\(\int \frac {\cos (c+d x) (A+B \cos (c+d x))}{(a+a \cos (c+d x))^{5/2}} \, dx\) [118]

Optimal result
Mathematica [A] (verified)
Rubi [A] (verified)
Maple [B] (verified)
Fricas [B] (verification not implemented)
Sympy [F(-1)]
Maxima [F(-1)]
Giac [F(-2)]
Mupad [F(-1)]
Reduce [F]

Optimal result

Integrand size = 31, antiderivative size = 126 \[ \int \frac {\cos (c+d x) (A+B \cos (c+d x))}{(a+a \cos (c+d x))^{5/2}} \, dx=\frac {(5 A+19 B) \text {arctanh}\left (\frac {\sqrt {a} \sin (c+d x)}{\sqrt {2} \sqrt {a+a \cos (c+d x)}}\right )}{16 \sqrt {2} a^{5/2} d}-\frac {(A-B) \sin (c+d x)}{4 d (a+a \cos (c+d x))^{5/2}}+\frac {(5 A-13 B) \sin (c+d x)}{16 a d (a+a \cos (c+d x))^{3/2}} \] Output:

1/32*(5*A+19*B)*arctanh(1/2*a^(1/2)*sin(d*x+c)*2^(1/2)/(a+a*cos(d*x+c))^(1 
/2))*2^(1/2)/a^(5/2)/d-1/4*(A-B)*sin(d*x+c)/d/(a+a*cos(d*x+c))^(5/2)+1/16* 
(5*A-13*B)*sin(d*x+c)/a/d/(a+a*cos(d*x+c))^(3/2)
 

Mathematica [A] (verified)

Time = 0.60 (sec) , antiderivative size = 87, normalized size of antiderivative = 0.69 \[ \int \frac {\cos (c+d x) (A+B \cos (c+d x))}{(a+a \cos (c+d x))^{5/2}} \, dx=\frac {2 (5 A+19 B) \text {arctanh}\left (\sin \left (\frac {1}{2} (c+d x)\right )\right ) \cos ^3\left (\frac {1}{2} (c+d x)\right )+(A-9 B+(5 A-13 B) \cos (c+d x)) \tan \left (\frac {1}{2} (c+d x)\right )}{16 a d (a (1+\cos (c+d x)))^{3/2}} \] Input:

Integrate[(Cos[c + d*x]*(A + B*Cos[c + d*x]))/(a + a*Cos[c + d*x])^(5/2),x 
]
 

Output:

(2*(5*A + 19*B)*ArcTanh[Sin[(c + d*x)/2]]*Cos[(c + d*x)/2]^3 + (A - 9*B + 
(5*A - 13*B)*Cos[c + d*x])*Tan[(c + d*x)/2])/(16*a*d*(a*(1 + Cos[c + d*x]) 
)^(3/2))
 

Rubi [A] (verified)

Time = 0.63 (sec) , antiderivative size = 132, normalized size of antiderivative = 1.05, number of steps used = 11, number of rules used = 10, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.323, Rules used = {3042, 3447, 3042, 3498, 27, 3042, 3229, 3042, 3128, 219}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {\cos (c+d x) (A+B \cos (c+d x))}{(a \cos (c+d x)+a)^{5/2}} \, dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \frac {\sin \left (c+d x+\frac {\pi }{2}\right ) \left (A+B \sin \left (c+d x+\frac {\pi }{2}\right )\right )}{\left (a \sin \left (c+d x+\frac {\pi }{2}\right )+a\right )^{5/2}}dx\)

\(\Big \downarrow \) 3447

\(\displaystyle \int \frac {A \cos (c+d x)+B \cos ^2(c+d x)}{(a \cos (c+d x)+a)^{5/2}}dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \frac {A \sin \left (c+d x+\frac {\pi }{2}\right )+B \sin \left (c+d x+\frac {\pi }{2}\right )^2}{\left (a \sin \left (c+d x+\frac {\pi }{2}\right )+a\right )^{5/2}}dx\)

\(\Big \downarrow \) 3498

\(\displaystyle -\frac {\int -\frac {5 a (A-B)+8 a B \cos (c+d x)}{2 (\cos (c+d x) a+a)^{3/2}}dx}{4 a^2}-\frac {(A-B) \sin (c+d x)}{4 d (a \cos (c+d x)+a)^{5/2}}\)

\(\Big \downarrow \) 27

\(\displaystyle \frac {\int \frac {5 a (A-B)+8 a B \cos (c+d x)}{(\cos (c+d x) a+a)^{3/2}}dx}{8 a^2}-\frac {(A-B) \sin (c+d x)}{4 d (a \cos (c+d x)+a)^{5/2}}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {\int \frac {5 a (A-B)+8 a B \sin \left (c+d x+\frac {\pi }{2}\right )}{\left (\sin \left (c+d x+\frac {\pi }{2}\right ) a+a\right )^{3/2}}dx}{8 a^2}-\frac {(A-B) \sin (c+d x)}{4 d (a \cos (c+d x)+a)^{5/2}}\)

\(\Big \downarrow \) 3229

\(\displaystyle \frac {\frac {1}{4} (5 A+19 B) \int \frac {1}{\sqrt {\cos (c+d x) a+a}}dx+\frac {a (5 A-13 B) \sin (c+d x)}{2 d (a \cos (c+d x)+a)^{3/2}}}{8 a^2}-\frac {(A-B) \sin (c+d x)}{4 d (a \cos (c+d x)+a)^{5/2}}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {\frac {1}{4} (5 A+19 B) \int \frac {1}{\sqrt {\sin \left (c+d x+\frac {\pi }{2}\right ) a+a}}dx+\frac {a (5 A-13 B) \sin (c+d x)}{2 d (a \cos (c+d x)+a)^{3/2}}}{8 a^2}-\frac {(A-B) \sin (c+d x)}{4 d (a \cos (c+d x)+a)^{5/2}}\)

\(\Big \downarrow \) 3128

\(\displaystyle \frac {\frac {a (5 A-13 B) \sin (c+d x)}{2 d (a \cos (c+d x)+a)^{3/2}}-\frac {(5 A+19 B) \int \frac {1}{2 a-\frac {a^2 \sin ^2(c+d x)}{\cos (c+d x) a+a}}d\left (-\frac {a \sin (c+d x)}{\sqrt {\cos (c+d x) a+a}}\right )}{2 d}}{8 a^2}-\frac {(A-B) \sin (c+d x)}{4 d (a \cos (c+d x)+a)^{5/2}}\)

\(\Big \downarrow \) 219

\(\displaystyle \frac {\frac {(5 A+19 B) \text {arctanh}\left (\frac {\sqrt {a} \sin (c+d x)}{\sqrt {2} \sqrt {a \cos (c+d x)+a}}\right )}{2 \sqrt {2} \sqrt {a} d}+\frac {a (5 A-13 B) \sin (c+d x)}{2 d (a \cos (c+d x)+a)^{3/2}}}{8 a^2}-\frac {(A-B) \sin (c+d x)}{4 d (a \cos (c+d x)+a)^{5/2}}\)

Input:

Int[(Cos[c + d*x]*(A + B*Cos[c + d*x]))/(a + a*Cos[c + d*x])^(5/2),x]
 

Output:

-1/4*((A - B)*Sin[c + d*x])/(d*(a + a*Cos[c + d*x])^(5/2)) + (((5*A + 19*B 
)*ArcTanh[(Sqrt[a]*Sin[c + d*x])/(Sqrt[2]*Sqrt[a + a*Cos[c + d*x]])])/(2*S 
qrt[2]*Sqrt[a]*d) + (a*(5*A - 13*B)*Sin[c + d*x])/(2*d*(a + a*Cos[c + d*x] 
)^(3/2)))/(8*a^2)
 

Defintions of rubi rules used

rule 27
Int[(a_)*(Fx_), x_Symbol] :> Simp[a   Int[Fx, x], x] /; FreeQ[a, x] &&  !Ma 
tchQ[Fx, (b_)*(Gx_) /; FreeQ[b, x]]
 

rule 219
Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1/(Rt[a, 2]*Rt[-b, 2]))* 
ArcTanh[Rt[-b, 2]*(x/Rt[a, 2])], x] /; FreeQ[{a, b}, x] && NegQ[a/b] && (Gt 
Q[a, 0] || LtQ[b, 0])
 

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 3128
Int[1/Sqrt[(a_) + (b_.)*sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[-2/d 
Subst[Int[1/(2*a - x^2), x], x, b*(Cos[c + d*x]/Sqrt[a + b*Sin[c + d*x]])], 
 x] /; FreeQ[{a, b, c, d}, x] && EqQ[a^2 - b^2, 0]
 

rule 3229
Int[((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((c_.) + (d_.)*sin[(e_.) + 
(f_.)*(x_)]), x_Symbol] :> Simp[(b*c - a*d)*Cos[e + f*x]*((a + b*Sin[e + f* 
x])^m/(a*f*(2*m + 1))), x] + Simp[(a*d*m + b*c*(m + 1))/(a*b*(2*m + 1))   I 
nt[(a + b*Sin[e + f*x])^(m + 1), x], x] /; FreeQ[{a, b, c, d, e, f}, x] && 
NeQ[b*c - a*d, 0] && EqQ[a^2 - b^2, 0] && LtQ[m, -2^(-1)]
 

rule 3447
Int[((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_.)*((A_.) + (B_.)*sin[(e_.) 
+ (f_.)*(x_)])*((c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)]), x_Symbol] :> Int[(a 
 + b*Sin[e + f*x])^m*(A*c + (B*c + A*d)*Sin[e + f*x] + B*d*Sin[e + f*x]^2), 
 x] /; FreeQ[{a, b, c, d, e, f, A, B, m}, x] && NeQ[b*c - a*d, 0]
 

rule 3498
Int[((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((A_.) + (B_.)*sin[(e_.) + 
(f_.)*(x_)] + (C_.)*sin[(e_.) + (f_.)*(x_)]^2), x_Symbol] :> Simp[(A*b - a* 
B + b*C)*Cos[e + f*x]*((a + b*Sin[e + f*x])^m/(a*f*(2*m + 1))), x] + Simp[1 
/(a^2*(2*m + 1))   Int[(a + b*Sin[e + f*x])^(m + 1)*Simp[a*A*(m + 1) + m*(b 
*B - a*C) + b*C*(2*m + 1)*Sin[e + f*x], x], x], x] /; FreeQ[{a, b, e, f, A, 
 B, C}, x] && LtQ[m, -1] && EqQ[a^2 - b^2, 0]
 
Maple [B] (verified)

Leaf count of result is larger than twice the leaf count of optimal. \(291\) vs. \(2(107)=214\).

Time = 2.45 (sec) , antiderivative size = 292, normalized size of antiderivative = 2.32

method result size
default \(\frac {\sqrt {a \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}}\, \left (5 A \ln \left (\frac {4 \sqrt {a}\, \sqrt {a \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}}+4 a}{\cos \left (\frac {d x}{2}+\frac {c}{2}\right )}\right ) \sqrt {2}\, \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{4} a +19 B \ln \left (\frac {4 \sqrt {a}\, \sqrt {a \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}}+4 a}{\cos \left (\frac {d x}{2}+\frac {c}{2}\right )}\right ) \sqrt {2}\, \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{4} a +5 A \sqrt {2}\, \sqrt {a \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}}\, \sqrt {a}\, \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-13 B \sqrt {2}\, \sqrt {a \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}}\, \sqrt {a}\, \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-2 A \sqrt {a}\, \sqrt {2}\, \sqrt {a \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}}+2 B \sqrt {2}\, \sqrt {a \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}}\, \sqrt {a}\right )}{32 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{3} a^{\frac {7}{2}} \sin \left (\frac {d x}{2}+\frac {c}{2}\right ) \sqrt {a \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}}\, d}\) \(292\)
parts \(\frac {A \sqrt {a \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}}\, \left (5 \sqrt {2}\, \ln \left (\frac {4 \sqrt {a}\, \sqrt {a \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}}+4 a}{\cos \left (\frac {d x}{2}+\frac {c}{2}\right )}\right ) a \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{4}+5 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{2} \sqrt {2}\, \sqrt {a}\, \sqrt {a \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}}-2 \sqrt {2}\, \sqrt {a \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}}\, \sqrt {a}\right )}{32 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{3} a^{\frac {7}{2}} \sin \left (\frac {d x}{2}+\frac {c}{2}\right ) \sqrt {a \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}}\, d}+\frac {B \sqrt {a \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}}\, \left (19 \sqrt {2}\, \ln \left (\frac {4 \sqrt {a}\, \sqrt {a \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}}+4 a}{\cos \left (\frac {d x}{2}+\frac {c}{2}\right )}\right ) a \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{4}-13 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{2} \sqrt {2}\, \sqrt {a}\, \sqrt {a \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}}+2 \sqrt {2}\, \sqrt {a \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}}\, \sqrt {a}\right )}{32 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{3} a^{\frac {7}{2}} \sin \left (\frac {d x}{2}+\frac {c}{2}\right ) \sqrt {a \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}}\, d}\) \(350\)

Input:

int(cos(d*x+c)*(A+B*cos(d*x+c))/(a+a*cos(d*x+c))^(5/2),x,method=_RETURNVER 
BOSE)
 

Output:

1/32/cos(1/2*d*x+1/2*c)^3*(a*sin(1/2*d*x+1/2*c)^2)^(1/2)*(5*A*ln(2*(2*a^(1 
/2)*(a*sin(1/2*d*x+1/2*c)^2)^(1/2)+2*a)/cos(1/2*d*x+1/2*c))*2^(1/2)*cos(1/ 
2*d*x+1/2*c)^4*a+19*B*ln(2*(2*a^(1/2)*(a*sin(1/2*d*x+1/2*c)^2)^(1/2)+2*a)/ 
cos(1/2*d*x+1/2*c))*2^(1/2)*cos(1/2*d*x+1/2*c)^4*a+5*A*2^(1/2)*(a*sin(1/2* 
d*x+1/2*c)^2)^(1/2)*a^(1/2)*cos(1/2*d*x+1/2*c)^2-13*B*2^(1/2)*(a*sin(1/2*d 
*x+1/2*c)^2)^(1/2)*a^(1/2)*cos(1/2*d*x+1/2*c)^2-2*A*a^(1/2)*2^(1/2)*(a*sin 
(1/2*d*x+1/2*c)^2)^(1/2)+2*B*2^(1/2)*(a*sin(1/2*d*x+1/2*c)^2)^(1/2)*a^(1/2 
))/a^(7/2)/sin(1/2*d*x+1/2*c)/(a*cos(1/2*d*x+1/2*c)^2)^(1/2)/d
 

Fricas [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 223 vs. \(2 (107) = 214\).

Time = 0.08 (sec) , antiderivative size = 223, normalized size of antiderivative = 1.77 \[ \int \frac {\cos (c+d x) (A+B \cos (c+d x))}{(a+a \cos (c+d x))^{5/2}} \, dx=\frac {\sqrt {2} {\left ({\left (5 \, A + 19 \, B\right )} \cos \left (d x + c\right )^{3} + 3 \, {\left (5 \, A + 19 \, B\right )} \cos \left (d x + c\right )^{2} + 3 \, {\left (5 \, A + 19 \, B\right )} \cos \left (d x + c\right ) + 5 \, A + 19 \, B\right )} \sqrt {a} \log \left (-\frac {a \cos \left (d x + c\right )^{2} - 2 \, \sqrt {2} \sqrt {a \cos \left (d x + c\right ) + a} \sqrt {a} \sin \left (d x + c\right ) - 2 \, a \cos \left (d x + c\right ) - 3 \, a}{\cos \left (d x + c\right )^{2} + 2 \, \cos \left (d x + c\right ) + 1}\right ) + 4 \, {\left ({\left (5 \, A - 13 \, B\right )} \cos \left (d x + c\right ) + A - 9 \, B\right )} \sqrt {a \cos \left (d x + c\right ) + a} \sin \left (d x + c\right )}{64 \, {\left (a^{3} d \cos \left (d x + c\right )^{3} + 3 \, a^{3} d \cos \left (d x + c\right )^{2} + 3 \, a^{3} d \cos \left (d x + c\right ) + a^{3} d\right )}} \] Input:

integrate(cos(d*x+c)*(A+B*cos(d*x+c))/(a+a*cos(d*x+c))^(5/2),x, algorithm= 
"fricas")
 

Output:

1/64*(sqrt(2)*((5*A + 19*B)*cos(d*x + c)^3 + 3*(5*A + 19*B)*cos(d*x + c)^2 
 + 3*(5*A + 19*B)*cos(d*x + c) + 5*A + 19*B)*sqrt(a)*log(-(a*cos(d*x + c)^ 
2 - 2*sqrt(2)*sqrt(a*cos(d*x + c) + a)*sqrt(a)*sin(d*x + c) - 2*a*cos(d*x 
+ c) - 3*a)/(cos(d*x + c)^2 + 2*cos(d*x + c) + 1)) + 4*((5*A - 13*B)*cos(d 
*x + c) + A - 9*B)*sqrt(a*cos(d*x + c) + a)*sin(d*x + c))/(a^3*d*cos(d*x + 
 c)^3 + 3*a^3*d*cos(d*x + c)^2 + 3*a^3*d*cos(d*x + c) + a^3*d)
 

Sympy [F(-1)]

Timed out. \[ \int \frac {\cos (c+d x) (A+B \cos (c+d x))}{(a+a \cos (c+d x))^{5/2}} \, dx=\text {Timed out} \] Input:

integrate(cos(d*x+c)*(A+B*cos(d*x+c))/(a+a*cos(d*x+c))**(5/2),x)
 

Output:

Timed out
 

Maxima [F(-1)]

Timed out. \[ \int \frac {\cos (c+d x) (A+B \cos (c+d x))}{(a+a \cos (c+d x))^{5/2}} \, dx=\text {Timed out} \] Input:

integrate(cos(d*x+c)*(A+B*cos(d*x+c))/(a+a*cos(d*x+c))^(5/2),x, algorithm= 
"maxima")
 

Output:

Timed out
 

Giac [F(-2)]

Exception generated. \[ \int \frac {\cos (c+d x) (A+B \cos (c+d x))}{(a+a \cos (c+d x))^{5/2}} \, dx=\text {Exception raised: TypeError} \] Input:

integrate(cos(d*x+c)*(A+B*cos(d*x+c))/(a+a*cos(d*x+c))^(5/2),x, algorithm= 
"giac")
 

Output:

Exception raised: TypeError >> an error occurred running a Giac command:IN 
PUT:sage2:=int(sage0,sageVARx):;OUTPUT:sym2poly/r2sym(const gen & e,const 
index_m & i,const vecteur & l) Error: Bad Argument Value
 

Mupad [F(-1)]

Timed out. \[ \int \frac {\cos (c+d x) (A+B \cos (c+d x))}{(a+a \cos (c+d x))^{5/2}} \, dx=\int \frac {\cos \left (c+d\,x\right )\,\left (A+B\,\cos \left (c+d\,x\right )\right )}{{\left (a+a\,\cos \left (c+d\,x\right )\right )}^{5/2}} \,d x \] Input:

int((cos(c + d*x)*(A + B*cos(c + d*x)))/(a + a*cos(c + d*x))^(5/2),x)
                                                                                    
                                                                                    
 

Output:

int((cos(c + d*x)*(A + B*cos(c + d*x)))/(a + a*cos(c + d*x))^(5/2), x)
 

Reduce [F]

\[ \int \frac {\cos (c+d x) (A+B \cos (c+d x))}{(a+a \cos (c+d x))^{5/2}} \, dx=\frac {\sqrt {a}\, \left (\left (\int \frac {\sqrt {\cos \left (d x +c \right )+1}\, \cos \left (d x +c \right )}{\cos \left (d x +c \right )^{3}+3 \cos \left (d x +c \right )^{2}+3 \cos \left (d x +c \right )+1}d x \right ) a +\left (\int \frac {\sqrt {\cos \left (d x +c \right )+1}\, \cos \left (d x +c \right )^{2}}{\cos \left (d x +c \right )^{3}+3 \cos \left (d x +c \right )^{2}+3 \cos \left (d x +c \right )+1}d x \right ) b \right )}{a^{3}} \] Input:

int(cos(d*x+c)*(A+B*cos(d*x+c))/(a+a*cos(d*x+c))^(5/2),x)
 

Output:

(sqrt(a)*(int((sqrt(cos(c + d*x) + 1)*cos(c + d*x))/(cos(c + d*x)**3 + 3*c 
os(c + d*x)**2 + 3*cos(c + d*x) + 1),x)*a + int((sqrt(cos(c + d*x) + 1)*co 
s(c + d*x)**2)/(cos(c + d*x)**3 + 3*cos(c + d*x)**2 + 3*cos(c + d*x) + 1), 
x)*b))/a**3