2*d*x + 1/2*c) 
 + 2) - log(2*cos(1/2*d*x + 1/2*c)^2 + 2*sin(1/2*d*x + 1/2*c)^2 - 2*sqrt(2 
)*cos(1/2*d*x + 1/2*c) + 2*sqrt(2)*sin(1/2*d*x + 1/2*c) + 2) + log(2*cos(1 
/2*d*x + 1/2*c)^2 + 2*sin(1/2*d*x + 1/2*c)^2 - 2*sqrt(2)*cos(1/2*d*x + 1/2 
*c) - 2*sqrt(2)*sin(1/2*d*x + 1/2*c) + 2))*cos(d*x + c)^4 + (2*sqrt(2)*log 
(cos(1/2*d*x + 1/2*c)^2 + sin(1/2*d*x + 1/2*c)^2 + 2*sin(1/2*d*x + 1/2*c) 
+ 1) - 2*sqrt(2)*log(cos(1/2*d*x + 1/2*c)^2 + sin(1/2*d*x + 1/2*c)^2 - 2*s 
in(1/2*d*x + 1/2*c) + 1) - log(2*cos(1/2*d*x + 1/2*c)^2 + 2*sin(1/2*d*x + 
1/2*c)^2 + 2*sqrt(2)*cos(1/2*d*x + 1/2*c) + 2*sqrt(2)*sin(1/2*d*x + 1/2*c) 
 + 2) + log(2*cos(1/2*d*x + 1/2*c)^2 + 2*sin(1/2*d*x + 1/2*c)^2 + 2*sqrt(2 
)*cos(1/2*d*x + 1/2*c) - 2*sqrt(2)*sin(1/2*d*x + 1/2*c) + 2) - log(2*cos(1 
/2*d*x + 1/2*c)^2 + 2*sin(1/2*d*x + 1/2*c)^2 - 2*sqrt(2)*cos(1/2*d*x + 1/2 
*c) + 2*sqrt(2)*sin(1/2*d*x + 1/2*c) + 2) + log(2*cos(1/2*d*x + 1/2*c)^2 + 
 2*sin(1/2*d*x + 1/2*c)^2 - 2*sqrt(2)*cos(1/2*d*x + 1/2*c) - 2*sqrt(2)*sin 
(1/2*d*x + 1/2*c) + 2))*sin(d*x + c)^4 + 4*sqrt(2)*cos(1/2*d*x + 1/2*c)...
 

Giac [F(-2)]

Exception generated. \[ \int \frac {(A+B \cos (c+d x)) \sec ^2(c+d x)}{\sqrt {a+a \cos (c+d x)}} \, dx=\text {Exception raised: TypeError} \] Input:

integrate((A+B*cos(d*x+c))*sec(d*x+c)^2/(a+a*cos(d*x+c))^(1/2),x, algorith 
m="giac")
 

Output:

Exception raised: TypeError >> an error occurred running a Giac command:IN 
PUT:sage2:=int(sage0,sageVARx):;OUTPUT:sym2poly/r2sym(const gen & e,const 
index_m & i,const vecteur & l) Error: Bad Argument Value
 

Mupad [F(-1)]

Timed out. \[ \int \frac {(A+B \cos (c+d x)) \sec ^2(c+d x)}{\sqrt {a+a \cos (c+d x)}} \, dx=\int \frac {A+B\,\cos \left (c+d\,x\right )}{{\cos \left (c+d\,x\right )}^2\,\sqrt {a+a\,\cos \left (c+d\,x\right )}} \,d x \] Input:

int((A + B*cos(c + d*x))/(cos(c + d*x)^2*(a + a*cos(c + d*x))^(1/2)),x)
 

Output:

int((A + B*cos(c + d*x))/(cos(c + d*x)^2*(a + a*cos(c + d*x))^(1/2)), x)
 

Reduce [F]

\[ \int \frac {(A+B \cos (c+d x)) \sec ^2(c+d x)}{\sqrt {a+a \cos (c+d x)}} \, dx=\frac {\sqrt {a}\, \left (\left (\int \frac {\sqrt {\cos \left (d x +c \right )+1}\, \cos \left (d x +c \right ) \sec \left (d x +c \right )^{2}}{\cos \left (d x +c \right )+1}d x \right ) b +\left (\int \frac {\sqrt {\cos \left (d x +c \right )+1}\, \sec \left (d x +c \right )^{2}}{\cos \left (d x +c \right )+1}d x \right ) a \right )}{a} \] Input:

int((A+B*cos(d*x+c))*sec(d*x+c)^2/(a+a*cos(d*x+c))^(1/2),x)
 

Output:

(sqrt(a)*(int((sqrt(cos(c + d*x) + 1)*cos(c + d*x)*sec(c + d*x)**2)/(cos(c 
 + d*x) + 1),x)*b + int((sqrt(cos(c + d*x) + 1)*sec(c + d*x)**2)/(cos(c + 
d*x) + 1),x)*a))/a