\(\int \cos ^{\frac {5}{2}}(c+d x) (a+a \cos (c+d x)) (A+B \cos (c+d x)) \, dx\) [123]

Optimal result
Mathematica [C] (warning: unable to verify)
Rubi [A] (verified)
Maple [B] (verified)
Fricas [C] (verification not implemented)
Sympy [F(-1)]
Maxima [F]
Giac [F]
Mupad [B] (verification not implemented)
Reduce [F]

Optimal result

Integrand size = 31, antiderivative size = 159 \[ \int \cos ^{\frac {5}{2}}(c+d x) (a+a \cos (c+d x)) (A+B \cos (c+d x)) \, dx=\frac {2 a (9 A+7 B) E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{15 d}+\frac {10 a (A+B) \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),2\right )}{21 d}+\frac {10 a (A+B) \sqrt {\cos (c+d x)} \sin (c+d x)}{21 d}+\frac {2 a (9 A+7 B) \cos ^{\frac {3}{2}}(c+d x) \sin (c+d x)}{45 d}+\frac {2 a (A+B) \cos ^{\frac {5}{2}}(c+d x) \sin (c+d x)}{7 d}+\frac {2 a B \cos ^{\frac {7}{2}}(c+d x) \sin (c+d x)}{9 d} \] Output:

2/15*a*(9*A+7*B)*EllipticE(sin(1/2*d*x+1/2*c),2^(1/2))/d+10/21*a*(A+B)*Inv 
erseJacobiAM(1/2*d*x+1/2*c,2^(1/2))/d+10/21*a*(A+B)*cos(d*x+c)^(1/2)*sin(d 
*x+c)/d+2/45*a*(9*A+7*B)*cos(d*x+c)^(3/2)*sin(d*x+c)/d+2/7*a*(A+B)*cos(d*x 
+c)^(5/2)*sin(d*x+c)/d+2/9*a*B*cos(d*x+c)^(7/2)*sin(d*x+c)/d
 

Mathematica [C] (warning: unable to verify)

Result contains higher order function than in optimal. Order 5 vs. order 4 in optimal.

Time = 7.76 (sec) , antiderivative size = 914, normalized size of antiderivative = 5.75 \[ \int \cos ^{\frac {5}{2}}(c+d x) (a+a \cos (c+d x)) (A+B \cos (c+d x)) \, dx =\text {Too large to display} \] Input:

Integrate[Cos[c + d*x]^(5/2)*(a + a*Cos[c + d*x])*(A + B*Cos[c + d*x]),x]
 

Output:

a*(Sqrt[Cos[c + d*x]]*(1 + Cos[c + d*x])*Sec[c/2 + (d*x)/2]^2*(-1/15*((9*A 
 + 7*B)*Cot[c])/d + (23*(A + B)*Cos[d*x]*Sin[c])/(84*d) + ((18*A + 19*B)*C 
os[2*d*x]*Sin[2*c])/(180*d) + ((A + B)*Cos[3*d*x]*Sin[3*c])/(28*d) + (B*Co 
s[4*d*x]*Sin[4*c])/(72*d) + (23*(A + B)*Cos[c]*Sin[d*x])/(84*d) + ((18*A + 
 19*B)*Cos[2*c]*Sin[2*d*x])/(180*d) + ((A + B)*Cos[3*c]*Sin[3*d*x])/(28*d) 
 + (B*Cos[4*c]*Sin[4*d*x])/(72*d)) - (5*A*(1 + Cos[c + d*x])*Csc[c]*Hyperg 
eometricPFQ[{1/4, 1/2}, {5/4}, Sin[d*x - ArcTan[Cot[c]]]^2]*Sec[c/2 + (d*x 
)/2]^2*Sec[d*x - ArcTan[Cot[c]]]*Sqrt[1 - Sin[d*x - ArcTan[Cot[c]]]]*Sqrt[ 
-(Sqrt[1 + Cot[c]^2]*Sin[c]*Sin[d*x - ArcTan[Cot[c]]])]*Sqrt[1 + Sin[d*x - 
 ArcTan[Cot[c]]]])/(21*d*Sqrt[1 + Cot[c]^2]) - (5*B*(1 + Cos[c + d*x])*Csc 
[c]*HypergeometricPFQ[{1/4, 1/2}, {5/4}, Sin[d*x - ArcTan[Cot[c]]]^2]*Sec[ 
c/2 + (d*x)/2]^2*Sec[d*x - ArcTan[Cot[c]]]*Sqrt[1 - Sin[d*x - ArcTan[Cot[c 
]]]]*Sqrt[-(Sqrt[1 + Cot[c]^2]*Sin[c]*Sin[d*x - ArcTan[Cot[c]]])]*Sqrt[1 + 
 Sin[d*x - ArcTan[Cot[c]]]])/(21*d*Sqrt[1 + Cot[c]^2]) - (3*A*(1 + Cos[c + 
 d*x])*Csc[c]*Sec[c/2 + (d*x)/2]^2*((HypergeometricPFQ[{-1/2, -1/4}, {3/4} 
, Cos[d*x + ArcTan[Tan[c]]]^2]*Sin[d*x + ArcTan[Tan[c]]]*Tan[c])/(Sqrt[1 - 
 Cos[d*x + ArcTan[Tan[c]]]]*Sqrt[1 + Cos[d*x + ArcTan[Tan[c]]]]*Sqrt[Cos[c 
]*Cos[d*x + ArcTan[Tan[c]]]*Sqrt[1 + Tan[c]^2]]*Sqrt[1 + Tan[c]^2]) - ((Si 
n[d*x + ArcTan[Tan[c]]]*Tan[c])/Sqrt[1 + Tan[c]^2] + (2*Cos[c]^2*Cos[d*x + 
 ArcTan[Tan[c]]]*Sqrt[1 + Tan[c]^2])/(Cos[c]^2 + Sin[c]^2))/Sqrt[Cos[c]...
 

Rubi [A] (verified)

Time = 0.80 (sec) , antiderivative size = 158, normalized size of antiderivative = 0.99, number of steps used = 14, number of rules used = 14, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.452, Rules used = {3042, 3447, 3042, 3502, 27, 3042, 3227, 3042, 3115, 3042, 3115, 3042, 3119, 3120}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \cos ^{\frac {5}{2}}(c+d x) (a \cos (c+d x)+a) (A+B \cos (c+d x)) \, dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \sin \left (c+d x+\frac {\pi }{2}\right )^{5/2} \left (a \sin \left (c+d x+\frac {\pi }{2}\right )+a\right ) \left (A+B \sin \left (c+d x+\frac {\pi }{2}\right )\right )dx\)

\(\Big \downarrow \) 3447

\(\displaystyle \int \cos ^{\frac {5}{2}}(c+d x) \left ((a A+a B) \cos (c+d x)+a A+a B \cos ^2(c+d x)\right )dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \sin \left (c+d x+\frac {\pi }{2}\right )^{5/2} \left ((a A+a B) \sin \left (c+d x+\frac {\pi }{2}\right )+a A+a B \sin \left (c+d x+\frac {\pi }{2}\right )^2\right )dx\)

\(\Big \downarrow \) 3502

\(\displaystyle \frac {2}{9} \int \frac {1}{2} \cos ^{\frac {5}{2}}(c+d x) (a (9 A+7 B)+9 a (A+B) \cos (c+d x))dx+\frac {2 a B \sin (c+d x) \cos ^{\frac {7}{2}}(c+d x)}{9 d}\)

\(\Big \downarrow \) 27

\(\displaystyle \frac {1}{9} \int \cos ^{\frac {5}{2}}(c+d x) (a (9 A+7 B)+9 a (A+B) \cos (c+d x))dx+\frac {2 a B \sin (c+d x) \cos ^{\frac {7}{2}}(c+d x)}{9 d}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {1}{9} \int \sin \left (c+d x+\frac {\pi }{2}\right )^{5/2} \left (a (9 A+7 B)+9 a (A+B) \sin \left (c+d x+\frac {\pi }{2}\right )\right )dx+\frac {2 a B \sin (c+d x) \cos ^{\frac {7}{2}}(c+d x)}{9 d}\)

\(\Big \downarrow \) 3227

\(\displaystyle \frac {1}{9} \left (a (9 A+7 B) \int \cos ^{\frac {5}{2}}(c+d x)dx+9 a (A+B) \int \cos ^{\frac {7}{2}}(c+d x)dx\right )+\frac {2 a B \sin (c+d x) \cos ^{\frac {7}{2}}(c+d x)}{9 d}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {1}{9} \left (a (9 A+7 B) \int \sin \left (c+d x+\frac {\pi }{2}\right )^{5/2}dx+9 a (A+B) \int \sin \left (c+d x+\frac {\pi }{2}\right )^{7/2}dx\right )+\frac {2 a B \sin (c+d x) \cos ^{\frac {7}{2}}(c+d x)}{9 d}\)

\(\Big \downarrow \) 3115

\(\displaystyle \frac {1}{9} \left (a (9 A+7 B) \left (\frac {3}{5} \int \sqrt {\cos (c+d x)}dx+\frac {2 \sin (c+d x) \cos ^{\frac {3}{2}}(c+d x)}{5 d}\right )+9 a (A+B) \left (\frac {5}{7} \int \cos ^{\frac {3}{2}}(c+d x)dx+\frac {2 \sin (c+d x) \cos ^{\frac {5}{2}}(c+d x)}{7 d}\right )\right )+\frac {2 a B \sin (c+d x) \cos ^{\frac {7}{2}}(c+d x)}{9 d}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {1}{9} \left (a (9 A+7 B) \left (\frac {3}{5} \int \sqrt {\sin \left (c+d x+\frac {\pi }{2}\right )}dx+\frac {2 \sin (c+d x) \cos ^{\frac {3}{2}}(c+d x)}{5 d}\right )+9 a (A+B) \left (\frac {5}{7} \int \sin \left (c+d x+\frac {\pi }{2}\right )^{3/2}dx+\frac {2 \sin (c+d x) \cos ^{\frac {5}{2}}(c+d x)}{7 d}\right )\right )+\frac {2 a B \sin (c+d x) \cos ^{\frac {7}{2}}(c+d x)}{9 d}\)

\(\Big \downarrow \) 3115

\(\displaystyle \frac {1}{9} \left (9 a (A+B) \left (\frac {5}{7} \left (\frac {1}{3} \int \frac {1}{\sqrt {\cos (c+d x)}}dx+\frac {2 \sin (c+d x) \sqrt {\cos (c+d x)}}{3 d}\right )+\frac {2 \sin (c+d x) \cos ^{\frac {5}{2}}(c+d x)}{7 d}\right )+a (9 A+7 B) \left (\frac {3}{5} \int \sqrt {\sin \left (c+d x+\frac {\pi }{2}\right )}dx+\frac {2 \sin (c+d x) \cos ^{\frac {3}{2}}(c+d x)}{5 d}\right )\right )+\frac {2 a B \sin (c+d x) \cos ^{\frac {7}{2}}(c+d x)}{9 d}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {1}{9} \left (9 a (A+B) \left (\frac {5}{7} \left (\frac {1}{3} \int \frac {1}{\sqrt {\sin \left (c+d x+\frac {\pi }{2}\right )}}dx+\frac {2 \sin (c+d x) \sqrt {\cos (c+d x)}}{3 d}\right )+\frac {2 \sin (c+d x) \cos ^{\frac {5}{2}}(c+d x)}{7 d}\right )+a (9 A+7 B) \left (\frac {3}{5} \int \sqrt {\sin \left (c+d x+\frac {\pi }{2}\right )}dx+\frac {2 \sin (c+d x) \cos ^{\frac {3}{2}}(c+d x)}{5 d}\right )\right )+\frac {2 a B \sin (c+d x) \cos ^{\frac {7}{2}}(c+d x)}{9 d}\)

\(\Big \downarrow \) 3119

\(\displaystyle \frac {1}{9} \left (9 a (A+B) \left (\frac {5}{7} \left (\frac {1}{3} \int \frac {1}{\sqrt {\sin \left (c+d x+\frac {\pi }{2}\right )}}dx+\frac {2 \sin (c+d x) \sqrt {\cos (c+d x)}}{3 d}\right )+\frac {2 \sin (c+d x) \cos ^{\frac {5}{2}}(c+d x)}{7 d}\right )+a (9 A+7 B) \left (\frac {6 E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{5 d}+\frac {2 \sin (c+d x) \cos ^{\frac {3}{2}}(c+d x)}{5 d}\right )\right )+\frac {2 a B \sin (c+d x) \cos ^{\frac {7}{2}}(c+d x)}{9 d}\)

\(\Big \downarrow \) 3120

\(\displaystyle \frac {1}{9} \left (9 a (A+B) \left (\frac {2 \sin (c+d x) \cos ^{\frac {5}{2}}(c+d x)}{7 d}+\frac {5}{7} \left (\frac {2 \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),2\right )}{3 d}+\frac {2 \sin (c+d x) \sqrt {\cos (c+d x)}}{3 d}\right )\right )+a (9 A+7 B) \left (\frac {6 E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{5 d}+\frac {2 \sin (c+d x) \cos ^{\frac {3}{2}}(c+d x)}{5 d}\right )\right )+\frac {2 a B \sin (c+d x) \cos ^{\frac {7}{2}}(c+d x)}{9 d}\)

Input:

Int[Cos[c + d*x]^(5/2)*(a + a*Cos[c + d*x])*(A + B*Cos[c + d*x]),x]
 

Output:

(2*a*B*Cos[c + d*x]^(7/2)*Sin[c + d*x])/(9*d) + (a*(9*A + 7*B)*((6*Ellipti 
cE[(c + d*x)/2, 2])/(5*d) + (2*Cos[c + d*x]^(3/2)*Sin[c + d*x])/(5*d)) + 9 
*a*(A + B)*((2*Cos[c + d*x]^(5/2)*Sin[c + d*x])/(7*d) + (5*((2*EllipticF[( 
c + d*x)/2, 2])/(3*d) + (2*Sqrt[Cos[c + d*x]]*Sin[c + d*x])/(3*d)))/7))/9
 

Defintions of rubi rules used

rule 27
Int[(a_)*(Fx_), x_Symbol] :> Simp[a   Int[Fx, x], x] /; FreeQ[a, x] &&  !Ma 
tchQ[Fx, (b_)*(Gx_) /; FreeQ[b, x]]
 

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 3115
Int[((b_.)*sin[(c_.) + (d_.)*(x_)])^(n_), x_Symbol] :> Simp[(-b)*Cos[c + d* 
x]*((b*Sin[c + d*x])^(n - 1)/(d*n)), x] + Simp[b^2*((n - 1)/n)   Int[(b*Sin 
[c + d*x])^(n - 2), x], x] /; FreeQ[{b, c, d}, x] && GtQ[n, 1] && IntegerQ[ 
2*n]
 

rule 3119
Int[Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2/d)*EllipticE[(1/2)* 
(c - Pi/2 + d*x), 2], x] /; FreeQ[{c, d}, x]
 

rule 3120
Int[1/Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2/d)*EllipticF[(1/2 
)*(c - Pi/2 + d*x), 2], x] /; FreeQ[{c, d}, x]
 

rule 3227
Int[((b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((c_) + (d_.)*sin[(e_.) + (f_.)*(x 
_)]), x_Symbol] :> Simp[c   Int[(b*Sin[e + f*x])^m, x], x] + Simp[d/b   Int 
[(b*Sin[e + f*x])^(m + 1), x], x] /; FreeQ[{b, c, d, e, f, m}, x]
 

rule 3447
Int[((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_.)*((A_.) + (B_.)*sin[(e_.) 
+ (f_.)*(x_)])*((c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)]), x_Symbol] :> Int[(a 
 + b*Sin[e + f*x])^m*(A*c + (B*c + A*d)*Sin[e + f*x] + B*d*Sin[e + f*x]^2), 
 x] /; FreeQ[{a, b, c, d, e, f, A, B, m}, x] && NeQ[b*c - a*d, 0]
 

rule 3502
Int[((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_.)*((A_.) + (B_.)*sin[(e_.) 
+ (f_.)*(x_)] + (C_.)*sin[(e_.) + (f_.)*(x_)]^2), x_Symbol] :> Simp[(-C)*Co 
s[e + f*x]*((a + b*Sin[e + f*x])^(m + 1)/(b*f*(m + 2))), x] + Simp[1/(b*(m 
+ 2))   Int[(a + b*Sin[e + f*x])^m*Simp[A*b*(m + 2) + b*C*(m + 1) + (b*B*(m 
 + 2) - a*C)*Sin[e + f*x], x], x], x] /; FreeQ[{a, b, e, f, A, B, C, m}, x] 
 &&  !LtQ[m, -1]
 
Maple [B] (verified)

Leaf count of result is larger than twice the leaf count of optimal. \(410\) vs. \(2(142)=284\).

Time = 19.49 (sec) , antiderivative size = 411, normalized size of antiderivative = 2.58

method result size
default \(-\frac {2 \sqrt {\left (2 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-1\right ) \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}}\, a \left (-1120 B \cos \left (\frac {d x}{2}+\frac {c}{2}\right ) \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{10}+\left (720 A +2960 B \right ) \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{8} \cos \left (\frac {d x}{2}+\frac {c}{2}\right )+\left (-1584 A -3152 B \right ) \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{6} \cos \left (\frac {d x}{2}+\frac {c}{2}\right )+\left (1344 A +1792 B \right ) \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{4} \cos \left (\frac {d x}{2}+\frac {c}{2}\right )+\left (-366 A -408 B \right ) \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2} \cos \left (\frac {d x}{2}+\frac {c}{2}\right )+75 A \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {2 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-1}\, \operatorname {EllipticF}\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right )-189 A \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {2 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-1}\, \operatorname {EllipticE}\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right )+75 B \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {2 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-1}\, \operatorname {EllipticF}\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right )-147 B \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {2 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-1}\, \operatorname {EllipticE}\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right )\right )}{315 \sqrt {-2 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{4}+\sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}}\, \sin \left (\frac {d x}{2}+\frac {c}{2}\right ) \sqrt {2 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-1}\, d}\) \(411\)
parts \(-\frac {2 \left (A a +B a \right ) \sqrt {\left (2 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-1\right ) \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}}\, \left (48 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{9}-120 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{7}+128 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{5}-72 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{3}+5 \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {-2 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}+1}\, \operatorname {EllipticF}\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right )+16 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{21 \sqrt {-2 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{4}+\sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}}\, \sin \left (\frac {d x}{2}+\frac {c}{2}\right ) \sqrt {2 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-1}\, d}-\frac {2 A a \sqrt {\left (2 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-1\right ) \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}}\, \left (-8 \cos \left (\frac {d x}{2}+\frac {c}{2}\right ) \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{6}+8 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{4} \cos \left (\frac {d x}{2}+\frac {c}{2}\right )-2 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2} \cos \left (\frac {d x}{2}+\frac {c}{2}\right )-3 \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {2 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-1}\, \operatorname {EllipticE}\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right )\right )}{5 \sqrt {-2 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{4}+\sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}}\, \sin \left (\frac {d x}{2}+\frac {c}{2}\right ) \sqrt {2 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-1}\, d}-\frac {2 B a \sqrt {\left (2 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-1\right ) \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}}\, \left (160 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{11}-480 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{9}+616 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{7}-432 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{5}+160 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{3}-21 \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {-2 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}+1}\, \operatorname {EllipticE}\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right )-24 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{45 \sqrt {-2 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{4}+\sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}}\, \sin \left (\frac {d x}{2}+\frac {c}{2}\right ) \sqrt {2 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-1}\, d}\) \(623\)

Input:

int(cos(d*x+c)^(5/2)*(a+a*cos(d*x+c))*(A+B*cos(d*x+c)),x,method=_RETURNVER 
BOSE)
 

Output:

-2/315*((2*cos(1/2*d*x+1/2*c)^2-1)*sin(1/2*d*x+1/2*c)^2)^(1/2)*a*(-1120*B* 
cos(1/2*d*x+1/2*c)*sin(1/2*d*x+1/2*c)^10+(720*A+2960*B)*sin(1/2*d*x+1/2*c) 
^8*cos(1/2*d*x+1/2*c)+(-1584*A-3152*B)*sin(1/2*d*x+1/2*c)^6*cos(1/2*d*x+1/ 
2*c)+(1344*A+1792*B)*sin(1/2*d*x+1/2*c)^4*cos(1/2*d*x+1/2*c)+(-366*A-408*B 
)*sin(1/2*d*x+1/2*c)^2*cos(1/2*d*x+1/2*c)+75*A*(sin(1/2*d*x+1/2*c)^2)^(1/2 
)*(2*sin(1/2*d*x+1/2*c)^2-1)^(1/2)*EllipticF(cos(1/2*d*x+1/2*c),2^(1/2))-1 
89*A*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(2*sin(1/2*d*x+1/2*c)^2-1)^(1/2)*Ellipti 
cE(cos(1/2*d*x+1/2*c),2^(1/2))+75*B*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(2*sin(1/ 
2*d*x+1/2*c)^2-1)^(1/2)*EllipticF(cos(1/2*d*x+1/2*c),2^(1/2))-147*B*(sin(1 
/2*d*x+1/2*c)^2)^(1/2)*(2*sin(1/2*d*x+1/2*c)^2-1)^(1/2)*EllipticE(cos(1/2* 
d*x+1/2*c),2^(1/2)))/(-2*sin(1/2*d*x+1/2*c)^4+sin(1/2*d*x+1/2*c)^2)^(1/2)/ 
sin(1/2*d*x+1/2*c)/(2*cos(1/2*d*x+1/2*c)^2-1)^(1/2)/d
 

Fricas [C] (verification not implemented)

Result contains complex when optimal does not.

Time = 0.10 (sec) , antiderivative size = 193, normalized size of antiderivative = 1.21 \[ \int \cos ^{\frac {5}{2}}(c+d x) (a+a \cos (c+d x)) (A+B \cos (c+d x)) \, dx=\frac {-75 i \, \sqrt {2} {\left (A + B\right )} a {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) + i \, \sin \left (d x + c\right )\right ) + 75 i \, \sqrt {2} {\left (A + B\right )} a {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) - i \, \sin \left (d x + c\right )\right ) + 21 i \, \sqrt {2} {\left (9 \, A + 7 \, B\right )} a {\rm weierstrassZeta}\left (-4, 0, {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) + i \, \sin \left (d x + c\right )\right )\right ) - 21 i \, \sqrt {2} {\left (9 \, A + 7 \, B\right )} a {\rm weierstrassZeta}\left (-4, 0, {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) - i \, \sin \left (d x + c\right )\right )\right ) + 2 \, {\left (35 \, B a \cos \left (d x + c\right )^{3} + 45 \, {\left (A + B\right )} a \cos \left (d x + c\right )^{2} + 7 \, {\left (9 \, A + 7 \, B\right )} a \cos \left (d x + c\right ) + 75 \, {\left (A + B\right )} a\right )} \sqrt {\cos \left (d x + c\right )} \sin \left (d x + c\right )}{315 \, d} \] Input:

integrate(cos(d*x+c)^(5/2)*(a+a*cos(d*x+c))*(A+B*cos(d*x+c)),x, algorithm= 
"fricas")
 

Output:

1/315*(-75*I*sqrt(2)*(A + B)*a*weierstrassPInverse(-4, 0, cos(d*x + c) + I 
*sin(d*x + c)) + 75*I*sqrt(2)*(A + B)*a*weierstrassPInverse(-4, 0, cos(d*x 
 + c) - I*sin(d*x + c)) + 21*I*sqrt(2)*(9*A + 7*B)*a*weierstrassZeta(-4, 0 
, weierstrassPInverse(-4, 0, cos(d*x + c) + I*sin(d*x + c))) - 21*I*sqrt(2 
)*(9*A + 7*B)*a*weierstrassZeta(-4, 0, weierstrassPInverse(-4, 0, cos(d*x 
+ c) - I*sin(d*x + c))) + 2*(35*B*a*cos(d*x + c)^3 + 45*(A + B)*a*cos(d*x 
+ c)^2 + 7*(9*A + 7*B)*a*cos(d*x + c) + 75*(A + B)*a)*sqrt(cos(d*x + c))*s 
in(d*x + c))/d
 

Sympy [F(-1)]

Timed out. \[ \int \cos ^{\frac {5}{2}}(c+d x) (a+a \cos (c+d x)) (A+B \cos (c+d x)) \, dx=\text {Timed out} \] Input:

integrate(cos(d*x+c)**(5/2)*(a+a*cos(d*x+c))*(A+B*cos(d*x+c)),x)
 

Output:

Timed out
 

Maxima [F]

\[ \int \cos ^{\frac {5}{2}}(c+d x) (a+a \cos (c+d x)) (A+B \cos (c+d x)) \, dx=\int { {\left (B \cos \left (d x + c\right ) + A\right )} {\left (a \cos \left (d x + c\right ) + a\right )} \cos \left (d x + c\right )^{\frac {5}{2}} \,d x } \] Input:

integrate(cos(d*x+c)^(5/2)*(a+a*cos(d*x+c))*(A+B*cos(d*x+c)),x, algorithm= 
"maxima")
 

Output:

integrate((B*cos(d*x + c) + A)*(a*cos(d*x + c) + a)*cos(d*x + c)^(5/2), x)
 

Giac [F]

\[ \int \cos ^{\frac {5}{2}}(c+d x) (a+a \cos (c+d x)) (A+B \cos (c+d x)) \, dx=\int { {\left (B \cos \left (d x + c\right ) + A\right )} {\left (a \cos \left (d x + c\right ) + a\right )} \cos \left (d x + c\right )^{\frac {5}{2}} \,d x } \] Input:

integrate(cos(d*x+c)^(5/2)*(a+a*cos(d*x+c))*(A+B*cos(d*x+c)),x, algorithm= 
"giac")
 

Output:

integrate((B*cos(d*x + c) + A)*(a*cos(d*x + c) + a)*cos(d*x + c)^(5/2), x)
 

Mupad [B] (verification not implemented)

Time = 42.12 (sec) , antiderivative size = 177, normalized size of antiderivative = 1.11 \[ \int \cos ^{\frac {5}{2}}(c+d x) (a+a \cos (c+d x)) (A+B \cos (c+d x)) \, dx=-\frac {2\,A\,a\,{\cos \left (c+d\,x\right )}^{7/2}\,\sin \left (c+d\,x\right )\,{{}}_2{\mathrm {F}}_1\left (\frac {1}{2},\frac {7}{4};\ \frac {11}{4};\ {\cos \left (c+d\,x\right )}^2\right )}{7\,d\,\sqrt {{\sin \left (c+d\,x\right )}^2}}-\frac {2\,A\,a\,{\cos \left (c+d\,x\right )}^{9/2}\,\sin \left (c+d\,x\right )\,{{}}_2{\mathrm {F}}_1\left (\frac {1}{2},\frac {9}{4};\ \frac {13}{4};\ {\cos \left (c+d\,x\right )}^2\right )}{9\,d\,\sqrt {{\sin \left (c+d\,x\right )}^2}}-\frac {2\,B\,a\,{\cos \left (c+d\,x\right )}^{9/2}\,\sin \left (c+d\,x\right )\,{{}}_2{\mathrm {F}}_1\left (\frac {1}{2},\frac {9}{4};\ \frac {13}{4};\ {\cos \left (c+d\,x\right )}^2\right )}{9\,d\,\sqrt {{\sin \left (c+d\,x\right )}^2}}-\frac {2\,B\,a\,{\cos \left (c+d\,x\right )}^{11/2}\,\sin \left (c+d\,x\right )\,{{}}_2{\mathrm {F}}_1\left (\frac {1}{2},\frac {11}{4};\ \frac {15}{4};\ {\cos \left (c+d\,x\right )}^2\right )}{11\,d\,\sqrt {{\sin \left (c+d\,x\right )}^2}} \] Input:

int(cos(c + d*x)^(5/2)*(A + B*cos(c + d*x))*(a + a*cos(c + d*x)),x)
 

Output:

- (2*A*a*cos(c + d*x)^(7/2)*sin(c + d*x)*hypergeom([1/2, 7/4], 11/4, cos(c 
 + d*x)^2))/(7*d*(sin(c + d*x)^2)^(1/2)) - (2*A*a*cos(c + d*x)^(9/2)*sin(c 
 + d*x)*hypergeom([1/2, 9/4], 13/4, cos(c + d*x)^2))/(9*d*(sin(c + d*x)^2) 
^(1/2)) - (2*B*a*cos(c + d*x)^(9/2)*sin(c + d*x)*hypergeom([1/2, 9/4], 13/ 
4, cos(c + d*x)^2))/(9*d*(sin(c + d*x)^2)^(1/2)) - (2*B*a*cos(c + d*x)^(11 
/2)*sin(c + d*x)*hypergeom([1/2, 11/4], 15/4, cos(c + d*x)^2))/(11*d*(sin( 
c + d*x)^2)^(1/2))
 

Reduce [F]

\[ \int \cos ^{\frac {5}{2}}(c+d x) (a+a \cos (c+d x)) (A+B \cos (c+d x)) \, dx=a \left (\left (\int \sqrt {\cos \left (d x +c \right )}\, \cos \left (d x +c \right )^{4}d x \right ) b +\left (\int \sqrt {\cos \left (d x +c \right )}\, \cos \left (d x +c \right )^{3}d x \right ) a +\left (\int \sqrt {\cos \left (d x +c \right )}\, \cos \left (d x +c \right )^{3}d x \right ) b +\left (\int \sqrt {\cos \left (d x +c \right )}\, \cos \left (d x +c \right )^{2}d x \right ) a \right ) \] Input:

int(cos(d*x+c)^(5/2)*(a+a*cos(d*x+c))*(A+B*cos(d*x+c)),x)
 

Output:

a*(int(sqrt(cos(c + d*x))*cos(c + d*x)**4,x)*b + int(sqrt(cos(c + d*x))*co 
s(c + d*x)**3,x)*a + int(sqrt(cos(c + d*x))*cos(c + d*x)**3,x)*b + int(sqr 
t(cos(c + d*x))*cos(c + d*x)**2,x)*a)