\(\int \frac {(a+a \cos (c+d x)) (A+B \cos (c+d x))}{\cos ^{\frac {3}{2}}(c+d x)} \, dx\) [127]

Optimal result
Mathematica [C] (warning: unable to verify)
Rubi [A] (verified)
Maple [B] (verified)
Fricas [C] (verification not implemented)
Sympy [F(-1)]
Maxima [F]
Giac [F]
Mupad [B] (verification not implemented)
Reduce [F]

Optimal result

Integrand size = 31, antiderivative size = 66 \[ \int \frac {(a+a \cos (c+d x)) (A+B \cos (c+d x))}{\cos ^{\frac {3}{2}}(c+d x)} \, dx=-\frac {2 a (A-B) E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{d}+\frac {2 a (A+B) \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),2\right )}{d}+\frac {2 a A \sin (c+d x)}{d \sqrt {\cos (c+d x)}} \] Output:

-2*a*(A-B)*EllipticE(sin(1/2*d*x+1/2*c),2^(1/2))/d+2*a*(A+B)*InverseJacobi 
AM(1/2*d*x+1/2*c,2^(1/2))/d+2*a*A*sin(d*x+c)/d/cos(d*x+c)^(1/2)
                                                                                    
                                                                                    
 

Mathematica [C] (warning: unable to verify)

Result contains higher order function than in optimal. Order 5 vs. order 4 in optimal.

Time = 6.93 (sec) , antiderivative size = 783, normalized size of antiderivative = 11.86 \[ \int \frac {(a+a \cos (c+d x)) (A+B \cos (c+d x))}{\cos ^{\frac {3}{2}}(c+d x)} \, dx =\text {Too large to display} \] Input:

Integrate[((a + a*Cos[c + d*x])*(A + B*Cos[c + d*x]))/Cos[c + d*x]^(3/2),x 
]
 

Output:

a*(Sqrt[Cos[c + d*x]]*(1 + Cos[c + d*x])*Sec[c/2 + (d*x)/2]^2*(-1/2*((-2*A 
 + B + B*Cos[2*c])*Csc[c]*Sec[c])/d + (A*Sec[c]*Sec[c + d*x]*Sin[d*x])/d) 
- (A*(1 + Cos[c + d*x])*Csc[c]*HypergeometricPFQ[{1/4, 1/2}, {5/4}, Sin[d* 
x - ArcTan[Cot[c]]]^2]*Sec[c/2 + (d*x)/2]^2*Sec[d*x - ArcTan[Cot[c]]]*Sqrt 
[1 - Sin[d*x - ArcTan[Cot[c]]]]*Sqrt[-(Sqrt[1 + Cot[c]^2]*Sin[c]*Sin[d*x - 
 ArcTan[Cot[c]]])]*Sqrt[1 + Sin[d*x - ArcTan[Cot[c]]]])/(d*Sqrt[1 + Cot[c] 
^2]) - (B*(1 + Cos[c + d*x])*Csc[c]*HypergeometricPFQ[{1/4, 1/2}, {5/4}, S 
in[d*x - ArcTan[Cot[c]]]^2]*Sec[c/2 + (d*x)/2]^2*Sec[d*x - ArcTan[Cot[c]]] 
*Sqrt[1 - Sin[d*x - ArcTan[Cot[c]]]]*Sqrt[-(Sqrt[1 + Cot[c]^2]*Sin[c]*Sin[ 
d*x - ArcTan[Cot[c]]])]*Sqrt[1 + Sin[d*x - ArcTan[Cot[c]]]])/(d*Sqrt[1 + C 
ot[c]^2]) + (A*(1 + Cos[c + d*x])*Csc[c]*Sec[c/2 + (d*x)/2]^2*((Hypergeome 
tricPFQ[{-1/2, -1/4}, {3/4}, Cos[d*x + ArcTan[Tan[c]]]^2]*Sin[d*x + ArcTan 
[Tan[c]]]*Tan[c])/(Sqrt[1 - Cos[d*x + ArcTan[Tan[c]]]]*Sqrt[1 + Cos[d*x + 
ArcTan[Tan[c]]]]*Sqrt[Cos[c]*Cos[d*x + ArcTan[Tan[c]]]*Sqrt[1 + Tan[c]^2]] 
*Sqrt[1 + Tan[c]^2]) - ((Sin[d*x + ArcTan[Tan[c]]]*Tan[c])/Sqrt[1 + Tan[c] 
^2] + (2*Cos[c]^2*Cos[d*x + ArcTan[Tan[c]]]*Sqrt[1 + Tan[c]^2])/(Cos[c]^2 
+ Sin[c]^2))/Sqrt[Cos[c]*Cos[d*x + ArcTan[Tan[c]]]*Sqrt[1 + Tan[c]^2]]))/( 
2*d) - (B*(1 + Cos[c + d*x])*Csc[c]*Sec[c/2 + (d*x)/2]^2*((HypergeometricP 
FQ[{-1/2, -1/4}, {3/4}, Cos[d*x + ArcTan[Tan[c]]]^2]*Sin[d*x + ArcTan[Tan[ 
c]]]*Tan[c])/(Sqrt[1 - Cos[d*x + ArcTan[Tan[c]]]]*Sqrt[1 + Cos[d*x + Ar...
 

Rubi [A] (verified)

Time = 0.53 (sec) , antiderivative size = 66, normalized size of antiderivative = 1.00, number of steps used = 10, number of rules used = 10, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.323, Rules used = {3042, 3447, 3042, 3500, 27, 3042, 3227, 3042, 3119, 3120}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {(a \cos (c+d x)+a) (A+B \cos (c+d x))}{\cos ^{\frac {3}{2}}(c+d x)} \, dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \frac {\left (a \sin \left (c+d x+\frac {\pi }{2}\right )+a\right ) \left (A+B \sin \left (c+d x+\frac {\pi }{2}\right )\right )}{\sin \left (c+d x+\frac {\pi }{2}\right )^{3/2}}dx\)

\(\Big \downarrow \) 3447

\(\displaystyle \int \frac {(a A+a B) \cos (c+d x)+a A+a B \cos ^2(c+d x)}{\cos ^{\frac {3}{2}}(c+d x)}dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \frac {(a A+a B) \sin \left (c+d x+\frac {\pi }{2}\right )+a A+a B \sin \left (c+d x+\frac {\pi }{2}\right )^2}{\sin \left (c+d x+\frac {\pi }{2}\right )^{3/2}}dx\)

\(\Big \downarrow \) 3500

\(\displaystyle 2 \int \frac {a (A+B)-a (A-B) \cos (c+d x)}{2 \sqrt {\cos (c+d x)}}dx+\frac {2 a A \sin (c+d x)}{d \sqrt {\cos (c+d x)}}\)

\(\Big \downarrow \) 27

\(\displaystyle \int \frac {a (A+B)-a (A-B) \cos (c+d x)}{\sqrt {\cos (c+d x)}}dx+\frac {2 a A \sin (c+d x)}{d \sqrt {\cos (c+d x)}}\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \frac {a (A+B)-a (A-B) \sin \left (c+d x+\frac {\pi }{2}\right )}{\sqrt {\sin \left (c+d x+\frac {\pi }{2}\right )}}dx+\frac {2 a A \sin (c+d x)}{d \sqrt {\cos (c+d x)}}\)

\(\Big \downarrow \) 3227

\(\displaystyle a (A+B) \int \frac {1}{\sqrt {\cos (c+d x)}}dx-a (A-B) \int \sqrt {\cos (c+d x)}dx+\frac {2 a A \sin (c+d x)}{d \sqrt {\cos (c+d x)}}\)

\(\Big \downarrow \) 3042

\(\displaystyle a (A+B) \int \frac {1}{\sqrt {\sin \left (c+d x+\frac {\pi }{2}\right )}}dx-a (A-B) \int \sqrt {\sin \left (c+d x+\frac {\pi }{2}\right )}dx+\frac {2 a A \sin (c+d x)}{d \sqrt {\cos (c+d x)}}\)

\(\Big \downarrow \) 3119

\(\displaystyle a (A+B) \int \frac {1}{\sqrt {\sin \left (c+d x+\frac {\pi }{2}\right )}}dx-\frac {2 a (A-B) E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{d}+\frac {2 a A \sin (c+d x)}{d \sqrt {\cos (c+d x)}}\)

\(\Big \downarrow \) 3120

\(\displaystyle \frac {2 a (A+B) \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),2\right )}{d}-\frac {2 a (A-B) E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{d}+\frac {2 a A \sin (c+d x)}{d \sqrt {\cos (c+d x)}}\)

Input:

Int[((a + a*Cos[c + d*x])*(A + B*Cos[c + d*x]))/Cos[c + d*x]^(3/2),x]
 

Output:

(-2*a*(A - B)*EllipticE[(c + d*x)/2, 2])/d + (2*a*(A + B)*EllipticF[(c + d 
*x)/2, 2])/d + (2*a*A*Sin[c + d*x])/(d*Sqrt[Cos[c + d*x]])
 

Defintions of rubi rules used

rule 27
Int[(a_)*(Fx_), x_Symbol] :> Simp[a   Int[Fx, x], x] /; FreeQ[a, x] &&  !Ma 
tchQ[Fx, (b_)*(Gx_) /; FreeQ[b, x]]
 

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 3119
Int[Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2/d)*EllipticE[(1/2)* 
(c - Pi/2 + d*x), 2], x] /; FreeQ[{c, d}, x]
 

rule 3120
Int[1/Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2/d)*EllipticF[(1/2 
)*(c - Pi/2 + d*x), 2], x] /; FreeQ[{c, d}, x]
 

rule 3227
Int[((b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((c_) + (d_.)*sin[(e_.) + (f_.)*(x 
_)]), x_Symbol] :> Simp[c   Int[(b*Sin[e + f*x])^m, x], x] + Simp[d/b   Int 
[(b*Sin[e + f*x])^(m + 1), x], x] /; FreeQ[{b, c, d, e, f, m}, x]
 

rule 3447
Int[((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_.)*((A_.) + (B_.)*sin[(e_.) 
+ (f_.)*(x_)])*((c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)]), x_Symbol] :> Int[(a 
 + b*Sin[e + f*x])^m*(A*c + (B*c + A*d)*Sin[e + f*x] + B*d*Sin[e + f*x]^2), 
 x] /; FreeQ[{a, b, c, d, e, f, A, B, m}, x] && NeQ[b*c - a*d, 0]
 

rule 3500
Int[((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((A_.) + (B_.)*sin[(e_.) + 
 (f_.)*(x_)] + (C_.)*sin[(e_.) + (f_.)*(x_)]^2), x_Symbol] :> Simp[(-(A*b^2 
 - a*b*B + a^2*C))*Cos[e + f*x]*((a + b*Sin[e + f*x])^(m + 1)/(b*f*(m + 1)* 
(a^2 - b^2))), x] + Simp[1/(b*(m + 1)*(a^2 - b^2))   Int[(a + b*Sin[e + f*x 
])^(m + 1)*Simp[b*(a*A - b*B + a*C)*(m + 1) - (A*b^2 - a*b*B + a^2*C + b*(A 
*b - a*B + b*C)*(m + 1))*Sin[e + f*x], x], x], x] /; FreeQ[{a, b, e, f, A, 
B, C}, x] && LtQ[m, -1] && NeQ[a^2 - b^2, 0]
 
Maple [B] (verified)

Leaf count of result is larger than twice the leaf count of optimal. \(241\) vs. \(2(67)=134\).

Time = 4.72 (sec) , antiderivative size = 242, normalized size of antiderivative = 3.67

method result size
default \(\frac {2 a \left (2 A \cos \left (\frac {d x}{2}+\frac {c}{2}\right ) \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-A \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {2 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-1}\, \operatorname {EllipticF}\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right )-A \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {2 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-1}\, \operatorname {EllipticE}\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right )-B \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {2 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-1}\, \operatorname {EllipticF}\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right )+B \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {2 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-1}\, \operatorname {EllipticE}\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right )\right )}{\sin \left (\frac {d x}{2}+\frac {c}{2}\right ) \sqrt {2 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-1}\, d}\) \(242\)
parts \(\frac {2 \left (A a +B a \right ) \operatorname {InverseJacobiAM}\left (\frac {d x}{2}+\frac {c}{2}, \sqrt {2}\right )}{d}-\frac {2 A a \left (-2 \cos \left (\frac {d x}{2}+\frac {c}{2}\right ) \sqrt {-2 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{4}+\sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}}\, \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}+\sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {2 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-1}\, \sqrt {-2 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{4}+\sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}}\, \operatorname {EllipticE}\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right )\right )}{\sqrt {-2 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{4}+\sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}}\, \sin \left (\frac {d x}{2}+\frac {c}{2}\right ) \sqrt {2 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-1}\, d}+\frac {2 B a \sqrt {\left (2 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-1\right ) \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}}\, \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {-2 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}+1}\, \operatorname {EllipticE}\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right )}{\sqrt {-2 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{4}+\sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}}\, \sin \left (\frac {d x}{2}+\frac {c}{2}\right ) \sqrt {2 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-1}\, d}\) \(343\)

Input:

int((a+a*cos(d*x+c))*(A+B*cos(d*x+c))/cos(d*x+c)^(3/2),x,method=_RETURNVER 
BOSE)
 

Output:

2*a*(2*A*cos(1/2*d*x+1/2*c)*sin(1/2*d*x+1/2*c)^2-A*(sin(1/2*d*x+1/2*c)^2)^ 
(1/2)*(2*sin(1/2*d*x+1/2*c)^2-1)^(1/2)*EllipticF(cos(1/2*d*x+1/2*c),2^(1/2 
))-A*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(2*sin(1/2*d*x+1/2*c)^2-1)^(1/2)*Ellipti 
cE(cos(1/2*d*x+1/2*c),2^(1/2))-B*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(2*sin(1/2*d 
*x+1/2*c)^2-1)^(1/2)*EllipticF(cos(1/2*d*x+1/2*c),2^(1/2))+B*(sin(1/2*d*x+ 
1/2*c)^2)^(1/2)*(2*sin(1/2*d*x+1/2*c)^2-1)^(1/2)*EllipticE(cos(1/2*d*x+1/2 
*c),2^(1/2)))/sin(1/2*d*x+1/2*c)/(2*cos(1/2*d*x+1/2*c)^2-1)^(1/2)/d
 

Fricas [C] (verification not implemented)

Result contains complex when optimal does not.

Time = 0.09 (sec) , antiderivative size = 173, normalized size of antiderivative = 2.62 \[ \int \frac {(a+a \cos (c+d x)) (A+B \cos (c+d x))}{\cos ^{\frac {3}{2}}(c+d x)} \, dx=\frac {-i \, \sqrt {2} {\left (A + B\right )} a \cos \left (d x + c\right ) {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) + i \, \sin \left (d x + c\right )\right ) + i \, \sqrt {2} {\left (A + B\right )} a \cos \left (d x + c\right ) {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) - i \, \sin \left (d x + c\right )\right ) - i \, \sqrt {2} {\left (A - B\right )} a \cos \left (d x + c\right ) {\rm weierstrassZeta}\left (-4, 0, {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) + i \, \sin \left (d x + c\right )\right )\right ) + i \, \sqrt {2} {\left (A - B\right )} a \cos \left (d x + c\right ) {\rm weierstrassZeta}\left (-4, 0, {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) - i \, \sin \left (d x + c\right )\right )\right ) + 2 \, A a \sqrt {\cos \left (d x + c\right )} \sin \left (d x + c\right )}{d \cos \left (d x + c\right )} \] Input:

integrate((a+a*cos(d*x+c))*(A+B*cos(d*x+c))/cos(d*x+c)^(3/2),x, algorithm= 
"fricas")
 

Output:

(-I*sqrt(2)*(A + B)*a*cos(d*x + c)*weierstrassPInverse(-4, 0, cos(d*x + c) 
 + I*sin(d*x + c)) + I*sqrt(2)*(A + B)*a*cos(d*x + c)*weierstrassPInverse( 
-4, 0, cos(d*x + c) - I*sin(d*x + c)) - I*sqrt(2)*(A - B)*a*cos(d*x + c)*w 
eierstrassZeta(-4, 0, weierstrassPInverse(-4, 0, cos(d*x + c) + I*sin(d*x 
+ c))) + I*sqrt(2)*(A - B)*a*cos(d*x + c)*weierstrassZeta(-4, 0, weierstra 
ssPInverse(-4, 0, cos(d*x + c) - I*sin(d*x + c))) + 2*A*a*sqrt(cos(d*x + c 
))*sin(d*x + c))/(d*cos(d*x + c))
 

Sympy [F(-1)]

Timed out. \[ \int \frac {(a+a \cos (c+d x)) (A+B \cos (c+d x))}{\cos ^{\frac {3}{2}}(c+d x)} \, dx=\text {Timed out} \] Input:

integrate((a+a*cos(d*x+c))*(A+B*cos(d*x+c))/cos(d*x+c)**(3/2),x)
 

Output:

Timed out
 

Maxima [F]

\[ \int \frac {(a+a \cos (c+d x)) (A+B \cos (c+d x))}{\cos ^{\frac {3}{2}}(c+d x)} \, dx=\int { \frac {{\left (B \cos \left (d x + c\right ) + A\right )} {\left (a \cos \left (d x + c\right ) + a\right )}}{\cos \left (d x + c\right )^{\frac {3}{2}}} \,d x } \] Input:

integrate((a+a*cos(d*x+c))*(A+B*cos(d*x+c))/cos(d*x+c)^(3/2),x, algorithm= 
"maxima")
 

Output:

integrate((B*cos(d*x + c) + A)*(a*cos(d*x + c) + a)/cos(d*x + c)^(3/2), x)
 

Giac [F]

\[ \int \frac {(a+a \cos (c+d x)) (A+B \cos (c+d x))}{\cos ^{\frac {3}{2}}(c+d x)} \, dx=\int { \frac {{\left (B \cos \left (d x + c\right ) + A\right )} {\left (a \cos \left (d x + c\right ) + a\right )}}{\cos \left (d x + c\right )^{\frac {3}{2}}} \,d x } \] Input:

integrate((a+a*cos(d*x+c))*(A+B*cos(d*x+c))/cos(d*x+c)^(3/2),x, algorithm= 
"giac")
 

Output:

integrate((B*cos(d*x + c) + A)*(a*cos(d*x + c) + a)/cos(d*x + c)^(3/2), x)
 

Mupad [B] (verification not implemented)

Time = 42.18 (sec) , antiderivative size = 90, normalized size of antiderivative = 1.36 \[ \int \frac {(a+a \cos (c+d x)) (A+B \cos (c+d x))}{\cos ^{\frac {3}{2}}(c+d x)} \, dx=\frac {2\,A\,a\,\mathrm {F}\left (\frac {c}{2}+\frac {d\,x}{2}\middle |2\right )}{d}+\frac {2\,B\,a\,\left (\mathrm {E}\left (\frac {c}{2}+\frac {d\,x}{2}\middle |2\right )+\mathrm {F}\left (\frac {c}{2}+\frac {d\,x}{2}\middle |2\right )\right )}{d}+\frac {2\,A\,a\,\sin \left (c+d\,x\right )\,{{}}_2{\mathrm {F}}_1\left (-\frac {1}{4},\frac {1}{2};\ \frac {3}{4};\ {\cos \left (c+d\,x\right )}^2\right )}{d\,\sqrt {\cos \left (c+d\,x\right )}\,\sqrt {{\sin \left (c+d\,x\right )}^2}} \] Input:

int(((A + B*cos(c + d*x))*(a + a*cos(c + d*x)))/cos(c + d*x)^(3/2),x)
 

Output:

(2*A*a*ellipticF(c/2 + (d*x)/2, 2))/d + (2*B*a*(ellipticE(c/2 + (d*x)/2, 2 
) + ellipticF(c/2 + (d*x)/2, 2)))/d + (2*A*a*sin(c + d*x)*hypergeom([-1/4, 
 1/2], 3/4, cos(c + d*x)^2))/(d*cos(c + d*x)^(1/2)*(sin(c + d*x)^2)^(1/2))
 

Reduce [F]

\[ \int \frac {(a+a \cos (c+d x)) (A+B \cos (c+d x))}{\cos ^{\frac {3}{2}}(c+d x)} \, dx=a \left (\left (\int \frac {\sqrt {\cos \left (d x +c \right )}}{\cos \left (d x +c \right )}d x \right ) a +\left (\int \frac {\sqrt {\cos \left (d x +c \right )}}{\cos \left (d x +c \right )}d x \right ) b +\left (\int \frac {\sqrt {\cos \left (d x +c \right )}}{\cos \left (d x +c \right )^{2}}d x \right ) a +\left (\int \sqrt {\cos \left (d x +c \right )}d x \right ) b \right ) \] Input:

int((a+a*cos(d*x+c))*(A+B*cos(d*x+c))/cos(d*x+c)^(3/2),x)
 

Output:

a*(int(sqrt(cos(c + d*x))/cos(c + d*x),x)*a + int(sqrt(cos(c + d*x))/cos(c 
 + d*x),x)*b + int(sqrt(cos(c + d*x))/cos(c + d*x)**2,x)*a + int(sqrt(cos( 
c + d*x)),x)*b)