\(\int \frac {(a+a \cos (c+d x))^2 (A+B \cos (c+d x))}{\cos ^{\frac {3}{2}}(c+d x)} \, dx\) [133]

Optimal result
Mathematica [C] (warning: unable to verify)
Rubi [A] (verified)
Maple [B] (verified)
Fricas [C] (verification not implemented)
Sympy [F(-1)]
Maxima [F]
Giac [F]
Mupad [B] (verification not implemented)
Reduce [F]

Optimal result

Integrand size = 33, antiderivative size = 118 \[ \int \frac {(a+a \cos (c+d x))^2 (A+B \cos (c+d x))}{\cos ^{\frac {3}{2}}(c+d x)} \, dx=\frac {4 a^2 B E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{d}+\frac {4 a^2 (3 A+2 B) \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),2\right )}{3 d}-\frac {2 a^2 (3 A-B) \sqrt {\cos (c+d x)} \sin (c+d x)}{3 d}+\frac {2 A \left (a^2+a^2 \cos (c+d x)\right ) \sin (c+d x)}{d \sqrt {\cos (c+d x)}} \] Output:

4*a^2*B*EllipticE(sin(1/2*d*x+1/2*c),2^(1/2))/d+4/3*a^2*(3*A+2*B)*InverseJ 
acobiAM(1/2*d*x+1/2*c,2^(1/2))/d-2/3*a^2*(3*A-B)*cos(d*x+c)^(1/2)*sin(d*x+ 
c)/d+2*A*(a^2+a^2*cos(d*x+c))*sin(d*x+c)/d/cos(d*x+c)^(1/2)
                                                                                    
                                                                                    
 

Mathematica [C] (warning: unable to verify)

Result contains higher order function than in optimal. Order 5 vs. order 4 in optimal.

Time = 7.74 (sec) , antiderivative size = 623, normalized size of antiderivative = 5.28 \[ \int \frac {(a+a \cos (c+d x))^2 (A+B \cos (c+d x))}{\cos ^{\frac {3}{2}}(c+d x)} \, dx=\sqrt {\cos (c+d x)} (a+a \cos (c+d x))^2 \sec ^4\left (\frac {c}{2}+\frac {d x}{2}\right ) \left (-\frac {(-A+2 B+A \cos (2 c)+2 B \cos (2 c)) \csc (c) \sec (c)}{4 d}+\frac {B \cos (d x) \sin (c)}{6 d}+\frac {B \cos (c) \sin (d x)}{6 d}+\frac {A \sec (c) \sec (c+d x) \sin (d x)}{2 d}\right )-\frac {A (a+a \cos (c+d x))^2 \csc (c) \, _2F_1\left (\frac {1}{4},\frac {1}{2};\frac {5}{4};\sin ^2(d x-\arctan (\cot (c)))\right ) \sec ^4\left (\frac {c}{2}+\frac {d x}{2}\right ) \sec (d x-\arctan (\cot (c))) \sqrt {1-\sin (d x-\arctan (\cot (c)))} \sqrt {-\sqrt {1+\cot ^2(c)} \sin (c) \sin (d x-\arctan (\cot (c)))} \sqrt {1+\sin (d x-\arctan (\cot (c)))}}{d \sqrt {1+\cot ^2(c)}}-\frac {2 B (a+a \cos (c+d x))^2 \csc (c) \, _2F_1\left (\frac {1}{4},\frac {1}{2};\frac {5}{4};\sin ^2(d x-\arctan (\cot (c)))\right ) \sec ^4\left (\frac {c}{2}+\frac {d x}{2}\right ) \sec (d x-\arctan (\cot (c))) \sqrt {1-\sin (d x-\arctan (\cot (c)))} \sqrt {-\sqrt {1+\cot ^2(c)} \sin (c) \sin (d x-\arctan (\cot (c)))} \sqrt {1+\sin (d x-\arctan (\cot (c)))}}{3 d \sqrt {1+\cot ^2(c)}}-\frac {B (a+a \cos (c+d x))^2 \csc (c) \sec ^4\left (\frac {c}{2}+\frac {d x}{2}\right ) \left (\frac {\, _2F_1\left (-\frac {1}{2},-\frac {1}{4};\frac {3}{4};\cos ^2(d x+\arctan (\tan (c)))\right ) \sin (d x+\arctan (\tan (c))) \tan (c)}{\sqrt {1-\cos (d x+\arctan (\tan (c)))} \sqrt {1+\cos (d x+\arctan (\tan (c)))} \sqrt {\cos (c) \cos (d x+\arctan (\tan (c))) \sqrt {1+\tan ^2(c)}} \sqrt {1+\tan ^2(c)}}-\frac {\frac {\sin (d x+\arctan (\tan (c))) \tan (c)}{\sqrt {1+\tan ^2(c)}}+\frac {2 \cos ^2(c) \cos (d x+\arctan (\tan (c))) \sqrt {1+\tan ^2(c)}}{\cos ^2(c)+\sin ^2(c)}}{\sqrt {\cos (c) \cos (d x+\arctan (\tan (c))) \sqrt {1+\tan ^2(c)}}}\right )}{2 d} \] Input:

Integrate[((a + a*Cos[c + d*x])^2*(A + B*Cos[c + d*x]))/Cos[c + d*x]^(3/2) 
,x]
 

Output:

Sqrt[Cos[c + d*x]]*(a + a*Cos[c + d*x])^2*Sec[c/2 + (d*x)/2]^4*(-1/4*((-A 
+ 2*B + A*Cos[2*c] + 2*B*Cos[2*c])*Csc[c]*Sec[c])/d + (B*Cos[d*x]*Sin[c])/ 
(6*d) + (B*Cos[c]*Sin[d*x])/(6*d) + (A*Sec[c]*Sec[c + d*x]*Sin[d*x])/(2*d) 
) - (A*(a + a*Cos[c + d*x])^2*Csc[c]*HypergeometricPFQ[{1/4, 1/2}, {5/4}, 
Sin[d*x - ArcTan[Cot[c]]]^2]*Sec[c/2 + (d*x)/2]^4*Sec[d*x - ArcTan[Cot[c]] 
]*Sqrt[1 - Sin[d*x - ArcTan[Cot[c]]]]*Sqrt[-(Sqrt[1 + Cot[c]^2]*Sin[c]*Sin 
[d*x - ArcTan[Cot[c]]])]*Sqrt[1 + Sin[d*x - ArcTan[Cot[c]]]])/(d*Sqrt[1 + 
Cot[c]^2]) - (2*B*(a + a*Cos[c + d*x])^2*Csc[c]*HypergeometricPFQ[{1/4, 1/ 
2}, {5/4}, Sin[d*x - ArcTan[Cot[c]]]^2]*Sec[c/2 + (d*x)/2]^4*Sec[d*x - Arc 
Tan[Cot[c]]]*Sqrt[1 - Sin[d*x - ArcTan[Cot[c]]]]*Sqrt[-(Sqrt[1 + Cot[c]^2] 
*Sin[c]*Sin[d*x - ArcTan[Cot[c]]])]*Sqrt[1 + Sin[d*x - ArcTan[Cot[c]]]])/( 
3*d*Sqrt[1 + Cot[c]^2]) - (B*(a + a*Cos[c + d*x])^2*Csc[c]*Sec[c/2 + (d*x) 
/2]^4*((HypergeometricPFQ[{-1/2, -1/4}, {3/4}, Cos[d*x + ArcTan[Tan[c]]]^2 
]*Sin[d*x + ArcTan[Tan[c]]]*Tan[c])/(Sqrt[1 - Cos[d*x + ArcTan[Tan[c]]]]*S 
qrt[1 + Cos[d*x + ArcTan[Tan[c]]]]*Sqrt[Cos[c]*Cos[d*x + ArcTan[Tan[c]]]*S 
qrt[1 + Tan[c]^2]]*Sqrt[1 + Tan[c]^2]) - ((Sin[d*x + ArcTan[Tan[c]]]*Tan[c 
])/Sqrt[1 + Tan[c]^2] + (2*Cos[c]^2*Cos[d*x + ArcTan[Tan[c]]]*Sqrt[1 + Tan 
[c]^2])/(Cos[c]^2 + Sin[c]^2))/Sqrt[Cos[c]*Cos[d*x + ArcTan[Tan[c]]]*Sqrt[ 
1 + Tan[c]^2]]))/(2*d)
 

Rubi [A] (verified)

Time = 0.83 (sec) , antiderivative size = 121, normalized size of antiderivative = 1.03, number of steps used = 12, number of rules used = 12, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.364, Rules used = {3042, 3454, 27, 3042, 3447, 3042, 3502, 3042, 3227, 3042, 3119, 3120}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {(a \cos (c+d x)+a)^2 (A+B \cos (c+d x))}{\cos ^{\frac {3}{2}}(c+d x)} \, dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \frac {\left (a \sin \left (c+d x+\frac {\pi }{2}\right )+a\right )^2 \left (A+B \sin \left (c+d x+\frac {\pi }{2}\right )\right )}{\sin \left (c+d x+\frac {\pi }{2}\right )^{3/2}}dx\)

\(\Big \downarrow \) 3454

\(\displaystyle 2 \int \frac {(\cos (c+d x) a+a) (a (3 A+B)-a (3 A-B) \cos (c+d x))}{2 \sqrt {\cos (c+d x)}}dx+\frac {2 A \sin (c+d x) \left (a^2 \cos (c+d x)+a^2\right )}{d \sqrt {\cos (c+d x)}}\)

\(\Big \downarrow \) 27

\(\displaystyle \int \frac {(\cos (c+d x) a+a) (a (3 A+B)-a (3 A-B) \cos (c+d x))}{\sqrt {\cos (c+d x)}}dx+\frac {2 A \sin (c+d x) \left (a^2 \cos (c+d x)+a^2\right )}{d \sqrt {\cos (c+d x)}}\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \frac {\left (\sin \left (c+d x+\frac {\pi }{2}\right ) a+a\right ) \left (a (3 A+B)-a (3 A-B) \sin \left (c+d x+\frac {\pi }{2}\right )\right )}{\sqrt {\sin \left (c+d x+\frac {\pi }{2}\right )}}dx+\frac {2 A \sin (c+d x) \left (a^2 \cos (c+d x)+a^2\right )}{d \sqrt {\cos (c+d x)}}\)

\(\Big \downarrow \) 3447

\(\displaystyle \int \frac {-\left ((3 A-B) \cos ^2(c+d x) a^2\right )+(3 A+B) a^2+\left (a^2 (3 A+B)-a^2 (3 A-B)\right ) \cos (c+d x)}{\sqrt {\cos (c+d x)}}dx+\frac {2 A \sin (c+d x) \left (a^2 \cos (c+d x)+a^2\right )}{d \sqrt {\cos (c+d x)}}\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \frac {-\left ((3 A-B) \sin \left (c+d x+\frac {\pi }{2}\right )^2 a^2\right )+(3 A+B) a^2+\left (a^2 (3 A+B)-a^2 (3 A-B)\right ) \sin \left (c+d x+\frac {\pi }{2}\right )}{\sqrt {\sin \left (c+d x+\frac {\pi }{2}\right )}}dx+\frac {2 A \sin (c+d x) \left (a^2 \cos (c+d x)+a^2\right )}{d \sqrt {\cos (c+d x)}}\)

\(\Big \downarrow \) 3502

\(\displaystyle \frac {2}{3} \int \frac {(3 A+2 B) a^2+3 B \cos (c+d x) a^2}{\sqrt {\cos (c+d x)}}dx-\frac {2 a^2 (3 A-B) \sin (c+d x) \sqrt {\cos (c+d x)}}{3 d}+\frac {2 A \sin (c+d x) \left (a^2 \cos (c+d x)+a^2\right )}{d \sqrt {\cos (c+d x)}}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {2}{3} \int \frac {(3 A+2 B) a^2+3 B \sin \left (c+d x+\frac {\pi }{2}\right ) a^2}{\sqrt {\sin \left (c+d x+\frac {\pi }{2}\right )}}dx-\frac {2 a^2 (3 A-B) \sin (c+d x) \sqrt {\cos (c+d x)}}{3 d}+\frac {2 A \sin (c+d x) \left (a^2 \cos (c+d x)+a^2\right )}{d \sqrt {\cos (c+d x)}}\)

\(\Big \downarrow \) 3227

\(\displaystyle \frac {2}{3} \left (a^2 (3 A+2 B) \int \frac {1}{\sqrt {\cos (c+d x)}}dx+3 a^2 B \int \sqrt {\cos (c+d x)}dx\right )-\frac {2 a^2 (3 A-B) \sin (c+d x) \sqrt {\cos (c+d x)}}{3 d}+\frac {2 A \sin (c+d x) \left (a^2 \cos (c+d x)+a^2\right )}{d \sqrt {\cos (c+d x)}}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {2}{3} \left (a^2 (3 A+2 B) \int \frac {1}{\sqrt {\sin \left (c+d x+\frac {\pi }{2}\right )}}dx+3 a^2 B \int \sqrt {\sin \left (c+d x+\frac {\pi }{2}\right )}dx\right )-\frac {2 a^2 (3 A-B) \sin (c+d x) \sqrt {\cos (c+d x)}}{3 d}+\frac {2 A \sin (c+d x) \left (a^2 \cos (c+d x)+a^2\right )}{d \sqrt {\cos (c+d x)}}\)

\(\Big \downarrow \) 3119

\(\displaystyle \frac {2}{3} \left (a^2 (3 A+2 B) \int \frac {1}{\sqrt {\sin \left (c+d x+\frac {\pi }{2}\right )}}dx+\frac {6 a^2 B E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{d}\right )-\frac {2 a^2 (3 A-B) \sin (c+d x) \sqrt {\cos (c+d x)}}{3 d}+\frac {2 A \sin (c+d x) \left (a^2 \cos (c+d x)+a^2\right )}{d \sqrt {\cos (c+d x)}}\)

\(\Big \downarrow \) 3120

\(\displaystyle -\frac {2 a^2 (3 A-B) \sin (c+d x) \sqrt {\cos (c+d x)}}{3 d}+\frac {2}{3} \left (\frac {2 a^2 (3 A+2 B) \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),2\right )}{d}+\frac {6 a^2 B E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{d}\right )+\frac {2 A \sin (c+d x) \left (a^2 \cos (c+d x)+a^2\right )}{d \sqrt {\cos (c+d x)}}\)

Input:

Int[((a + a*Cos[c + d*x])^2*(A + B*Cos[c + d*x]))/Cos[c + d*x]^(3/2),x]
 

Output:

(2*((6*a^2*B*EllipticE[(c + d*x)/2, 2])/d + (2*a^2*(3*A + 2*B)*EllipticF[( 
c + d*x)/2, 2])/d))/3 - (2*a^2*(3*A - B)*Sqrt[Cos[c + d*x]]*Sin[c + d*x])/ 
(3*d) + (2*A*(a^2 + a^2*Cos[c + d*x])*Sin[c + d*x])/(d*Sqrt[Cos[c + d*x]])
 

Defintions of rubi rules used

rule 27
Int[(a_)*(Fx_), x_Symbol] :> Simp[a   Int[Fx, x], x] /; FreeQ[a, x] &&  !Ma 
tchQ[Fx, (b_)*(Gx_) /; FreeQ[b, x]]
 

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 3119
Int[Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2/d)*EllipticE[(1/2)* 
(c - Pi/2 + d*x), 2], x] /; FreeQ[{c, d}, x]
 

rule 3120
Int[1/Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2/d)*EllipticF[(1/2 
)*(c - Pi/2 + d*x), 2], x] /; FreeQ[{c, d}, x]
 

rule 3227
Int[((b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((c_) + (d_.)*sin[(e_.) + (f_.)*(x 
_)]), x_Symbol] :> Simp[c   Int[(b*Sin[e + f*x])^m, x], x] + Simp[d/b   Int 
[(b*Sin[e + f*x])^(m + 1), x], x] /; FreeQ[{b, c, d, e, f, m}, x]
 

rule 3447
Int[((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_.)*((A_.) + (B_.)*sin[(e_.) 
+ (f_.)*(x_)])*((c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)]), x_Symbol] :> Int[(a 
 + b*Sin[e + f*x])^m*(A*c + (B*c + A*d)*Sin[e + f*x] + B*d*Sin[e + f*x]^2), 
 x] /; FreeQ[{a, b, c, d, e, f, A, B, m}, x] && NeQ[b*c - a*d, 0]
 

rule 3454
Int[((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((A_.) + (B_.)*sin[(e_.) + 
(f_.)*(x_)])*((c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)])^(n_), x_Symbol] :> Sim 
p[(-b^2)*(B*c - A*d)*Cos[e + f*x]*(a + b*Sin[e + f*x])^(m - 1)*((c + d*Sin[ 
e + f*x])^(n + 1)/(d*f*(n + 1)*(b*c + a*d))), x] - Simp[b/(d*(n + 1)*(b*c + 
 a*d))   Int[(a + b*Sin[e + f*x])^(m - 1)*(c + d*Sin[e + f*x])^(n + 1)*Simp 
[a*A*d*(m - n - 2) - B*(a*c*(m - 1) + b*d*(n + 1)) - (A*b*d*(m + n + 1) - B 
*(b*c*m - a*d*(n + 1)))*Sin[e + f*x], x], x], x] /; FreeQ[{a, b, c, d, e, f 
, A, B}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0] 
&& GtQ[m, 1/2] && LtQ[n, -1] && IntegerQ[2*m] && (IntegerQ[2*n] || EqQ[c, 0 
])
 

rule 3502
Int[((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_.)*((A_.) + (B_.)*sin[(e_.) 
+ (f_.)*(x_)] + (C_.)*sin[(e_.) + (f_.)*(x_)]^2), x_Symbol] :> Simp[(-C)*Co 
s[e + f*x]*((a + b*Sin[e + f*x])^(m + 1)/(b*f*(m + 2))), x] + Simp[1/(b*(m 
+ 2))   Int[(a + b*Sin[e + f*x])^m*Simp[A*b*(m + 2) + b*C*(m + 1) + (b*B*(m 
 + 2) - a*C)*Sin[e + f*x], x], x], x] /; FreeQ[{a, b, e, f, A, B, C, m}, x] 
 &&  !LtQ[m, -1]
 
Maple [B] (verified)

Leaf count of result is larger than twice the leaf count of optimal. \(243\) vs. \(2(113)=226\).

Time = 5.76 (sec) , antiderivative size = 244, normalized size of antiderivative = 2.07

method result size
default \(\frac {4 a^{2} \left (-2 B \cos \left (\frac {d x}{2}+\frac {c}{2}\right ) \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{4}+3 A \cos \left (\frac {d x}{2}+\frac {c}{2}\right ) \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-3 A \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {2 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-1}\, \operatorname {EllipticF}\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right )+B \cos \left (\frac {d x}{2}+\frac {c}{2}\right ) \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-2 B \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {2 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-1}\, \operatorname {EllipticF}\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right )+3 B \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {2 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-1}\, \operatorname {EllipticE}\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right )\right )}{3 \sin \left (\frac {d x}{2}+\frac {c}{2}\right ) \sqrt {2 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-1}\, d}\) \(244\)
parts \(\frac {2 \left (a^{2} A +2 a^{2} B \right ) \sqrt {\left (2 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-1\right ) \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}}\, \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {-2 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}+1}\, \operatorname {EllipticE}\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right )}{\sqrt {-2 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{4}+\sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}}\, \sin \left (\frac {d x}{2}+\frac {c}{2}\right ) \sqrt {2 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-1}\, d}+\frac {2 \left (2 a^{2} A +a^{2} B \right ) \operatorname {InverseJacobiAM}\left (\frac {d x}{2}+\frac {c}{2}, \sqrt {2}\right )}{d}-\frac {2 a^{2} A \left (-2 \cos \left (\frac {d x}{2}+\frac {c}{2}\right ) \sqrt {-2 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{4}+\sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}}\, \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}+\sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {2 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-1}\, \sqrt {-2 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{4}+\sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}}\, \operatorname {EllipticE}\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right )\right )}{\sqrt {-2 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{4}+\sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}}\, \sin \left (\frac {d x}{2}+\frac {c}{2}\right ) \sqrt {2 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-1}\, d}-\frac {2 a^{2} B \sqrt {\left (2 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-1\right ) \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}}\, \left (4 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{4} \cos \left (\frac {d x}{2}+\frac {c}{2}\right )-2 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2} \cos \left (\frac {d x}{2}+\frac {c}{2}\right )+\sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {2 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-1}\, \operatorname {EllipticF}\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right )\right )}{3 \sqrt {-2 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{4}+\sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}}\, \sin \left (\frac {d x}{2}+\frac {c}{2}\right ) \sqrt {2 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-1}\, d}\) \(542\)

Input:

int((a+a*cos(d*x+c))^2*(A+B*cos(d*x+c))/cos(d*x+c)^(3/2),x,method=_RETURNV 
ERBOSE)
 

Output:

4/3*a^2*(-2*B*cos(1/2*d*x+1/2*c)*sin(1/2*d*x+1/2*c)^4+3*A*cos(1/2*d*x+1/2* 
c)*sin(1/2*d*x+1/2*c)^2-3*A*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(2*sin(1/2*d*x+1/ 
2*c)^2-1)^(1/2)*EllipticF(cos(1/2*d*x+1/2*c),2^(1/2))+B*cos(1/2*d*x+1/2*c) 
*sin(1/2*d*x+1/2*c)^2-2*B*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(2*sin(1/2*d*x+1/2* 
c)^2-1)^(1/2)*EllipticF(cos(1/2*d*x+1/2*c),2^(1/2))+3*B*(sin(1/2*d*x+1/2*c 
)^2)^(1/2)*(2*sin(1/2*d*x+1/2*c)^2-1)^(1/2)*EllipticE(cos(1/2*d*x+1/2*c),2 
^(1/2)))/sin(1/2*d*x+1/2*c)/(2*cos(1/2*d*x+1/2*c)^2-1)^(1/2)/d
 

Fricas [C] (verification not implemented)

Result contains complex when optimal does not.

Time = 0.09 (sec) , antiderivative size = 198, normalized size of antiderivative = 1.68 \[ \int \frac {(a+a \cos (c+d x))^2 (A+B \cos (c+d x))}{\cos ^{\frac {3}{2}}(c+d x)} \, dx=-\frac {2 \, {\left (i \, \sqrt {2} {\left (3 \, A + 2 \, B\right )} a^{2} \cos \left (d x + c\right ) {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) + i \, \sin \left (d x + c\right )\right ) - i \, \sqrt {2} {\left (3 \, A + 2 \, B\right )} a^{2} \cos \left (d x + c\right ) {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) - i \, \sin \left (d x + c\right )\right ) - 3 i \, \sqrt {2} B a^{2} \cos \left (d x + c\right ) {\rm weierstrassZeta}\left (-4, 0, {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) + i \, \sin \left (d x + c\right )\right )\right ) + 3 i \, \sqrt {2} B a^{2} \cos \left (d x + c\right ) {\rm weierstrassZeta}\left (-4, 0, {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) - i \, \sin \left (d x + c\right )\right )\right ) - {\left (B a^{2} \cos \left (d x + c\right ) + 3 \, A a^{2}\right )} \sqrt {\cos \left (d x + c\right )} \sin \left (d x + c\right )\right )}}{3 \, d \cos \left (d x + c\right )} \] Input:

integrate((a+a*cos(d*x+c))^2*(A+B*cos(d*x+c))/cos(d*x+c)^(3/2),x, algorith 
m="fricas")
 

Output:

-2/3*(I*sqrt(2)*(3*A + 2*B)*a^2*cos(d*x + c)*weierstrassPInverse(-4, 0, co 
s(d*x + c) + I*sin(d*x + c)) - I*sqrt(2)*(3*A + 2*B)*a^2*cos(d*x + c)*weie 
rstrassPInverse(-4, 0, cos(d*x + c) - I*sin(d*x + c)) - 3*I*sqrt(2)*B*a^2* 
cos(d*x + c)*weierstrassZeta(-4, 0, weierstrassPInverse(-4, 0, cos(d*x + c 
) + I*sin(d*x + c))) + 3*I*sqrt(2)*B*a^2*cos(d*x + c)*weierstrassZeta(-4, 
0, weierstrassPInverse(-4, 0, cos(d*x + c) - I*sin(d*x + c))) - (B*a^2*cos 
(d*x + c) + 3*A*a^2)*sqrt(cos(d*x + c))*sin(d*x + c))/(d*cos(d*x + c))
 

Sympy [F(-1)]

Timed out. \[ \int \frac {(a+a \cos (c+d x))^2 (A+B \cos (c+d x))}{\cos ^{\frac {3}{2}}(c+d x)} \, dx=\text {Timed out} \] Input:

integrate((a+a*cos(d*x+c))**2*(A+B*cos(d*x+c))/cos(d*x+c)**(3/2),x)
 

Output:

Timed out
 

Maxima [F]

\[ \int \frac {(a+a \cos (c+d x))^2 (A+B \cos (c+d x))}{\cos ^{\frac {3}{2}}(c+d x)} \, dx=\int { \frac {{\left (B \cos \left (d x + c\right ) + A\right )} {\left (a \cos \left (d x + c\right ) + a\right )}^{2}}{\cos \left (d x + c\right )^{\frac {3}{2}}} \,d x } \] Input:

integrate((a+a*cos(d*x+c))^2*(A+B*cos(d*x+c))/cos(d*x+c)^(3/2),x, algorith 
m="maxima")
 

Output:

integrate((B*cos(d*x + c) + A)*(a*cos(d*x + c) + a)^2/cos(d*x + c)^(3/2), 
x)
 

Giac [F]

\[ \int \frac {(a+a \cos (c+d x))^2 (A+B \cos (c+d x))}{\cos ^{\frac {3}{2}}(c+d x)} \, dx=\int { \frac {{\left (B \cos \left (d x + c\right ) + A\right )} {\left (a \cos \left (d x + c\right ) + a\right )}^{2}}{\cos \left (d x + c\right )^{\frac {3}{2}}} \,d x } \] Input:

integrate((a+a*cos(d*x+c))^2*(A+B*cos(d*x+c))/cos(d*x+c)^(3/2),x, algorith 
m="giac")
 

Output:

integrate((B*cos(d*x + c) + A)*(a*cos(d*x + c) + a)^2/cos(d*x + c)^(3/2), 
x)
 

Mupad [B] (verification not implemented)

Time = 44.84 (sec) , antiderivative size = 134, normalized size of antiderivative = 1.14 \[ \int \frac {(a+a \cos (c+d x))^2 (A+B \cos (c+d x))}{\cos ^{\frac {3}{2}}(c+d x)} \, dx=\frac {2\,B\,a^2\,\left (\sqrt {\cos \left (c+d\,x\right )}\,\sin \left (c+d\,x\right )+6\,\mathrm {E}\left (\frac {c}{2}+\frac {d\,x}{2}\middle |2\right )+4\,\mathrm {F}\left (\frac {c}{2}+\frac {d\,x}{2}\middle |2\right )\right )}{3\,d}+\frac {2\,A\,a^2\,\mathrm {E}\left (\frac {c}{2}+\frac {d\,x}{2}\middle |2\right )}{d}+\frac {4\,A\,a^2\,\mathrm {F}\left (\frac {c}{2}+\frac {d\,x}{2}\middle |2\right )}{d}+\frac {2\,A\,a^2\,\sin \left (c+d\,x\right )\,{{}}_2{\mathrm {F}}_1\left (-\frac {1}{4},\frac {1}{2};\ \frac {3}{4};\ {\cos \left (c+d\,x\right )}^2\right )}{d\,\sqrt {\cos \left (c+d\,x\right )}\,\sqrt {{\sin \left (c+d\,x\right )}^2}} \] Input:

int(((A + B*cos(c + d*x))*(a + a*cos(c + d*x))^2)/cos(c + d*x)^(3/2),x)
 

Output:

(2*B*a^2*(cos(c + d*x)^(1/2)*sin(c + d*x) + 6*ellipticE(c/2 + (d*x)/2, 2) 
+ 4*ellipticF(c/2 + (d*x)/2, 2)))/(3*d) + (2*A*a^2*ellipticE(c/2 + (d*x)/2 
, 2))/d + (4*A*a^2*ellipticF(c/2 + (d*x)/2, 2))/d + (2*A*a^2*sin(c + d*x)* 
hypergeom([-1/4, 1/2], 3/4, cos(c + d*x)^2))/(d*cos(c + d*x)^(1/2)*(sin(c 
+ d*x)^2)^(1/2))
 

Reduce [F]

\[ \int \frac {(a+a \cos (c+d x))^2 (A+B \cos (c+d x))}{\cos ^{\frac {3}{2}}(c+d x)} \, dx=a^{2} \left (2 \left (\int \frac {\sqrt {\cos \left (d x +c \right )}}{\cos \left (d x +c \right )}d x \right ) a +\left (\int \frac {\sqrt {\cos \left (d x +c \right )}}{\cos \left (d x +c \right )}d x \right ) b +\left (\int \frac {\sqrt {\cos \left (d x +c \right )}}{\cos \left (d x +c \right )^{2}}d x \right ) a +\left (\int \sqrt {\cos \left (d x +c \right )}d x \right ) a +2 \left (\int \sqrt {\cos \left (d x +c \right )}d x \right ) b +\left (\int \sqrt {\cos \left (d x +c \right )}\, \cos \left (d x +c \right )d x \right ) b \right ) \] Input:

int((a+a*cos(d*x+c))^2*(A+B*cos(d*x+c))/cos(d*x+c)^(3/2),x)
 

Output:

a**2*(2*int(sqrt(cos(c + d*x))/cos(c + d*x),x)*a + int(sqrt(cos(c + d*x))/ 
cos(c + d*x),x)*b + int(sqrt(cos(c + d*x))/cos(c + d*x)**2,x)*a + int(sqrt 
(cos(c + d*x)),x)*a + 2*int(sqrt(cos(c + d*x)),x)*b + int(sqrt(cos(c + d*x 
))*cos(c + d*x),x)*b)