\(\int \frac {\sqrt {a+a \cos (c+d x)} (A+B \cos (c+d x))}{\cos ^{\frac {9}{2}}(c+d x)} \, dx\) [173]

Optimal result
Mathematica [A] (verified)
Rubi [A] (verified)
Maple [A] (verified)
Fricas [A] (verification not implemented)
Sympy [F(-1)]
Maxima [B] (verification not implemented)
Giac [F(-1)]
Mupad [B] (verification not implemented)
Reduce [F]

Optimal result

Integrand size = 35, antiderivative size = 175 \[ \int \frac {\sqrt {a+a \cos (c+d x)} (A+B \cos (c+d x))}{\cos ^{\frac {9}{2}}(c+d x)} \, dx=\frac {2 a A \sin (c+d x)}{7 d \cos ^{\frac {7}{2}}(c+d x) \sqrt {a+a \cos (c+d x)}}+\frac {2 a (6 A+7 B) \sin (c+d x)}{35 d \cos ^{\frac {5}{2}}(c+d x) \sqrt {a+a \cos (c+d x)}}+\frac {8 a (6 A+7 B) \sin (c+d x)}{105 d \cos ^{\frac {3}{2}}(c+d x) \sqrt {a+a \cos (c+d x)}}+\frac {16 a (6 A+7 B) \sin (c+d x)}{105 d \sqrt {\cos (c+d x)} \sqrt {a+a \cos (c+d x)}} \] Output:

2/7*a*A*sin(d*x+c)/d/cos(d*x+c)^(7/2)/(a+a*cos(d*x+c))^(1/2)+2/35*a*(6*A+7 
*B)*sin(d*x+c)/d/cos(d*x+c)^(5/2)/(a+a*cos(d*x+c))^(1/2)+8/105*a*(6*A+7*B) 
*sin(d*x+c)/d/cos(d*x+c)^(3/2)/(a+a*cos(d*x+c))^(1/2)+16/105*a*(6*A+7*B)*s 
in(d*x+c)/d/cos(d*x+c)^(1/2)/(a+a*cos(d*x+c))^(1/2)
                                                                                    
                                                                                    
 

Mathematica [A] (verified)

Time = 0.45 (sec) , antiderivative size = 102, normalized size of antiderivative = 0.58 \[ \int \frac {\sqrt {a+a \cos (c+d x)} (A+B \cos (c+d x))}{\cos ^{\frac {9}{2}}(c+d x)} \, dx=\frac {2 \sqrt {a (1+\cos (c+d x))} (27 A+14 B+9 (6 A+7 B) \cos (c+d x)+2 (6 A+7 B) \cos (2 (c+d x))+12 A \cos (3 (c+d x))+14 B \cos (3 (c+d x))) \tan \left (\frac {1}{2} (c+d x)\right )}{105 d \cos ^{\frac {7}{2}}(c+d x)} \] Input:

Integrate[(Sqrt[a + a*Cos[c + d*x]]*(A + B*Cos[c + d*x]))/Cos[c + d*x]^(9/ 
2),x]
 

Output:

(2*Sqrt[a*(1 + Cos[c + d*x])]*(27*A + 14*B + 9*(6*A + 7*B)*Cos[c + d*x] + 
2*(6*A + 7*B)*Cos[2*(c + d*x)] + 12*A*Cos[3*(c + d*x)] + 14*B*Cos[3*(c + d 
*x)])*Tan[(c + d*x)/2])/(105*d*Cos[c + d*x]^(7/2))
 

Rubi [A] (verified)

Time = 0.74 (sec) , antiderivative size = 171, normalized size of antiderivative = 0.98, number of steps used = 8, number of rules used = 8, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.229, Rules used = {3042, 3459, 3042, 3251, 3042, 3251, 3042, 3250}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {\sqrt {a \cos (c+d x)+a} (A+B \cos (c+d x))}{\cos ^{\frac {9}{2}}(c+d x)} \, dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \frac {\sqrt {a \sin \left (c+d x+\frac {\pi }{2}\right )+a} \left (A+B \sin \left (c+d x+\frac {\pi }{2}\right )\right )}{\sin \left (c+d x+\frac {\pi }{2}\right )^{9/2}}dx\)

\(\Big \downarrow \) 3459

\(\displaystyle \frac {1}{7} (6 A+7 B) \int \frac {\sqrt {\cos (c+d x) a+a}}{\cos ^{\frac {7}{2}}(c+d x)}dx+\frac {2 a A \sin (c+d x)}{7 d \cos ^{\frac {7}{2}}(c+d x) \sqrt {a \cos (c+d x)+a}}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {1}{7} (6 A+7 B) \int \frac {\sqrt {\sin \left (c+d x+\frac {\pi }{2}\right ) a+a}}{\sin \left (c+d x+\frac {\pi }{2}\right )^{7/2}}dx+\frac {2 a A \sin (c+d x)}{7 d \cos ^{\frac {7}{2}}(c+d x) \sqrt {a \cos (c+d x)+a}}\)

\(\Big \downarrow \) 3251

\(\displaystyle \frac {1}{7} (6 A+7 B) \left (\frac {4}{5} \int \frac {\sqrt {\cos (c+d x) a+a}}{\cos ^{\frac {5}{2}}(c+d x)}dx+\frac {2 a \sin (c+d x)}{5 d \cos ^{\frac {5}{2}}(c+d x) \sqrt {a \cos (c+d x)+a}}\right )+\frac {2 a A \sin (c+d x)}{7 d \cos ^{\frac {7}{2}}(c+d x) \sqrt {a \cos (c+d x)+a}}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {1}{7} (6 A+7 B) \left (\frac {4}{5} \int \frac {\sqrt {\sin \left (c+d x+\frac {\pi }{2}\right ) a+a}}{\sin \left (c+d x+\frac {\pi }{2}\right )^{5/2}}dx+\frac {2 a \sin (c+d x)}{5 d \cos ^{\frac {5}{2}}(c+d x) \sqrt {a \cos (c+d x)+a}}\right )+\frac {2 a A \sin (c+d x)}{7 d \cos ^{\frac {7}{2}}(c+d x) \sqrt {a \cos (c+d x)+a}}\)

\(\Big \downarrow \) 3251

\(\displaystyle \frac {1}{7} (6 A+7 B) \left (\frac {4}{5} \left (\frac {2}{3} \int \frac {\sqrt {\cos (c+d x) a+a}}{\cos ^{\frac {3}{2}}(c+d x)}dx+\frac {2 a \sin (c+d x)}{3 d \cos ^{\frac {3}{2}}(c+d x) \sqrt {a \cos (c+d x)+a}}\right )+\frac {2 a \sin (c+d x)}{5 d \cos ^{\frac {5}{2}}(c+d x) \sqrt {a \cos (c+d x)+a}}\right )+\frac {2 a A \sin (c+d x)}{7 d \cos ^{\frac {7}{2}}(c+d x) \sqrt {a \cos (c+d x)+a}}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {1}{7} (6 A+7 B) \left (\frac {4}{5} \left (\frac {2}{3} \int \frac {\sqrt {\sin \left (c+d x+\frac {\pi }{2}\right ) a+a}}{\sin \left (c+d x+\frac {\pi }{2}\right )^{3/2}}dx+\frac {2 a \sin (c+d x)}{3 d \cos ^{\frac {3}{2}}(c+d x) \sqrt {a \cos (c+d x)+a}}\right )+\frac {2 a \sin (c+d x)}{5 d \cos ^{\frac {5}{2}}(c+d x) \sqrt {a \cos (c+d x)+a}}\right )+\frac {2 a A \sin (c+d x)}{7 d \cos ^{\frac {7}{2}}(c+d x) \sqrt {a \cos (c+d x)+a}}\)

\(\Big \downarrow \) 3250

\(\displaystyle \frac {1}{7} (6 A+7 B) \left (\frac {2 a \sin (c+d x)}{5 d \cos ^{\frac {5}{2}}(c+d x) \sqrt {a \cos (c+d x)+a}}+\frac {4}{5} \left (\frac {2 a \sin (c+d x)}{3 d \cos ^{\frac {3}{2}}(c+d x) \sqrt {a \cos (c+d x)+a}}+\frac {4 a \sin (c+d x)}{3 d \sqrt {\cos (c+d x)} \sqrt {a \cos (c+d x)+a}}\right )\right )+\frac {2 a A \sin (c+d x)}{7 d \cos ^{\frac {7}{2}}(c+d x) \sqrt {a \cos (c+d x)+a}}\)

Input:

Int[(Sqrt[a + a*Cos[c + d*x]]*(A + B*Cos[c + d*x]))/Cos[c + d*x]^(9/2),x]
 

Output:

(2*a*A*Sin[c + d*x])/(7*d*Cos[c + d*x]^(7/2)*Sqrt[a + a*Cos[c + d*x]]) + ( 
(6*A + 7*B)*((2*a*Sin[c + d*x])/(5*d*Cos[c + d*x]^(5/2)*Sqrt[a + a*Cos[c + 
 d*x]]) + (4*((2*a*Sin[c + d*x])/(3*d*Cos[c + d*x]^(3/2)*Sqrt[a + a*Cos[c 
+ d*x]]) + (4*a*Sin[c + d*x])/(3*d*Sqrt[Cos[c + d*x]]*Sqrt[a + a*Cos[c + d 
*x]])))/5))/7
 

Defintions of rubi rules used

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 3250
Int[Sqrt[(a_) + (b_.)*sin[(e_.) + (f_.)*(x_)]]/((c_.) + (d_.)*sin[(e_.) + ( 
f_.)*(x_)])^(3/2), x_Symbol] :> Simp[-2*b^2*(Cos[e + f*x]/(f*(b*c + a*d)*Sq 
rt[a + b*Sin[e + f*x]]*Sqrt[c + d*Sin[e + f*x]])), x] /; FreeQ[{a, b, c, d, 
 e, f}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0]
 

rule 3251
Int[Sqrt[(a_) + (b_.)*sin[(e_.) + (f_.)*(x_)]]*((c_.) + (d_.)*sin[(e_.) + ( 
f_.)*(x_)])^(n_), x_Symbol] :> Simp[(b*c - a*d)*Cos[e + f*x]*((c + d*Sin[e 
+ f*x])^(n + 1)/(f*(n + 1)*(c^2 - d^2)*Sqrt[a + b*Sin[e + f*x]])), x] + Sim 
p[(2*n + 3)*((b*c - a*d)/(2*b*(n + 1)*(c^2 - d^2)))   Int[Sqrt[a + b*Sin[e 
+ f*x]]*(c + d*Sin[e + f*x])^(n + 1), x], x] /; FreeQ[{a, b, c, d, e, f}, x 
] && NeQ[b*c - a*d, 0] && EqQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0] && LtQ[n, 
-1] && NeQ[2*n + 3, 0] && IntegerQ[2*n]
 

rule 3459
Int[Sqrt[(a_) + (b_.)*sin[(e_.) + (f_.)*(x_)]]*((A_.) + (B_.)*sin[(e_.) + ( 
f_.)*(x_)])*((c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)])^(n_), x_Symbol] :> Simp 
[(-b^2)*(B*c - A*d)*Cos[e + f*x]*((c + d*Sin[e + f*x])^(n + 1)/(d*f*(n + 1) 
*(b*c + a*d)*Sqrt[a + b*Sin[e + f*x]])), x] + Simp[(A*b*d*(2*n + 3) - B*(b* 
c - 2*a*d*(n + 1)))/(2*d*(n + 1)*(b*c + a*d))   Int[Sqrt[a + b*Sin[e + f*x] 
]*(c + d*Sin[e + f*x])^(n + 1), x], x] /; FreeQ[{a, b, c, d, e, f, A, B}, x 
] && NeQ[b*c - a*d, 0] && EqQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0] && LtQ[n, 
-1]
 
Maple [A] (verified)

Time = 14.44 (sec) , antiderivative size = 171, normalized size of antiderivative = 0.98

method result size
parts \(\frac {2 A \sqrt {2}\, \tan \left (\frac {d x}{2}+\frac {c}{2}\right ) \left (128 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{6}-160 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{4}+76 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-9\right ) \sqrt {a \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}}}{35 d \left (2 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-1\right )^{\frac {7}{2}}}+\frac {2 B \sqrt {2}\, \tan \left (\frac {d x}{2}+\frac {c}{2}\right ) \left (32 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{4}-24 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}+7\right ) \sqrt {a \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}}}{15 d \left (2 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-1\right )^{\frac {5}{2}}}\) \(171\)
default \(\sqrt {2}\, \left (\frac {2 A \tan \left (\frac {d x}{2}+\frac {c}{2}\right ) \left (128 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{6}-160 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{4}+76 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-9\right ) \sqrt {a \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}}}{35 d \left (2 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-1\right )^{\frac {7}{2}}}-\frac {2 B \tan \left (\frac {d x}{2}+\frac {c}{2}\right ) \left (128 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{6}-160 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{4}+76 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-9\right ) \sqrt {a \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}}}{35 d \left (2 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-1\right )^{\frac {7}{2}}}+\frac {4 B \tan \left (\frac {d x}{2}+\frac {c}{2}\right ) \left (416 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{6}-520 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{4}+247 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-38\right ) \sqrt {a \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}}}{105 d \left (2 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-1\right )^{\frac {7}{2}}}\right )\) \(270\)

Input:

int((a+a*cos(d*x+c))^(1/2)*(A+B*cos(d*x+c))/cos(d*x+c)^(9/2),x,method=_RET 
URNVERBOSE)
 

Output:

2/35*A*2^(1/2)/d*tan(1/2*d*x+1/2*c)/(2*cos(1/2*d*x+1/2*c)^2-1)^(7/2)*(128* 
cos(1/2*d*x+1/2*c)^6-160*cos(1/2*d*x+1/2*c)^4+76*cos(1/2*d*x+1/2*c)^2-9)*( 
a*cos(1/2*d*x+1/2*c)^2)^(1/2)+2/15*B*2^(1/2)/d*tan(1/2*d*x+1/2*c)/(2*cos(1 
/2*d*x+1/2*c)^2-1)^(5/2)*(32*cos(1/2*d*x+1/2*c)^4-24*cos(1/2*d*x+1/2*c)^2+ 
7)*(a*cos(1/2*d*x+1/2*c)^2)^(1/2)
 

Fricas [A] (verification not implemented)

Time = 0.08 (sec) , antiderivative size = 104, normalized size of antiderivative = 0.59 \[ \int \frac {\sqrt {a+a \cos (c+d x)} (A+B \cos (c+d x))}{\cos ^{\frac {9}{2}}(c+d x)} \, dx=\frac {2 \, {\left (8 \, {\left (6 \, A + 7 \, B\right )} \cos \left (d x + c\right )^{3} + 4 \, {\left (6 \, A + 7 \, B\right )} \cos \left (d x + c\right )^{2} + 3 \, {\left (6 \, A + 7 \, B\right )} \cos \left (d x + c\right ) + 15 \, A\right )} \sqrt {a \cos \left (d x + c\right ) + a} \sqrt {\cos \left (d x + c\right )} \sin \left (d x + c\right )}{105 \, {\left (d \cos \left (d x + c\right )^{5} + d \cos \left (d x + c\right )^{4}\right )}} \] Input:

integrate((a+a*cos(d*x+c))^(1/2)*(A+B*cos(d*x+c))/cos(d*x+c)^(9/2),x, algo 
rithm="fricas")
 

Output:

2/105*(8*(6*A + 7*B)*cos(d*x + c)^3 + 4*(6*A + 7*B)*cos(d*x + c)^2 + 3*(6* 
A + 7*B)*cos(d*x + c) + 15*A)*sqrt(a*cos(d*x + c) + a)*sqrt(cos(d*x + c))* 
sin(d*x + c)/(d*cos(d*x + c)^5 + d*cos(d*x + c)^4)
 

Sympy [F(-1)]

Timed out. \[ \int \frac {\sqrt {a+a \cos (c+d x)} (A+B \cos (c+d x))}{\cos ^{\frac {9}{2}}(c+d x)} \, dx=\text {Timed out} \] Input:

integrate((a+a*cos(d*x+c))**(1/2)*(A+B*cos(d*x+c))/cos(d*x+c)**(9/2),x)
 

Output:

Timed out
 

Maxima [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 522 vs. \(2 (151) = 302\).

Time = 0.17 (sec) , antiderivative size = 522, normalized size of antiderivative = 2.98 \[ \int \frac {\sqrt {a+a \cos (c+d x)} (A+B \cos (c+d x))}{\cos ^{\frac {9}{2}}(c+d x)} \, dx =\text {Too large to display} \] Input:

integrate((a+a*cos(d*x+c))^(1/2)*(A+B*cos(d*x+c))/cos(d*x+c)^(9/2),x, algo 
rithm="maxima")
 

Output:

2/105*(7*B*(15*sqrt(2)*sqrt(a)*sin(d*x + c)/(cos(d*x + c) + 1) - 25*sqrt(2 
)*sqrt(a)*sin(d*x + c)^3/(cos(d*x + c) + 1)^3 + 17*sqrt(2)*sqrt(a)*sin(d*x 
 + c)^5/(cos(d*x + c) + 1)^5 - 7*sqrt(2)*sqrt(a)*sin(d*x + c)^7/(cos(d*x + 
 c) + 1)^7)*(sin(d*x + c)^2/(cos(d*x + c) + 1)^2 + 1)^3/((sin(d*x + c)/(co 
s(d*x + c) + 1) + 1)^(7/2)*(-sin(d*x + c)/(cos(d*x + c) + 1) + 1)^(7/2)*(3 
*sin(d*x + c)^2/(cos(d*x + c) + 1)^2 + 3*sin(d*x + c)^4/(cos(d*x + c) + 1) 
^4 + sin(d*x + c)^6/(cos(d*x + c) + 1)^6 + 1)) + 3*A*(35*sqrt(2)*sqrt(a)*s 
in(d*x + c)/(cos(d*x + c) + 1) - 70*sqrt(2)*sqrt(a)*sin(d*x + c)^3/(cos(d* 
x + c) + 1)^3 + 84*sqrt(2)*sqrt(a)*sin(d*x + c)^5/(cos(d*x + c) + 1)^5 - 5 
8*sqrt(2)*sqrt(a)*sin(d*x + c)^7/(cos(d*x + c) + 1)^7 + 9*sqrt(2)*sqrt(a)* 
sin(d*x + c)^9/(cos(d*x + c) + 1)^9)*(sin(d*x + c)^2/(cos(d*x + c) + 1)^2 
+ 1)^4/((sin(d*x + c)/(cos(d*x + c) + 1) + 1)^(9/2)*(-sin(d*x + c)/(cos(d* 
x + c) + 1) + 1)^(9/2)*(4*sin(d*x + c)^2/(cos(d*x + c) + 1)^2 + 6*sin(d*x 
+ c)^4/(cos(d*x + c) + 1)^4 + 4*sin(d*x + c)^6/(cos(d*x + c) + 1)^6 + sin( 
d*x + c)^8/(cos(d*x + c) + 1)^8 + 1)))/d
 

Giac [F(-1)]

Timed out. \[ \int \frac {\sqrt {a+a \cos (c+d x)} (A+B \cos (c+d x))}{\cos ^{\frac {9}{2}}(c+d x)} \, dx=\text {Timed out} \] Input:

integrate((a+a*cos(d*x+c))^(1/2)*(A+B*cos(d*x+c))/cos(d*x+c)^(9/2),x, algo 
rithm="giac")
 

Output:

Timed out
 

Mupad [B] (verification not implemented)

Time = 51.75 (sec) , antiderivative size = 479, normalized size of antiderivative = 2.74 \[ \int \frac {\sqrt {a+a \cos (c+d x)} (A+B \cos (c+d x))}{\cos ^{\frac {9}{2}}(c+d x)} \, dx =\text {Too large to display} \] Input:

int(((A + B*cos(c + d*x))*(a + a*cos(c + d*x))^(1/2))/cos(c + d*x)^(9/2),x 
)
 

Output:

((a + a*(exp(- c*1i - d*x*1i)/2 + exp(c*1i + d*x*1i)/2))^(1/2)*(((96*A + 1 
12*B)*1i)/(105*d) - (B*exp(c*3i + d*x*3i)*8i)/(3*d) + (B*exp(c*4i + d*x*4i 
)*8i)/(3*d) - (exp(c*7i + d*x*7i)*(96*A + 112*B)*1i)/(105*d) + (exp(c*2i + 
 d*x*2i)*(336*A + 392*B)*1i)/(105*d) - (exp(c*5i + d*x*5i)*(336*A + 392*B) 
*1i)/(105*d)))/((exp(- c*1i - d*x*1i)/2 + exp(c*1i + d*x*1i)/2)^(1/2) + ex 
p(c*1i + d*x*1i)*(exp(- c*1i - d*x*1i)/2 + exp(c*1i + d*x*1i)/2)^(1/2) + 3 
*exp(c*2i + d*x*2i)*(exp(- c*1i - d*x*1i)/2 + exp(c*1i + d*x*1i)/2)^(1/2) 
+ 3*exp(c*3i + d*x*3i)*(exp(- c*1i - d*x*1i)/2 + exp(c*1i + d*x*1i)/2)^(1/ 
2) + 3*exp(c*4i + d*x*4i)*(exp(- c*1i - d*x*1i)/2 + exp(c*1i + d*x*1i)/2)^ 
(1/2) + 3*exp(c*5i + d*x*5i)*(exp(- c*1i - d*x*1i)/2 + exp(c*1i + d*x*1i)/ 
2)^(1/2) + exp(c*6i + d*x*6i)*(exp(- c*1i - d*x*1i)/2 + exp(c*1i + d*x*1i) 
/2)^(1/2) + exp(c*7i + d*x*7i)*(exp(- c*1i - d*x*1i)/2 + exp(c*1i + d*x*1i 
)/2)^(1/2))
 

Reduce [F]

\[ \int \frac {\sqrt {a+a \cos (c+d x)} (A+B \cos (c+d x))}{\cos ^{\frac {9}{2}}(c+d x)} \, dx=\sqrt {a}\, \left (\left (\int \frac {\sqrt {\cos \left (d x +c \right )+1}\, \sqrt {\cos \left (d x +c \right )}}{\cos \left (d x +c \right )^{5}}d x \right ) a +\left (\int \frac {\sqrt {\cos \left (d x +c \right )+1}\, \sqrt {\cos \left (d x +c \right )}}{\cos \left (d x +c \right )^{4}}d x \right ) b \right ) \] Input:

int((a+a*cos(d*x+c))^(1/2)*(A+B*cos(d*x+c))/cos(d*x+c)^(9/2),x)
 

Output:

sqrt(a)*(int((sqrt(cos(c + d*x) + 1)*sqrt(cos(c + d*x)))/cos(c + d*x)**5,x 
)*a + int((sqrt(cos(c + d*x) + 1)*sqrt(cos(c + d*x)))/cos(c + d*x)**4,x)*b 
)