\(\int \frac {\cos ^{\frac {3}{2}}(c+d x) (A+B \cos (c+d x))}{a+a \cos (c+d x)} \, dx\) [146]

Optimal result
Mathematica [C] (warning: unable to verify)
Rubi [A] (verified)
Maple [B] (verified)
Fricas [C] (verification not implemented)
Sympy [F(-1)]
Maxima [F]
Giac [F]
Mupad [F(-1)]
Reduce [F]

Optimal result

Integrand size = 33, antiderivative size = 123 \[ \int \frac {\cos ^{\frac {3}{2}}(c+d x) (A+B \cos (c+d x))}{a+a \cos (c+d x)} \, dx=\frac {3 (A-B) E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{a d}-\frac {(3 A-5 B) \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),2\right )}{3 a d}-\frac {(3 A-5 B) \sqrt {\cos (c+d x)} \sin (c+d x)}{3 a d}+\frac {(A-B) \cos ^{\frac {3}{2}}(c+d x) \sin (c+d x)}{d (a+a \cos (c+d x))} \] Output:

3*(A-B)*EllipticE(sin(1/2*d*x+1/2*c),2^(1/2))/a/d-1/3*(3*A-5*B)*InverseJac 
obiAM(1/2*d*x+1/2*c,2^(1/2))/a/d-1/3*(3*A-5*B)*cos(d*x+c)^(1/2)*sin(d*x+c) 
/a/d+(A-B)*cos(d*x+c)^(3/2)*sin(d*x+c)/d/(a+a*cos(d*x+c))
 

Mathematica [C] (warning: unable to verify)

Result contains higher order function than in optimal. Order 5 vs. order 4 in optimal.

Time = 7.69 (sec) , antiderivative size = 893, normalized size of antiderivative = 7.26 \[ \int \frac {\cos ^{\frac {3}{2}}(c+d x) (A+B \cos (c+d x))}{a+a \cos (c+d x)} \, dx =\text {Too large to display} \] Input:

Integrate[(Cos[c + d*x]^(3/2)*(A + B*Cos[c + d*x]))/(a + a*Cos[c + d*x]),x 
]
 

Output:

(Cos[c/2 + (d*x)/2]^2*Sqrt[Cos[c + d*x]]*((-2*(A - B)*(1 + 2*Cos[c])*Csc[c 
])/d + (4*B*Cos[d*x]*Sin[c])/(3*d) - (2*Sec[c/2]*Sec[c/2 + (d*x)/2]*(A*Sin 
[(d*x)/2] - B*Sin[(d*x)/2]))/d + (4*B*Cos[c]*Sin[d*x])/(3*d)))/(a + a*Cos[ 
c + d*x]) + (A*Cos[c/2 + (d*x)/2]^2*Csc[c/2]*HypergeometricPFQ[{1/4, 1/2}, 
 {5/4}, Sin[d*x - ArcTan[Cot[c]]]^2]*Sec[c/2]*Sec[d*x - ArcTan[Cot[c]]]*Sq 
rt[1 - Sin[d*x - ArcTan[Cot[c]]]]*Sqrt[-(Sqrt[1 + Cot[c]^2]*Sin[c]*Sin[d*x 
 - ArcTan[Cot[c]]])]*Sqrt[1 + Sin[d*x - ArcTan[Cot[c]]]])/(d*(a + a*Cos[c 
+ d*x])*Sqrt[1 + Cot[c]^2]) - (5*B*Cos[c/2 + (d*x)/2]^2*Csc[c/2]*Hypergeom 
etricPFQ[{1/4, 1/2}, {5/4}, Sin[d*x - ArcTan[Cot[c]]]^2]*Sec[c/2]*Sec[d*x 
- ArcTan[Cot[c]]]*Sqrt[1 - Sin[d*x - ArcTan[Cot[c]]]]*Sqrt[-(Sqrt[1 + Cot[ 
c]^2]*Sin[c]*Sin[d*x - ArcTan[Cot[c]]])]*Sqrt[1 + Sin[d*x - ArcTan[Cot[c]] 
]])/(3*d*(a + a*Cos[c + d*x])*Sqrt[1 + Cot[c]^2]) - (3*A*Cos[c/2 + (d*x)/2 
]^2*Csc[c/2]*Sec[c/2]*((HypergeometricPFQ[{-1/2, -1/4}, {3/4}, Cos[d*x + A 
rcTan[Tan[c]]]^2]*Sin[d*x + ArcTan[Tan[c]]]*Tan[c])/(Sqrt[1 - Cos[d*x + Ar 
cTan[Tan[c]]]]*Sqrt[1 + Cos[d*x + ArcTan[Tan[c]]]]*Sqrt[Cos[c]*Cos[d*x + A 
rcTan[Tan[c]]]*Sqrt[1 + Tan[c]^2]]*Sqrt[1 + Tan[c]^2]) - ((Sin[d*x + ArcTa 
n[Tan[c]]]*Tan[c])/Sqrt[1 + Tan[c]^2] + (2*Cos[c]^2*Cos[d*x + ArcTan[Tan[c 
]]]*Sqrt[1 + Tan[c]^2])/(Cos[c]^2 + Sin[c]^2))/Sqrt[Cos[c]*Cos[d*x + ArcTa 
n[Tan[c]]]*Sqrt[1 + Tan[c]^2]]))/(2*d*(a + a*Cos[c + d*x])) + (3*B*Cos[c/2 
 + (d*x)/2]^2*Csc[c/2]*Sec[c/2]*((HypergeometricPFQ[{-1/2, -1/4}, {3/4}...
 

Rubi [A] (verified)

Time = 0.63 (sec) , antiderivative size = 120, normalized size of antiderivative = 0.98, number of steps used = 10, number of rules used = 10, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.303, Rules used = {3042, 3456, 27, 3042, 3227, 3042, 3115, 3042, 3119, 3120}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {\cos ^{\frac {3}{2}}(c+d x) (A+B \cos (c+d x))}{a \cos (c+d x)+a} \, dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \frac {\sin \left (c+d x+\frac {\pi }{2}\right )^{3/2} \left (A+B \sin \left (c+d x+\frac {\pi }{2}\right )\right )}{a \sin \left (c+d x+\frac {\pi }{2}\right )+a}dx\)

\(\Big \downarrow \) 3456

\(\displaystyle \frac {\int \frac {1}{2} \sqrt {\cos (c+d x)} (3 a (A-B)-a (3 A-5 B) \cos (c+d x))dx}{a^2}+\frac {(A-B) \sin (c+d x) \cos ^{\frac {3}{2}}(c+d x)}{d (a \cos (c+d x)+a)}\)

\(\Big \downarrow \) 27

\(\displaystyle \frac {\int \sqrt {\cos (c+d x)} (3 a (A-B)-a (3 A-5 B) \cos (c+d x))dx}{2 a^2}+\frac {(A-B) \sin (c+d x) \cos ^{\frac {3}{2}}(c+d x)}{d (a \cos (c+d x)+a)}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {\int \sqrt {\sin \left (c+d x+\frac {\pi }{2}\right )} \left (3 a (A-B)-a (3 A-5 B) \sin \left (c+d x+\frac {\pi }{2}\right )\right )dx}{2 a^2}+\frac {(A-B) \sin (c+d x) \cos ^{\frac {3}{2}}(c+d x)}{d (a \cos (c+d x)+a)}\)

\(\Big \downarrow \) 3227

\(\displaystyle \frac {3 a (A-B) \int \sqrt {\cos (c+d x)}dx-a (3 A-5 B) \int \cos ^{\frac {3}{2}}(c+d x)dx}{2 a^2}+\frac {(A-B) \sin (c+d x) \cos ^{\frac {3}{2}}(c+d x)}{d (a \cos (c+d x)+a)}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {3 a (A-B) \int \sqrt {\sin \left (c+d x+\frac {\pi }{2}\right )}dx-a (3 A-5 B) \int \sin \left (c+d x+\frac {\pi }{2}\right )^{3/2}dx}{2 a^2}+\frac {(A-B) \sin (c+d x) \cos ^{\frac {3}{2}}(c+d x)}{d (a \cos (c+d x)+a)}\)

\(\Big \downarrow \) 3115

\(\displaystyle \frac {3 a (A-B) \int \sqrt {\sin \left (c+d x+\frac {\pi }{2}\right )}dx-a (3 A-5 B) \left (\frac {1}{3} \int \frac {1}{\sqrt {\cos (c+d x)}}dx+\frac {2 \sin (c+d x) \sqrt {\cos (c+d x)}}{3 d}\right )}{2 a^2}+\frac {(A-B) \sin (c+d x) \cos ^{\frac {3}{2}}(c+d x)}{d (a \cos (c+d x)+a)}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {3 a (A-B) \int \sqrt {\sin \left (c+d x+\frac {\pi }{2}\right )}dx-a (3 A-5 B) \left (\frac {1}{3} \int \frac {1}{\sqrt {\sin \left (c+d x+\frac {\pi }{2}\right )}}dx+\frac {2 \sin (c+d x) \sqrt {\cos (c+d x)}}{3 d}\right )}{2 a^2}+\frac {(A-B) \sin (c+d x) \cos ^{\frac {3}{2}}(c+d x)}{d (a \cos (c+d x)+a)}\)

\(\Big \downarrow \) 3119

\(\displaystyle \frac {\frac {6 a (A-B) E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{d}-a (3 A-5 B) \left (\frac {1}{3} \int \frac {1}{\sqrt {\sin \left (c+d x+\frac {\pi }{2}\right )}}dx+\frac {2 \sin (c+d x) \sqrt {\cos (c+d x)}}{3 d}\right )}{2 a^2}+\frac {(A-B) \sin (c+d x) \cos ^{\frac {3}{2}}(c+d x)}{d (a \cos (c+d x)+a)}\)

\(\Big \downarrow \) 3120

\(\displaystyle \frac {\frac {6 a (A-B) E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{d}-a (3 A-5 B) \left (\frac {2 \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),2\right )}{3 d}+\frac {2 \sin (c+d x) \sqrt {\cos (c+d x)}}{3 d}\right )}{2 a^2}+\frac {(A-B) \sin (c+d x) \cos ^{\frac {3}{2}}(c+d x)}{d (a \cos (c+d x)+a)}\)

Input:

Int[(Cos[c + d*x]^(3/2)*(A + B*Cos[c + d*x]))/(a + a*Cos[c + d*x]),x]
 

Output:

((A - B)*Cos[c + d*x]^(3/2)*Sin[c + d*x])/(d*(a + a*Cos[c + d*x])) + ((6*a 
*(A - B)*EllipticE[(c + d*x)/2, 2])/d - a*(3*A - 5*B)*((2*EllipticF[(c + d 
*x)/2, 2])/(3*d) + (2*Sqrt[Cos[c + d*x]]*Sin[c + d*x])/(3*d)))/(2*a^2)
 

Defintions of rubi rules used

rule 27
Int[(a_)*(Fx_), x_Symbol] :> Simp[a   Int[Fx, x], x] /; FreeQ[a, x] &&  !Ma 
tchQ[Fx, (b_)*(Gx_) /; FreeQ[b, x]]
 

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 3115
Int[((b_.)*sin[(c_.) + (d_.)*(x_)])^(n_), x_Symbol] :> Simp[(-b)*Cos[c + d* 
x]*((b*Sin[c + d*x])^(n - 1)/(d*n)), x] + Simp[b^2*((n - 1)/n)   Int[(b*Sin 
[c + d*x])^(n - 2), x], x] /; FreeQ[{b, c, d}, x] && GtQ[n, 1] && IntegerQ[ 
2*n]
 

rule 3119
Int[Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2/d)*EllipticE[(1/2)* 
(c - Pi/2 + d*x), 2], x] /; FreeQ[{c, d}, x]
 

rule 3120
Int[1/Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2/d)*EllipticF[(1/2 
)*(c - Pi/2 + d*x), 2], x] /; FreeQ[{c, d}, x]
 

rule 3227
Int[((b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((c_) + (d_.)*sin[(e_.) + (f_.)*(x 
_)]), x_Symbol] :> Simp[c   Int[(b*Sin[e + f*x])^m, x], x] + Simp[d/b   Int 
[(b*Sin[e + f*x])^(m + 1), x], x] /; FreeQ[{b, c, d, e, f, m}, x]
 

rule 3456
Int[((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((A_.) + (B_.)*sin[(e_.) + 
(f_.)*(x_)])*((c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)])^(n_), x_Symbol] :> Sim 
p[(A*b - a*B)*Cos[e + f*x]*(a + b*Sin[e + f*x])^m*((c + d*Sin[e + f*x])^n/( 
a*f*(2*m + 1))), x] - Simp[1/(a*b*(2*m + 1))   Int[(a + b*Sin[e + f*x])^(m 
+ 1)*(c + d*Sin[e + f*x])^(n - 1)*Simp[A*(a*d*n - b*c*(m + 1)) - B*(a*c*m + 
 b*d*n) - d*(a*B*(m - n) + A*b*(m + n + 1))*Sin[e + f*x], x], x], x] /; Fre 
eQ[{a, b, c, d, e, f, A, B}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 - b^2, 0] & 
& NeQ[c^2 - d^2, 0] && LtQ[m, -2^(-1)] && GtQ[n, 0] && IntegerQ[2*m] && (In 
tegerQ[2*n] || EqQ[c, 0])
 
Maple [B] (verified)

Leaf count of result is larger than twice the leaf count of optimal. \(261\) vs. \(2(118)=236\).

Time = 5.50 (sec) , antiderivative size = 262, normalized size of antiderivative = 2.13

method result size
default \(\frac {\sqrt {\left (2 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-1\right ) \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}}\, \left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ) \sqrt {2 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-1}\, \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \left (3 A \operatorname {EllipticF}\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right )+9 A \operatorname {EllipticE}\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right )-5 B \operatorname {EllipticF}\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right )-9 B \operatorname {EllipticE}\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right )\right )+8 B \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{6}+\left (6 A -18 B \right ) \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{4}+\left (-3 A +7 B \right ) \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}\right )}{3 a \cos \left (\frac {d x}{2}+\frac {c}{2}\right ) \sqrt {-2 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{4}+\sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}}\, \sin \left (\frac {d x}{2}+\frac {c}{2}\right ) \sqrt {2 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-1}\, d}\) \(262\)

Input:

int(cos(d*x+c)^(3/2)*(A+B*cos(d*x+c))/(a+a*cos(d*x+c)),x,method=_RETURNVER 
BOSE)
 

Output:

1/3*((2*cos(1/2*d*x+1/2*c)^2-1)*sin(1/2*d*x+1/2*c)^2)^(1/2)*(cos(1/2*d*x+1 
/2*c)*(2*sin(1/2*d*x+1/2*c)^2-1)^(1/2)*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(3*A*E 
llipticF(cos(1/2*d*x+1/2*c),2^(1/2))+9*A*EllipticE(cos(1/2*d*x+1/2*c),2^(1 
/2))-5*B*EllipticF(cos(1/2*d*x+1/2*c),2^(1/2))-9*B*EllipticE(cos(1/2*d*x+1 
/2*c),2^(1/2)))+8*B*sin(1/2*d*x+1/2*c)^6+(6*A-18*B)*sin(1/2*d*x+1/2*c)^4+( 
-3*A+7*B)*sin(1/2*d*x+1/2*c)^2)/a/cos(1/2*d*x+1/2*c)/(-2*sin(1/2*d*x+1/2*c 
)^4+sin(1/2*d*x+1/2*c)^2)^(1/2)/sin(1/2*d*x+1/2*c)/(2*cos(1/2*d*x+1/2*c)^2 
-1)^(1/2)/d
 

Fricas [C] (verification not implemented)

Result contains complex when optimal does not.

Time = 0.10 (sec) , antiderivative size = 250, normalized size of antiderivative = 2.03 \[ \int \frac {\cos ^{\frac {3}{2}}(c+d x) (A+B \cos (c+d x))}{a+a \cos (c+d x)} \, dx=\frac {2 \, {\left (2 \, B \cos \left (d x + c\right ) - 3 \, A + 5 \, B\right )} \sqrt {\cos \left (d x + c\right )} \sin \left (d x + c\right ) + {\left (\sqrt {2} {\left (3 i \, A - 5 i \, B\right )} \cos \left (d x + c\right ) + \sqrt {2} {\left (3 i \, A - 5 i \, B\right )}\right )} {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) + i \, \sin \left (d x + c\right )\right ) + {\left (\sqrt {2} {\left (-3 i \, A + 5 i \, B\right )} \cos \left (d x + c\right ) + \sqrt {2} {\left (-3 i \, A + 5 i \, B\right )}\right )} {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) - i \, \sin \left (d x + c\right )\right ) - 9 \, {\left (\sqrt {2} {\left (-i \, A + i \, B\right )} \cos \left (d x + c\right ) + \sqrt {2} {\left (-i \, A + i \, B\right )}\right )} {\rm weierstrassZeta}\left (-4, 0, {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) + i \, \sin \left (d x + c\right )\right )\right ) - 9 \, {\left (\sqrt {2} {\left (i \, A - i \, B\right )} \cos \left (d x + c\right ) + \sqrt {2} {\left (i \, A - i \, B\right )}\right )} {\rm weierstrassZeta}\left (-4, 0, {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) - i \, \sin \left (d x + c\right )\right )\right )}{6 \, {\left (a d \cos \left (d x + c\right ) + a d\right )}} \] Input:

integrate(cos(d*x+c)^(3/2)*(A+B*cos(d*x+c))/(a+a*cos(d*x+c)),x, algorithm= 
"fricas")
 

Output:

1/6*(2*(2*B*cos(d*x + c) - 3*A + 5*B)*sqrt(cos(d*x + c))*sin(d*x + c) + (s 
qrt(2)*(3*I*A - 5*I*B)*cos(d*x + c) + sqrt(2)*(3*I*A - 5*I*B))*weierstrass 
PInverse(-4, 0, cos(d*x + c) + I*sin(d*x + c)) + (sqrt(2)*(-3*I*A + 5*I*B) 
*cos(d*x + c) + sqrt(2)*(-3*I*A + 5*I*B))*weierstrassPInverse(-4, 0, cos(d 
*x + c) - I*sin(d*x + c)) - 9*(sqrt(2)*(-I*A + I*B)*cos(d*x + c) + sqrt(2) 
*(-I*A + I*B))*weierstrassZeta(-4, 0, weierstrassPInverse(-4, 0, cos(d*x + 
 c) + I*sin(d*x + c))) - 9*(sqrt(2)*(I*A - I*B)*cos(d*x + c) + sqrt(2)*(I* 
A - I*B))*weierstrassZeta(-4, 0, weierstrassPInverse(-4, 0, cos(d*x + c) - 
 I*sin(d*x + c))))/(a*d*cos(d*x + c) + a*d)
 

Sympy [F(-1)]

Timed out. \[ \int \frac {\cos ^{\frac {3}{2}}(c+d x) (A+B \cos (c+d x))}{a+a \cos (c+d x)} \, dx=\text {Timed out} \] Input:

integrate(cos(d*x+c)**(3/2)*(A+B*cos(d*x+c))/(a+a*cos(d*x+c)),x)
 

Output:

Timed out
 

Maxima [F]

\[ \int \frac {\cos ^{\frac {3}{2}}(c+d x) (A+B \cos (c+d x))}{a+a \cos (c+d x)} \, dx=\int { \frac {{\left (B \cos \left (d x + c\right ) + A\right )} \cos \left (d x + c\right )^{\frac {3}{2}}}{a \cos \left (d x + c\right ) + a} \,d x } \] Input:

integrate(cos(d*x+c)^(3/2)*(A+B*cos(d*x+c))/(a+a*cos(d*x+c)),x, algorithm= 
"maxima")
 

Output:

integrate((B*cos(d*x + c) + A)*cos(d*x + c)^(3/2)/(a*cos(d*x + c) + a), x)
 

Giac [F]

\[ \int \frac {\cos ^{\frac {3}{2}}(c+d x) (A+B \cos (c+d x))}{a+a \cos (c+d x)} \, dx=\int { \frac {{\left (B \cos \left (d x + c\right ) + A\right )} \cos \left (d x + c\right )^{\frac {3}{2}}}{a \cos \left (d x + c\right ) + a} \,d x } \] Input:

integrate(cos(d*x+c)^(3/2)*(A+B*cos(d*x+c))/(a+a*cos(d*x+c)),x, algorithm= 
"giac")
 

Output:

integrate((B*cos(d*x + c) + A)*cos(d*x + c)^(3/2)/(a*cos(d*x + c) + a), x)
 

Mupad [F(-1)]

Timed out. \[ \int \frac {\cos ^{\frac {3}{2}}(c+d x) (A+B \cos (c+d x))}{a+a \cos (c+d x)} \, dx=\int \frac {{\cos \left (c+d\,x\right )}^{3/2}\,\left (A+B\,\cos \left (c+d\,x\right )\right )}{a+a\,\cos \left (c+d\,x\right )} \,d x \] Input:

int((cos(c + d*x)^(3/2)*(A + B*cos(c + d*x)))/(a + a*cos(c + d*x)),x)
                                                                                    
                                                                                    
 

Output:

int((cos(c + d*x)^(3/2)*(A + B*cos(c + d*x)))/(a + a*cos(c + d*x)), x)
 

Reduce [F]

\[ \int \frac {\cos ^{\frac {3}{2}}(c+d x) (A+B \cos (c+d x))}{a+a \cos (c+d x)} \, dx=\frac {\left (\int \frac {\sqrt {\cos \left (d x +c \right )}\, \cos \left (d x +c \right )}{\cos \left (d x +c \right )+1}d x \right ) a +\left (\int \frac {\sqrt {\cos \left (d x +c \right )}\, \cos \left (d x +c \right )^{2}}{\cos \left (d x +c \right )+1}d x \right ) b}{a} \] Input:

int(cos(d*x+c)^(3/2)*(A+B*cos(d*x+c))/(a+a*cos(d*x+c)),x)
 

Output:

(int((sqrt(cos(c + d*x))*cos(c + d*x))/(cos(c + d*x) + 1),x)*a + int((sqrt 
(cos(c + d*x))*cos(c + d*x)**2)/(cos(c + d*x) + 1),x)*b)/a