\(\int \frac {A+B \cos (c+d x)}{\cos ^{\frac {3}{2}}(c+d x) (a+a \cos (c+d x))^2} \, dx\) [156]

Optimal result
Mathematica [C] (warning: unable to verify)
Rubi [A] (verified)
Maple [B] (verified)
Fricas [C] (verification not implemented)
Sympy [F(-1)]
Maxima [F(-1)]
Giac [F]
Mupad [F(-1)]
Reduce [F]

Optimal result

Integrand size = 33, antiderivative size = 168 \[ \int \frac {A+B \cos (c+d x)}{\cos ^{\frac {3}{2}}(c+d x) (a+a \cos (c+d x))^2} \, dx=-\frac {(4 A-B) E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{a^2 d}-\frac {(5 A-2 B) \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),2\right )}{3 a^2 d}+\frac {(4 A-B) \sin (c+d x)}{a^2 d \sqrt {\cos (c+d x)}}-\frac {(5 A-2 B) \sin (c+d x)}{3 a^2 d \sqrt {\cos (c+d x)} (1+\cos (c+d x))}-\frac {(A-B) \sin (c+d x)}{3 d \sqrt {\cos (c+d x)} (a+a \cos (c+d x))^2} \] Output:

-(4*A-B)*EllipticE(sin(1/2*d*x+1/2*c),2^(1/2))/a^2/d-1/3*(5*A-2*B)*Inverse 
JacobiAM(1/2*d*x+1/2*c,2^(1/2))/a^2/d+(4*A-B)*sin(d*x+c)/a^2/d/cos(d*x+c)^ 
(1/2)-1/3*(5*A-2*B)*sin(d*x+c)/a^2/d/cos(d*x+c)^(1/2)/(1+cos(d*x+c))-1/3*( 
A-B)*sin(d*x+c)/d/cos(d*x+c)^(1/2)/(a+a*cos(d*x+c))^2
                                                                                    
                                                                                    
 

Mathematica [C] (warning: unable to verify)

Result contains higher order function than in optimal. Order 5 vs. order 4 in optimal.

Time = 8.23 (sec) , antiderivative size = 979, normalized size of antiderivative = 5.83 \[ \int \frac {A+B \cos (c+d x)}{\cos ^{\frac {3}{2}}(c+d x) (a+a \cos (c+d x))^2} \, dx =\text {Too large to display} \] Input:

Integrate[(A + B*Cos[c + d*x])/(Cos[c + d*x]^(3/2)*(a + a*Cos[c + d*x])^2) 
,x]
 

Output:

(10*A*Cos[c/2 + (d*x)/2]^4*Csc[c/2]*HypergeometricPFQ[{1/4, 1/2}, {5/4}, S 
in[d*x - ArcTan[Cot[c]]]^2]*Sec[c/2]*Sec[d*x - ArcTan[Cot[c]]]*Sqrt[1 - Si 
n[d*x - ArcTan[Cot[c]]]]*Sqrt[-(Sqrt[1 + Cot[c]^2]*Sin[c]*Sin[d*x - ArcTan 
[Cot[c]]])]*Sqrt[1 + Sin[d*x - ArcTan[Cot[c]]]])/(3*d*(a + a*Cos[c + d*x]) 
^2*Sqrt[1 + Cot[c]^2]) - (4*B*Cos[c/2 + (d*x)/2]^4*Csc[c/2]*Hypergeometric 
PFQ[{1/4, 1/2}, {5/4}, Sin[d*x - ArcTan[Cot[c]]]^2]*Sec[c/2]*Sec[d*x - Arc 
Tan[Cot[c]]]*Sqrt[1 - Sin[d*x - ArcTan[Cot[c]]]]*Sqrt[-(Sqrt[1 + Cot[c]^2] 
*Sin[c]*Sin[d*x - ArcTan[Cot[c]]])]*Sqrt[1 + Sin[d*x - ArcTan[Cot[c]]]])/( 
3*d*(a + a*Cos[c + d*x])^2*Sqrt[1 + Cot[c]^2]) + (Cos[c/2 + (d*x)/2]^4*Sqr 
t[Cos[c + d*x]]*((2*(2*A + 2*A*Cos[c] - B*Cos[c])*Csc[c/2]*Sec[c/2]*Sec[c] 
)/d + (2*Sec[c/2]*Sec[c/2 + (d*x)/2]^3*(A*Sin[(d*x)/2] - B*Sin[(d*x)/2]))/ 
(3*d) + (4*Sec[c/2]*Sec[c/2 + (d*x)/2]*(2*A*Sin[(d*x)/2] - B*Sin[(d*x)/2]) 
)/d + (8*A*Sec[c]*Sec[c + d*x]*Sin[d*x])/d + (2*(A - B)*Sec[c/2 + (d*x)/2] 
^2*Tan[c/2])/(3*d)))/(a + a*Cos[c + d*x])^2 + (4*A*Cos[c/2 + (d*x)/2]^4*Cs 
c[c/2]*Sec[c/2]*((HypergeometricPFQ[{-1/2, -1/4}, {3/4}, Cos[d*x + ArcTan[ 
Tan[c]]]^2]*Sin[d*x + ArcTan[Tan[c]]]*Tan[c])/(Sqrt[1 - Cos[d*x + ArcTan[T 
an[c]]]]*Sqrt[1 + Cos[d*x + ArcTan[Tan[c]]]]*Sqrt[Cos[c]*Cos[d*x + ArcTan[ 
Tan[c]]]*Sqrt[1 + Tan[c]^2]]*Sqrt[1 + Tan[c]^2]) - ((Sin[d*x + ArcTan[Tan[ 
c]]]*Tan[c])/Sqrt[1 + Tan[c]^2] + (2*Cos[c]^2*Cos[d*x + ArcTan[Tan[c]]]*Sq 
rt[1 + Tan[c]^2])/(Cos[c]^2 + Sin[c]^2))/Sqrt[Cos[c]*Cos[d*x + ArcTan[T...
 

Rubi [A] (verified)

Time = 0.93 (sec) , antiderivative size = 168, normalized size of antiderivative = 1.00, number of steps used = 12, number of rules used = 12, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.364, Rules used = {3042, 3457, 27, 3042, 3457, 3042, 3227, 3042, 3116, 3042, 3119, 3120}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {A+B \cos (c+d x)}{\cos ^{\frac {3}{2}}(c+d x) (a \cos (c+d x)+a)^2} \, dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \frac {A+B \sin \left (c+d x+\frac {\pi }{2}\right )}{\sin \left (c+d x+\frac {\pi }{2}\right )^{3/2} \left (a \sin \left (c+d x+\frac {\pi }{2}\right )+a\right )^2}dx\)

\(\Big \downarrow \) 3457

\(\displaystyle \frac {\int \frac {a (7 A-B)-3 a (A-B) \cos (c+d x)}{2 \cos ^{\frac {3}{2}}(c+d x) (\cos (c+d x) a+a)}dx}{3 a^2}-\frac {(A-B) \sin (c+d x)}{3 d \sqrt {\cos (c+d x)} (a \cos (c+d x)+a)^2}\)

\(\Big \downarrow \) 27

\(\displaystyle \frac {\int \frac {a (7 A-B)-3 a (A-B) \cos (c+d x)}{\cos ^{\frac {3}{2}}(c+d x) (\cos (c+d x) a+a)}dx}{6 a^2}-\frac {(A-B) \sin (c+d x)}{3 d \sqrt {\cos (c+d x)} (a \cos (c+d x)+a)^2}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {\int \frac {a (7 A-B)-3 a (A-B) \sin \left (c+d x+\frac {\pi }{2}\right )}{\sin \left (c+d x+\frac {\pi }{2}\right )^{3/2} \left (\sin \left (c+d x+\frac {\pi }{2}\right ) a+a\right )}dx}{6 a^2}-\frac {(A-B) \sin (c+d x)}{3 d \sqrt {\cos (c+d x)} (a \cos (c+d x)+a)^2}\)

\(\Big \downarrow \) 3457

\(\displaystyle \frac {\frac {\int \frac {3 a^2 (4 A-B)-a^2 (5 A-2 B) \cos (c+d x)}{\cos ^{\frac {3}{2}}(c+d x)}dx}{a^2}-\frac {2 (5 A-2 B) \sin (c+d x)}{d \sqrt {\cos (c+d x)} (\cos (c+d x)+1)}}{6 a^2}-\frac {(A-B) \sin (c+d x)}{3 d \sqrt {\cos (c+d x)} (a \cos (c+d x)+a)^2}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {\frac {\int \frac {3 a^2 (4 A-B)-a^2 (5 A-2 B) \sin \left (c+d x+\frac {\pi }{2}\right )}{\sin \left (c+d x+\frac {\pi }{2}\right )^{3/2}}dx}{a^2}-\frac {2 (5 A-2 B) \sin (c+d x)}{d \sqrt {\cos (c+d x)} (\cos (c+d x)+1)}}{6 a^2}-\frac {(A-B) \sin (c+d x)}{3 d \sqrt {\cos (c+d x)} (a \cos (c+d x)+a)^2}\)

\(\Big \downarrow \) 3227

\(\displaystyle \frac {\frac {3 a^2 (4 A-B) \int \frac {1}{\cos ^{\frac {3}{2}}(c+d x)}dx-a^2 (5 A-2 B) \int \frac {1}{\sqrt {\cos (c+d x)}}dx}{a^2}-\frac {2 (5 A-2 B) \sin (c+d x)}{d \sqrt {\cos (c+d x)} (\cos (c+d x)+1)}}{6 a^2}-\frac {(A-B) \sin (c+d x)}{3 d \sqrt {\cos (c+d x)} (a \cos (c+d x)+a)^2}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {\frac {3 a^2 (4 A-B) \int \frac {1}{\sin \left (c+d x+\frac {\pi }{2}\right )^{3/2}}dx-a^2 (5 A-2 B) \int \frac {1}{\sqrt {\sin \left (c+d x+\frac {\pi }{2}\right )}}dx}{a^2}-\frac {2 (5 A-2 B) \sin (c+d x)}{d \sqrt {\cos (c+d x)} (\cos (c+d x)+1)}}{6 a^2}-\frac {(A-B) \sin (c+d x)}{3 d \sqrt {\cos (c+d x)} (a \cos (c+d x)+a)^2}\)

\(\Big \downarrow \) 3116

\(\displaystyle \frac {\frac {3 a^2 (4 A-B) \left (\frac {2 \sin (c+d x)}{d \sqrt {\cos (c+d x)}}-\int \sqrt {\cos (c+d x)}dx\right )-a^2 (5 A-2 B) \int \frac {1}{\sqrt {\sin \left (c+d x+\frac {\pi }{2}\right )}}dx}{a^2}-\frac {2 (5 A-2 B) \sin (c+d x)}{d \sqrt {\cos (c+d x)} (\cos (c+d x)+1)}}{6 a^2}-\frac {(A-B) \sin (c+d x)}{3 d \sqrt {\cos (c+d x)} (a \cos (c+d x)+a)^2}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {\frac {3 a^2 (4 A-B) \left (\frac {2 \sin (c+d x)}{d \sqrt {\cos (c+d x)}}-\int \sqrt {\sin \left (c+d x+\frac {\pi }{2}\right )}dx\right )-a^2 (5 A-2 B) \int \frac {1}{\sqrt {\sin \left (c+d x+\frac {\pi }{2}\right )}}dx}{a^2}-\frac {2 (5 A-2 B) \sin (c+d x)}{d \sqrt {\cos (c+d x)} (\cos (c+d x)+1)}}{6 a^2}-\frac {(A-B) \sin (c+d x)}{3 d \sqrt {\cos (c+d x)} (a \cos (c+d x)+a)^2}\)

\(\Big \downarrow \) 3119

\(\displaystyle \frac {\frac {3 a^2 (4 A-B) \left (\frac {2 \sin (c+d x)}{d \sqrt {\cos (c+d x)}}-\frac {2 E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{d}\right )-a^2 (5 A-2 B) \int \frac {1}{\sqrt {\sin \left (c+d x+\frac {\pi }{2}\right )}}dx}{a^2}-\frac {2 (5 A-2 B) \sin (c+d x)}{d \sqrt {\cos (c+d x)} (\cos (c+d x)+1)}}{6 a^2}-\frac {(A-B) \sin (c+d x)}{3 d \sqrt {\cos (c+d x)} (a \cos (c+d x)+a)^2}\)

\(\Big \downarrow \) 3120

\(\displaystyle \frac {\frac {3 a^2 (4 A-B) \left (\frac {2 \sin (c+d x)}{d \sqrt {\cos (c+d x)}}-\frac {2 E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{d}\right )-\frac {2 a^2 (5 A-2 B) \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),2\right )}{d}}{a^2}-\frac {2 (5 A-2 B) \sin (c+d x)}{d \sqrt {\cos (c+d x)} (\cos (c+d x)+1)}}{6 a^2}-\frac {(A-B) \sin (c+d x)}{3 d \sqrt {\cos (c+d x)} (a \cos (c+d x)+a)^2}\)

Input:

Int[(A + B*Cos[c + d*x])/(Cos[c + d*x]^(3/2)*(a + a*Cos[c + d*x])^2),x]
 

Output:

-1/3*((A - B)*Sin[c + d*x])/(d*Sqrt[Cos[c + d*x]]*(a + a*Cos[c + d*x])^2) 
+ ((-2*(5*A - 2*B)*Sin[c + d*x])/(d*Sqrt[Cos[c + d*x]]*(1 + Cos[c + d*x])) 
 + ((-2*a^2*(5*A - 2*B)*EllipticF[(c + d*x)/2, 2])/d + 3*a^2*(4*A - B)*((- 
2*EllipticE[(c + d*x)/2, 2])/d + (2*Sin[c + d*x])/(d*Sqrt[Cos[c + d*x]]))) 
/a^2)/(6*a^2)
 

Defintions of rubi rules used

rule 27
Int[(a_)*(Fx_), x_Symbol] :> Simp[a   Int[Fx, x], x] /; FreeQ[a, x] &&  !Ma 
tchQ[Fx, (b_)*(Gx_) /; FreeQ[b, x]]
 

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 3116
Int[((b_.)*sin[(c_.) + (d_.)*(x_)])^(n_), x_Symbol] :> Simp[Cos[c + d*x]*(( 
b*Sin[c + d*x])^(n + 1)/(b*d*(n + 1))), x] + Simp[(n + 2)/(b^2*(n + 1))   I 
nt[(b*Sin[c + d*x])^(n + 2), x], x] /; FreeQ[{b, c, d}, x] && LtQ[n, -1] && 
 IntegerQ[2*n]
 

rule 3119
Int[Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2/d)*EllipticE[(1/2)* 
(c - Pi/2 + d*x), 2], x] /; FreeQ[{c, d}, x]
 

rule 3120
Int[1/Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2/d)*EllipticF[(1/2 
)*(c - Pi/2 + d*x), 2], x] /; FreeQ[{c, d}, x]
 

rule 3227
Int[((b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((c_) + (d_.)*sin[(e_.) + (f_.)*(x 
_)]), x_Symbol] :> Simp[c   Int[(b*Sin[e + f*x])^m, x], x] + Simp[d/b   Int 
[(b*Sin[e + f*x])^(m + 1), x], x] /; FreeQ[{b, c, d, e, f, m}, x]
 

rule 3457
Int[((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((A_.) + (B_.)*sin[(e_.) + 
(f_.)*(x_)])*((c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)])^(n_), x_Symbol] :> Sim 
p[b*(A*b - a*B)*Cos[e + f*x]*(a + b*Sin[e + f*x])^m*((c + d*Sin[e + f*x])^( 
n + 1)/(a*f*(2*m + 1)*(b*c - a*d))), x] + Simp[1/(a*(2*m + 1)*(b*c - a*d)) 
  Int[(a + b*Sin[e + f*x])^(m + 1)*(c + d*Sin[e + f*x])^n*Simp[B*(a*c*m + b 
*d*(n + 1)) + A*(b*c*(m + 1) - a*d*(2*m + n + 2)) + d*(A*b - a*B)*(m + n + 
2)*Sin[e + f*x], x], x], x] /; FreeQ[{a, b, c, d, e, f, A, B, n}, x] && NeQ 
[b*c - a*d, 0] && EqQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0] && LtQ[m, -2^(-1)] 
 &&  !GtQ[n, 0] && IntegerQ[2*m] && (IntegerQ[2*n] || EqQ[c, 0])
 
Maple [B] (verified)

Leaf count of result is larger than twice the leaf count of optimal. \(493\) vs. \(2(159)=318\).

Time = 4.28 (sec) , antiderivative size = 494, normalized size of antiderivative = 2.94

method result size
default \(-\frac {2 \sqrt {2 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-1}\, \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {-2 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{4}+\sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}}\, \left (5 A \operatorname {EllipticF}\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right )-12 A \operatorname {EllipticE}\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right )-2 B \operatorname {EllipticF}\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right )+3 B \operatorname {EllipticE}\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right )\right ) \cos \left (\frac {d x}{2}+\frac {c}{2}\right ) \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-2 \sqrt {2 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-1}\, \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {-2 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{4}+\sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}}\, \left (5 A \operatorname {EllipticF}\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right )-12 A \operatorname {EllipticE}\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right )-2 B \operatorname {EllipticF}\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right )+3 B \operatorname {EllipticE}\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right )\right ) \cos \left (\frac {d x}{2}+\frac {c}{2}\right )-12 \sqrt {-2 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{4}+\sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}}\, \left (4 A -B \right ) \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{6}+2 \sqrt {-2 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{4}+\sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}}\, \left (43 A -10 B \right ) \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{4}-\sqrt {-2 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{4}+\sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}}\, \left (37 A -7 B \right ) \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}}{6 a^{2} \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{3} \sqrt {-2 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{4}+\sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}}\, \sin \left (\frac {d x}{2}+\frac {c}{2}\right ) \sqrt {2 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-1}\, d}\) \(494\)

Input:

int((A+B*cos(d*x+c))/cos(d*x+c)^(3/2)/(a+a*cos(d*x+c))^2,x,method=_RETURNV 
ERBOSE)
 

Output:

-1/6*(2*(2*sin(1/2*d*x+1/2*c)^2-1)^(1/2)*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(-2* 
sin(1/2*d*x+1/2*c)^4+sin(1/2*d*x+1/2*c)^2)^(1/2)*(5*A*EllipticF(cos(1/2*d* 
x+1/2*c),2^(1/2))-12*A*EllipticE(cos(1/2*d*x+1/2*c),2^(1/2))-2*B*EllipticF 
(cos(1/2*d*x+1/2*c),2^(1/2))+3*B*EllipticE(cos(1/2*d*x+1/2*c),2^(1/2)))*co 
s(1/2*d*x+1/2*c)*sin(1/2*d*x+1/2*c)^2-2*(2*sin(1/2*d*x+1/2*c)^2-1)^(1/2)*( 
sin(1/2*d*x+1/2*c)^2)^(1/2)*(-2*sin(1/2*d*x+1/2*c)^4+sin(1/2*d*x+1/2*c)^2) 
^(1/2)*(5*A*EllipticF(cos(1/2*d*x+1/2*c),2^(1/2))-12*A*EllipticE(cos(1/2*d 
*x+1/2*c),2^(1/2))-2*B*EllipticF(cos(1/2*d*x+1/2*c),2^(1/2))+3*B*EllipticE 
(cos(1/2*d*x+1/2*c),2^(1/2)))*cos(1/2*d*x+1/2*c)-12*(-2*sin(1/2*d*x+1/2*c) 
^4+sin(1/2*d*x+1/2*c)^2)^(1/2)*(4*A-B)*sin(1/2*d*x+1/2*c)^6+2*(-2*sin(1/2* 
d*x+1/2*c)^4+sin(1/2*d*x+1/2*c)^2)^(1/2)*(43*A-10*B)*sin(1/2*d*x+1/2*c)^4- 
(-2*sin(1/2*d*x+1/2*c)^4+sin(1/2*d*x+1/2*c)^2)^(1/2)*(37*A-7*B)*sin(1/2*d* 
x+1/2*c)^2)/a^2/cos(1/2*d*x+1/2*c)^3/(-2*sin(1/2*d*x+1/2*c)^4+sin(1/2*d*x+ 
1/2*c)^2)^(1/2)/sin(1/2*d*x+1/2*c)/(2*cos(1/2*d*x+1/2*c)^2-1)^(1/2)/d
 

Fricas [C] (verification not implemented)

Result contains complex when optimal does not.

Time = 0.10 (sec) , antiderivative size = 407, normalized size of antiderivative = 2.42 \[ \int \frac {A+B \cos (c+d x)}{\cos ^{\frac {3}{2}}(c+d x) (a+a \cos (c+d x))^2} \, dx=\frac {2 \, {\left (3 \, {\left (4 \, A - B\right )} \cos \left (d x + c\right )^{2} + {\left (19 \, A - 4 \, B\right )} \cos \left (d x + c\right ) + 6 \, A\right )} \sqrt {\cos \left (d x + c\right )} \sin \left (d x + c\right ) + {\left (\sqrt {2} {\left (5 i \, A - 2 i \, B\right )} \cos \left (d x + c\right )^{3} - 2 \, \sqrt {2} {\left (-5 i \, A + 2 i \, B\right )} \cos \left (d x + c\right )^{2} + \sqrt {2} {\left (5 i \, A - 2 i \, B\right )} \cos \left (d x + c\right )\right )} {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) + i \, \sin \left (d x + c\right )\right ) + {\left (\sqrt {2} {\left (-5 i \, A + 2 i \, B\right )} \cos \left (d x + c\right )^{3} - 2 \, \sqrt {2} {\left (5 i \, A - 2 i \, B\right )} \cos \left (d x + c\right )^{2} + \sqrt {2} {\left (-5 i \, A + 2 i \, B\right )} \cos \left (d x + c\right )\right )} {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) - i \, \sin \left (d x + c\right )\right ) - 3 \, {\left (\sqrt {2} {\left (4 i \, A - i \, B\right )} \cos \left (d x + c\right )^{3} + 2 \, \sqrt {2} {\left (4 i \, A - i \, B\right )} \cos \left (d x + c\right )^{2} + \sqrt {2} {\left (4 i \, A - i \, B\right )} \cos \left (d x + c\right )\right )} {\rm weierstrassZeta}\left (-4, 0, {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) + i \, \sin \left (d x + c\right )\right )\right ) - 3 \, {\left (\sqrt {2} {\left (-4 i \, A + i \, B\right )} \cos \left (d x + c\right )^{3} + 2 \, \sqrt {2} {\left (-4 i \, A + i \, B\right )} \cos \left (d x + c\right )^{2} + \sqrt {2} {\left (-4 i \, A + i \, B\right )} \cos \left (d x + c\right )\right )} {\rm weierstrassZeta}\left (-4, 0, {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) - i \, \sin \left (d x + c\right )\right )\right )}{6 \, {\left (a^{2} d \cos \left (d x + c\right )^{3} + 2 \, a^{2} d \cos \left (d x + c\right )^{2} + a^{2} d \cos \left (d x + c\right )\right )}} \] Input:

integrate((A+B*cos(d*x+c))/cos(d*x+c)^(3/2)/(a+a*cos(d*x+c))^2,x, algorith 
m="fricas")
 

Output:

1/6*(2*(3*(4*A - B)*cos(d*x + c)^2 + (19*A - 4*B)*cos(d*x + c) + 6*A)*sqrt 
(cos(d*x + c))*sin(d*x + c) + (sqrt(2)*(5*I*A - 2*I*B)*cos(d*x + c)^3 - 2* 
sqrt(2)*(-5*I*A + 2*I*B)*cos(d*x + c)^2 + sqrt(2)*(5*I*A - 2*I*B)*cos(d*x 
+ c))*weierstrassPInverse(-4, 0, cos(d*x + c) + I*sin(d*x + c)) + (sqrt(2) 
*(-5*I*A + 2*I*B)*cos(d*x + c)^3 - 2*sqrt(2)*(5*I*A - 2*I*B)*cos(d*x + c)^ 
2 + sqrt(2)*(-5*I*A + 2*I*B)*cos(d*x + c))*weierstrassPInverse(-4, 0, cos( 
d*x + c) - I*sin(d*x + c)) - 3*(sqrt(2)*(4*I*A - I*B)*cos(d*x + c)^3 + 2*s 
qrt(2)*(4*I*A - I*B)*cos(d*x + c)^2 + sqrt(2)*(4*I*A - I*B)*cos(d*x + c))* 
weierstrassZeta(-4, 0, weierstrassPInverse(-4, 0, cos(d*x + c) + I*sin(d*x 
 + c))) - 3*(sqrt(2)*(-4*I*A + I*B)*cos(d*x + c)^3 + 2*sqrt(2)*(-4*I*A + I 
*B)*cos(d*x + c)^2 + sqrt(2)*(-4*I*A + I*B)*cos(d*x + c))*weierstrassZeta( 
-4, 0, weierstrassPInverse(-4, 0, cos(d*x + c) - I*sin(d*x + c))))/(a^2*d* 
cos(d*x + c)^3 + 2*a^2*d*cos(d*x + c)^2 + a^2*d*cos(d*x + c))
 

Sympy [F(-1)]

Timed out. \[ \int \frac {A+B \cos (c+d x)}{\cos ^{\frac {3}{2}}(c+d x) (a+a \cos (c+d x))^2} \, dx=\text {Timed out} \] Input:

integrate((A+B*cos(d*x+c))/cos(d*x+c)**(3/2)/(a+a*cos(d*x+c))**2,x)
 

Output:

Timed out
 

Maxima [F(-1)]

Timed out. \[ \int \frac {A+B \cos (c+d x)}{\cos ^{\frac {3}{2}}(c+d x) (a+a \cos (c+d x))^2} \, dx=\text {Timed out} \] Input:

integrate((A+B*cos(d*x+c))/cos(d*x+c)^(3/2)/(a+a*cos(d*x+c))^2,x, algorith 
m="maxima")
 

Output:

Timed out
 

Giac [F]

\[ \int \frac {A+B \cos (c+d x)}{\cos ^{\frac {3}{2}}(c+d x) (a+a \cos (c+d x))^2} \, dx=\int { \frac {B \cos \left (d x + c\right ) + A}{{\left (a \cos \left (d x + c\right ) + a\right )}^{2} \cos \left (d x + c\right )^{\frac {3}{2}}} \,d x } \] Input:

integrate((A+B*cos(d*x+c))/cos(d*x+c)^(3/2)/(a+a*cos(d*x+c))^2,x, algorith 
m="giac")
 

Output:

integrate((B*cos(d*x + c) + A)/((a*cos(d*x + c) + a)^2*cos(d*x + c)^(3/2)) 
, x)
 

Mupad [F(-1)]

Timed out. \[ \int \frac {A+B \cos (c+d x)}{\cos ^{\frac {3}{2}}(c+d x) (a+a \cos (c+d x))^2} \, dx=\int \frac {A+B\,\cos \left (c+d\,x\right )}{{\cos \left (c+d\,x\right )}^{3/2}\,{\left (a+a\,\cos \left (c+d\,x\right )\right )}^2} \,d x \] Input:

int((A + B*cos(c + d*x))/(cos(c + d*x)^(3/2)*(a + a*cos(c + d*x))^2),x)
                                                                                    
                                                                                    
 

Output:

int((A + B*cos(c + d*x))/(cos(c + d*x)^(3/2)*(a + a*cos(c + d*x))^2), x)
 

Reduce [F]

\[ \int \frac {A+B \cos (c+d x)}{\cos ^{\frac {3}{2}}(c+d x) (a+a \cos (c+d x))^2} \, dx=\frac {\left (\int \frac {\sqrt {\cos \left (d x +c \right )}}{\cos \left (d x +c \right )^{4}+2 \cos \left (d x +c \right )^{3}+\cos \left (d x +c \right )^{2}}d x \right ) a +\left (\int \frac {\sqrt {\cos \left (d x +c \right )}}{\cos \left (d x +c \right )^{3}+2 \cos \left (d x +c \right )^{2}+\cos \left (d x +c \right )}d x \right ) b}{a^{2}} \] Input:

int((A+B*cos(d*x+c))/cos(d*x+c)^(3/2)/(a+a*cos(d*x+c))^2,x)
 

Output:

(int(sqrt(cos(c + d*x))/(cos(c + d*x)**4 + 2*cos(c + d*x)**3 + cos(c + d*x 
)**2),x)*a + int(sqrt(cos(c + d*x))/(cos(c + d*x)**3 + 2*cos(c + d*x)**2 + 
 cos(c + d*x)),x)*b)/a**2