\(\int \frac {\sqrt {a+a \cos (c+d x)} (A+B \cos (c+d x))}{\cos ^{\frac {5}{2}}(c+d x)} \, dx\) [171]

Optimal result
Mathematica [A] (verified)
Rubi [A] (verified)
Maple [A] (verified)
Fricas [A] (verification not implemented)
Sympy [F]
Maxima [B] (verification not implemented)
Giac [F(-1)]
Mupad [B] (verification not implemented)
Reduce [F]

Optimal result

Integrand size = 35, antiderivative size = 85 \[ \int \frac {\sqrt {a+a \cos (c+d x)} (A+B \cos (c+d x))}{\cos ^{\frac {5}{2}}(c+d x)} \, dx=\frac {2 a A \sin (c+d x)}{3 d \cos ^{\frac {3}{2}}(c+d x) \sqrt {a+a \cos (c+d x)}}+\frac {2 a (2 A+3 B) \sin (c+d x)}{3 d \sqrt {\cos (c+d x)} \sqrt {a+a \cos (c+d x)}} \] Output:

2/3*a*A*sin(d*x+c)/d/cos(d*x+c)^(3/2)/(a+a*cos(d*x+c))^(1/2)+2/3*a*(2*A+3* 
B)*sin(d*x+c)/d/cos(d*x+c)^(1/2)/(a+a*cos(d*x+c))^(1/2)
                                                                                    
                                                                                    
 

Mathematica [A] (verified)

Time = 0.17 (sec) , antiderivative size = 57, normalized size of antiderivative = 0.67 \[ \int \frac {\sqrt {a+a \cos (c+d x)} (A+B \cos (c+d x))}{\cos ^{\frac {5}{2}}(c+d x)} \, dx=\frac {2 \sqrt {a (1+\cos (c+d x))} (A+(2 A+3 B) \cos (c+d x)) \tan \left (\frac {1}{2} (c+d x)\right )}{3 d \cos ^{\frac {3}{2}}(c+d x)} \] Input:

Integrate[(Sqrt[a + a*Cos[c + d*x]]*(A + B*Cos[c + d*x]))/Cos[c + d*x]^(5/ 
2),x]
 

Output:

(2*Sqrt[a*(1 + Cos[c + d*x])]*(A + (2*A + 3*B)*Cos[c + d*x])*Tan[(c + d*x) 
/2])/(3*d*Cos[c + d*x]^(3/2))
 

Rubi [A] (verified)

Time = 0.42 (sec) , antiderivative size = 85, normalized size of antiderivative = 1.00, number of steps used = 4, number of rules used = 4, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.114, Rules used = {3042, 3459, 3042, 3250}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {\sqrt {a \cos (c+d x)+a} (A+B \cos (c+d x))}{\cos ^{\frac {5}{2}}(c+d x)} \, dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \frac {\sqrt {a \sin \left (c+d x+\frac {\pi }{2}\right )+a} \left (A+B \sin \left (c+d x+\frac {\pi }{2}\right )\right )}{\sin \left (c+d x+\frac {\pi }{2}\right )^{5/2}}dx\)

\(\Big \downarrow \) 3459

\(\displaystyle \frac {1}{3} (2 A+3 B) \int \frac {\sqrt {\cos (c+d x) a+a}}{\cos ^{\frac {3}{2}}(c+d x)}dx+\frac {2 a A \sin (c+d x)}{3 d \cos ^{\frac {3}{2}}(c+d x) \sqrt {a \cos (c+d x)+a}}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {1}{3} (2 A+3 B) \int \frac {\sqrt {\sin \left (c+d x+\frac {\pi }{2}\right ) a+a}}{\sin \left (c+d x+\frac {\pi }{2}\right )^{3/2}}dx+\frac {2 a A \sin (c+d x)}{3 d \cos ^{\frac {3}{2}}(c+d x) \sqrt {a \cos (c+d x)+a}}\)

\(\Big \downarrow \) 3250

\(\displaystyle \frac {2 a (2 A+3 B) \sin (c+d x)}{3 d \sqrt {\cos (c+d x)} \sqrt {a \cos (c+d x)+a}}+\frac {2 a A \sin (c+d x)}{3 d \cos ^{\frac {3}{2}}(c+d x) \sqrt {a \cos (c+d x)+a}}\)

Input:

Int[(Sqrt[a + a*Cos[c + d*x]]*(A + B*Cos[c + d*x]))/Cos[c + d*x]^(5/2),x]
 

Output:

(2*a*A*Sin[c + d*x])/(3*d*Cos[c + d*x]^(3/2)*Sqrt[a + a*Cos[c + d*x]]) + ( 
2*a*(2*A + 3*B)*Sin[c + d*x])/(3*d*Sqrt[Cos[c + d*x]]*Sqrt[a + a*Cos[c + d 
*x]])
 

Defintions of rubi rules used

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 3250
Int[Sqrt[(a_) + (b_.)*sin[(e_.) + (f_.)*(x_)]]/((c_.) + (d_.)*sin[(e_.) + ( 
f_.)*(x_)])^(3/2), x_Symbol] :> Simp[-2*b^2*(Cos[e + f*x]/(f*(b*c + a*d)*Sq 
rt[a + b*Sin[e + f*x]]*Sqrt[c + d*Sin[e + f*x]])), x] /; FreeQ[{a, b, c, d, 
 e, f}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0]
 

rule 3459
Int[Sqrt[(a_) + (b_.)*sin[(e_.) + (f_.)*(x_)]]*((A_.) + (B_.)*sin[(e_.) + ( 
f_.)*(x_)])*((c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)])^(n_), x_Symbol] :> Simp 
[(-b^2)*(B*c - A*d)*Cos[e + f*x]*((c + d*Sin[e + f*x])^(n + 1)/(d*f*(n + 1) 
*(b*c + a*d)*Sqrt[a + b*Sin[e + f*x]])), x] + Simp[(A*b*d*(2*n + 3) - B*(b* 
c - 2*a*d*(n + 1)))/(2*d*(n + 1)*(b*c + a*d))   Int[Sqrt[a + b*Sin[e + f*x] 
]*(c + d*Sin[e + f*x])^(n + 1), x], x] /; FreeQ[{a, b, c, d, e, f, A, B}, x 
] && NeQ[b*c - a*d, 0] && EqQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0] && LtQ[n, 
-1]
 
Maple [A] (verified)

Time = 12.99 (sec) , antiderivative size = 128, normalized size of antiderivative = 1.51

method result size
parts \(\frac {2 A \sqrt {2}\, \tan \left (\frac {d x}{2}+\frac {c}{2}\right ) \left (2 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )+1\right ) \left (-1+2 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )\right ) \sqrt {a \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}}}{3 d \left (2 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-1\right )^{\frac {3}{2}}}+\frac {2 B \sqrt {2}\, \tan \left (\frac {d x}{2}+\frac {c}{2}\right ) \sqrt {a \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}}}{d \sqrt {2 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-1}}\) \(128\)
default \(\sqrt {2}\, \left (\frac {2 A \tan \left (\frac {d x}{2}+\frac {c}{2}\right ) \left (2 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )+1\right ) \left (-1+2 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )\right ) \sqrt {a \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}}}{3 d \left (2 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-1\right )^{\frac {3}{2}}}-\frac {2 B \tan \left (\frac {d x}{2}+\frac {c}{2}\right ) \left (2 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )+1\right ) \left (-1+2 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )\right ) \sqrt {a \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}}}{3 d \left (2 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-1\right )^{\frac {3}{2}}}+\frac {4 B \tan \left (\frac {d x}{2}+\frac {c}{2}\right ) \left (5 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-2\right ) \sqrt {a \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}}}{3 d \left (2 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-1\right )^{\frac {3}{2}}}\right )\) \(214\)

Input:

int((a+a*cos(d*x+c))^(1/2)*(A+B*cos(d*x+c))/cos(d*x+c)^(5/2),x,method=_RET 
URNVERBOSE)
 

Output:

2/3*A*2^(1/2)/d*tan(1/2*d*x+1/2*c)/(2*cos(1/2*d*x+1/2*c)^2-1)^(3/2)*(2*cos 
(1/2*d*x+1/2*c)+1)*(-1+2*cos(1/2*d*x+1/2*c))*(a*cos(1/2*d*x+1/2*c)^2)^(1/2 
)+2*B*2^(1/2)/d*tan(1/2*d*x+1/2*c)/(2*cos(1/2*d*x+1/2*c)^2-1)^(1/2)*(a*cos 
(1/2*d*x+1/2*c)^2)^(1/2)
 

Fricas [A] (verification not implemented)

Time = 0.08 (sec) , antiderivative size = 67, normalized size of antiderivative = 0.79 \[ \int \frac {\sqrt {a+a \cos (c+d x)} (A+B \cos (c+d x))}{\cos ^{\frac {5}{2}}(c+d x)} \, dx=\frac {2 \, {\left ({\left (2 \, A + 3 \, B\right )} \cos \left (d x + c\right ) + A\right )} \sqrt {a \cos \left (d x + c\right ) + a} \sqrt {\cos \left (d x + c\right )} \sin \left (d x + c\right )}{3 \, {\left (d \cos \left (d x + c\right )^{3} + d \cos \left (d x + c\right )^{2}\right )}} \] Input:

integrate((a+a*cos(d*x+c))^(1/2)*(A+B*cos(d*x+c))/cos(d*x+c)^(5/2),x, algo 
rithm="fricas")
 

Output:

2/3*((2*A + 3*B)*cos(d*x + c) + A)*sqrt(a*cos(d*x + c) + a)*sqrt(cos(d*x + 
 c))*sin(d*x + c)/(d*cos(d*x + c)^3 + d*cos(d*x + c)^2)
 

Sympy [F]

\[ \int \frac {\sqrt {a+a \cos (c+d x)} (A+B \cos (c+d x))}{\cos ^{\frac {5}{2}}(c+d x)} \, dx=\int \frac {\sqrt {a \left (\cos {\left (c + d x \right )} + 1\right )} \left (A + B \cos {\left (c + d x \right )}\right )}{\cos ^{\frac {5}{2}}{\left (c + d x \right )}}\, dx \] Input:

integrate((a+a*cos(d*x+c))**(1/2)*(A+B*cos(d*x+c))/cos(d*x+c)**(5/2),x)
 

Output:

Integral(sqrt(a*(cos(c + d*x) + 1))*(A + B*cos(c + d*x))/cos(c + d*x)**(5/ 
2), x)
 

Maxima [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 289 vs. \(2 (73) = 146\).

Time = 0.18 (sec) , antiderivative size = 289, normalized size of antiderivative = 3.40 \[ \int \frac {\sqrt {a+a \cos (c+d x)} (A+B \cos (c+d x))}{\cos ^{\frac {5}{2}}(c+d x)} \, dx=\frac {2 \, {\left (\frac {3 \, B {\left (\frac {\sqrt {2} \sqrt {a} \sin \left (d x + c\right )}{\cos \left (d x + c\right ) + 1} - \frac {\sqrt {2} \sqrt {a} \sin \left (d x + c\right )^{3}}{{\left (\cos \left (d x + c\right ) + 1\right )}^{3}}\right )}}{{\left (\frac {\sin \left (d x + c\right )}{\cos \left (d x + c\right ) + 1} + 1\right )}^{\frac {3}{2}} {\left (-\frac {\sin \left (d x + c\right )}{\cos \left (d x + c\right ) + 1} + 1\right )}^{\frac {3}{2}}} + \frac {A {\left (\frac {3 \, \sqrt {2} \sqrt {a} \sin \left (d x + c\right )}{\cos \left (d x + c\right ) + 1} - \frac {4 \, \sqrt {2} \sqrt {a} \sin \left (d x + c\right )^{3}}{{\left (\cos \left (d x + c\right ) + 1\right )}^{3}} + \frac {\sqrt {2} \sqrt {a} \sin \left (d x + c\right )^{5}}{{\left (\cos \left (d x + c\right ) + 1\right )}^{5}}\right )} {\left (\frac {\sin \left (d x + c\right )^{2}}{{\left (\cos \left (d x + c\right ) + 1\right )}^{2}} + 1\right )}^{2}}{{\left (\frac {\sin \left (d x + c\right )}{\cos \left (d x + c\right ) + 1} + 1\right )}^{\frac {5}{2}} {\left (-\frac {\sin \left (d x + c\right )}{\cos \left (d x + c\right ) + 1} + 1\right )}^{\frac {5}{2}} {\left (\frac {2 \, \sin \left (d x + c\right )^{2}}{{\left (\cos \left (d x + c\right ) + 1\right )}^{2}} + \frac {\sin \left (d x + c\right )^{4}}{{\left (\cos \left (d x + c\right ) + 1\right )}^{4}} + 1\right )}}\right )}}{3 \, d} \] Input:

integrate((a+a*cos(d*x+c))^(1/2)*(A+B*cos(d*x+c))/cos(d*x+c)^(5/2),x, algo 
rithm="maxima")
 

Output:

2/3*(3*B*(sqrt(2)*sqrt(a)*sin(d*x + c)/(cos(d*x + c) + 1) - sqrt(2)*sqrt(a 
)*sin(d*x + c)^3/(cos(d*x + c) + 1)^3)/((sin(d*x + c)/(cos(d*x + c) + 1) + 
 1)^(3/2)*(-sin(d*x + c)/(cos(d*x + c) + 1) + 1)^(3/2)) + A*(3*sqrt(2)*sqr 
t(a)*sin(d*x + c)/(cos(d*x + c) + 1) - 4*sqrt(2)*sqrt(a)*sin(d*x + c)^3/(c 
os(d*x + c) + 1)^3 + sqrt(2)*sqrt(a)*sin(d*x + c)^5/(cos(d*x + c) + 1)^5)* 
(sin(d*x + c)^2/(cos(d*x + c) + 1)^2 + 1)^2/((sin(d*x + c)/(cos(d*x + c) + 
 1) + 1)^(5/2)*(-sin(d*x + c)/(cos(d*x + c) + 1) + 1)^(5/2)*(2*sin(d*x + c 
)^2/(cos(d*x + c) + 1)^2 + sin(d*x + c)^4/(cos(d*x + c) + 1)^4 + 1)))/d
 

Giac [F(-1)]

Timed out. \[ \int \frac {\sqrt {a+a \cos (c+d x)} (A+B \cos (c+d x))}{\cos ^{\frac {5}{2}}(c+d x)} \, dx=\text {Timed out} \] Input:

integrate((a+a*cos(d*x+c))^(1/2)*(A+B*cos(d*x+c))/cos(d*x+c)^(5/2),x, algo 
rithm="giac")
 

Output:

Timed out
 

Mupad [B] (verification not implemented)

Time = 43.42 (sec) , antiderivative size = 112, normalized size of antiderivative = 1.32 \[ \int \frac {\sqrt {a+a \cos (c+d x)} (A+B \cos (c+d x))}{\cos ^{\frac {5}{2}}(c+d x)} \, dx=\frac {2\,\sqrt {a\,\left (\cos \left (c+d\,x\right )+1\right )}\,\left (2\,A\,\sin \left (c+d\,x\right )+3\,B\,\sin \left (c+d\,x\right )+2\,A\,\sin \left (2\,c+2\,d\,x\right )+2\,A\,\sin \left (3\,c+3\,d\,x\right )+3\,B\,\sin \left (3\,c+3\,d\,x\right )\right )}{3\,d\,\sqrt {\cos \left (c+d\,x\right )}\,\left (3\,\cos \left (c+d\,x\right )+2\,\cos \left (2\,c+2\,d\,x\right )+\cos \left (3\,c+3\,d\,x\right )+2\right )} \] Input:

int(((A + B*cos(c + d*x))*(a + a*cos(c + d*x))^(1/2))/cos(c + d*x)^(5/2),x 
)
 

Output:

(2*(a*(cos(c + d*x) + 1))^(1/2)*(2*A*sin(c + d*x) + 3*B*sin(c + d*x) + 2*A 
*sin(2*c + 2*d*x) + 2*A*sin(3*c + 3*d*x) + 3*B*sin(3*c + 3*d*x)))/(3*d*cos 
(c + d*x)^(1/2)*(3*cos(c + d*x) + 2*cos(2*c + 2*d*x) + cos(3*c + 3*d*x) + 
2))
 

Reduce [F]

\[ \int \frac {\sqrt {a+a \cos (c+d x)} (A+B \cos (c+d x))}{\cos ^{\frac {5}{2}}(c+d x)} \, dx=\sqrt {a}\, \left (\left (\int \frac {\sqrt {\cos \left (d x +c \right )+1}\, \sqrt {\cos \left (d x +c \right )}}{\cos \left (d x +c \right )^{3}}d x \right ) a +\left (\int \frac {\sqrt {\cos \left (d x +c \right )+1}\, \sqrt {\cos \left (d x +c \right )}}{\cos \left (d x +c \right )^{2}}d x \right ) b \right ) \] Input:

int((a+a*cos(d*x+c))^(1/2)*(A+B*cos(d*x+c))/cos(d*x+c)^(5/2),x)
 

Output:

sqrt(a)*(int((sqrt(cos(c + d*x) + 1)*sqrt(cos(c + d*x)))/cos(c + d*x)**3,x 
)*a + int((sqrt(cos(c + d*x) + 1)*sqrt(cos(c + d*x)))/cos(c + d*x)**2,x)*b 
)