\(\int \frac {(a+a \cos (c+d x))^{3/2} (A+B \cos (c+d x))}{\cos ^{\frac {11}{2}}(c+d x)} \, dx\) [181]

Optimal result
Mathematica [A] (verified)
Rubi [A] (verified)
Maple [A] (verified)
Fricas [A] (verification not implemented)
Sympy [F(-1)]
Maxima [B] (verification not implemented)
Giac [F(-1)]
Mupad [B] (verification not implemented)
Reduce [F]

Optimal result

Integrand size = 35, antiderivative size = 228 \[ \int \frac {(a+a \cos (c+d x))^{3/2} (A+B \cos (c+d x))}{\cos ^{\frac {11}{2}}(c+d x)} \, dx=\frac {2 a^2 (10 A+9 B) \sin (c+d x)}{63 d \cos ^{\frac {7}{2}}(c+d x) \sqrt {a+a \cos (c+d x)}}+\frac {2 a^2 (34 A+39 B) \sin (c+d x)}{105 d \cos ^{\frac {5}{2}}(c+d x) \sqrt {a+a \cos (c+d x)}}+\frac {8 a^2 (34 A+39 B) \sin (c+d x)}{315 d \cos ^{\frac {3}{2}}(c+d x) \sqrt {a+a \cos (c+d x)}}+\frac {16 a^2 (34 A+39 B) \sin (c+d x)}{315 d \sqrt {\cos (c+d x)} \sqrt {a+a \cos (c+d x)}}+\frac {2 a A \sqrt {a+a \cos (c+d x)} \sin (c+d x)}{9 d \cos ^{\frac {9}{2}}(c+d x)} \] Output:

2/63*a^2*(10*A+9*B)*sin(d*x+c)/d/cos(d*x+c)^(7/2)/(a+a*cos(d*x+c))^(1/2)+2 
/105*a^2*(34*A+39*B)*sin(d*x+c)/d/cos(d*x+c)^(5/2)/(a+a*cos(d*x+c))^(1/2)+ 
8/315*a^2*(34*A+39*B)*sin(d*x+c)/d/cos(d*x+c)^(3/2)/(a+a*cos(d*x+c))^(1/2) 
+16/315*a^2*(34*A+39*B)*sin(d*x+c)/d/cos(d*x+c)^(1/2)/(a+a*cos(d*x+c))^(1/ 
2)+2/9*a*A*(a+a*cos(d*x+c))^(1/2)*sin(d*x+c)/d/cos(d*x+c)^(9/2)
                                                                                    
                                                                                    
 

Mathematica [A] (verified)

Time = 0.71 (sec) , antiderivative size = 124, normalized size of antiderivative = 0.54 \[ \int \frac {(a+a \cos (c+d x))^{3/2} (A+B \cos (c+d x))}{\cos ^{\frac {11}{2}}(c+d x)} \, dx=\frac {a \sqrt {a (1+\cos (c+d x))} (376 A+351 B+(374 A+324 B) \cos (c+d x)+11 (34 A+39 B) \cos (2 (c+d x))+68 A \cos (3 (c+d x))+78 B \cos (3 (c+d x))+68 A \cos (4 (c+d x))+78 B \cos (4 (c+d x))) \tan \left (\frac {1}{2} (c+d x)\right )}{315 d \cos ^{\frac {9}{2}}(c+d x)} \] Input:

Integrate[((a + a*Cos[c + d*x])^(3/2)*(A + B*Cos[c + d*x]))/Cos[c + d*x]^( 
11/2),x]
 

Output:

(a*Sqrt[a*(1 + Cos[c + d*x])]*(376*A + 351*B + (374*A + 324*B)*Cos[c + d*x 
] + 11*(34*A + 39*B)*Cos[2*(c + d*x)] + 68*A*Cos[3*(c + d*x)] + 78*B*Cos[3 
*(c + d*x)] + 68*A*Cos[4*(c + d*x)] + 78*B*Cos[4*(c + d*x)])*Tan[(c + d*x) 
/2])/(315*d*Cos[c + d*x]^(9/2))
 

Rubi [A] (verified)

Time = 1.10 (sec) , antiderivative size = 224, normalized size of antiderivative = 0.98, number of steps used = 11, number of rules used = 11, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.314, Rules used = {3042, 3454, 27, 3042, 3459, 3042, 3251, 3042, 3251, 3042, 3250}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {(a \cos (c+d x)+a)^{3/2} (A+B \cos (c+d x))}{\cos ^{\frac {11}{2}}(c+d x)} \, dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \frac {\left (a \sin \left (c+d x+\frac {\pi }{2}\right )+a\right )^{3/2} \left (A+B \sin \left (c+d x+\frac {\pi }{2}\right )\right )}{\sin \left (c+d x+\frac {\pi }{2}\right )^{11/2}}dx\)

\(\Big \downarrow \) 3454

\(\displaystyle \frac {2}{9} \int \frac {\sqrt {\cos (c+d x) a+a} (a (10 A+9 B)+3 a (2 A+3 B) \cos (c+d x))}{2 \cos ^{\frac {9}{2}}(c+d x)}dx+\frac {2 a A \sin (c+d x) \sqrt {a \cos (c+d x)+a}}{9 d \cos ^{\frac {9}{2}}(c+d x)}\)

\(\Big \downarrow \) 27

\(\displaystyle \frac {1}{9} \int \frac {\sqrt {\cos (c+d x) a+a} (a (10 A+9 B)+3 a (2 A+3 B) \cos (c+d x))}{\cos ^{\frac {9}{2}}(c+d x)}dx+\frac {2 a A \sin (c+d x) \sqrt {a \cos (c+d x)+a}}{9 d \cos ^{\frac {9}{2}}(c+d x)}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {1}{9} \int \frac {\sqrt {\sin \left (c+d x+\frac {\pi }{2}\right ) a+a} \left (a (10 A+9 B)+3 a (2 A+3 B) \sin \left (c+d x+\frac {\pi }{2}\right )\right )}{\sin \left (c+d x+\frac {\pi }{2}\right )^{9/2}}dx+\frac {2 a A \sin (c+d x) \sqrt {a \cos (c+d x)+a}}{9 d \cos ^{\frac {9}{2}}(c+d x)}\)

\(\Big \downarrow \) 3459

\(\displaystyle \frac {1}{9} \left (\frac {3}{7} a (34 A+39 B) \int \frac {\sqrt {\cos (c+d x) a+a}}{\cos ^{\frac {7}{2}}(c+d x)}dx+\frac {2 a^2 (10 A+9 B) \sin (c+d x)}{7 d \cos ^{\frac {7}{2}}(c+d x) \sqrt {a \cos (c+d x)+a}}\right )+\frac {2 a A \sin (c+d x) \sqrt {a \cos (c+d x)+a}}{9 d \cos ^{\frac {9}{2}}(c+d x)}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {1}{9} \left (\frac {3}{7} a (34 A+39 B) \int \frac {\sqrt {\sin \left (c+d x+\frac {\pi }{2}\right ) a+a}}{\sin \left (c+d x+\frac {\pi }{2}\right )^{7/2}}dx+\frac {2 a^2 (10 A+9 B) \sin (c+d x)}{7 d \cos ^{\frac {7}{2}}(c+d x) \sqrt {a \cos (c+d x)+a}}\right )+\frac {2 a A \sin (c+d x) \sqrt {a \cos (c+d x)+a}}{9 d \cos ^{\frac {9}{2}}(c+d x)}\)

\(\Big \downarrow \) 3251

\(\displaystyle \frac {1}{9} \left (\frac {3}{7} a (34 A+39 B) \left (\frac {4}{5} \int \frac {\sqrt {\cos (c+d x) a+a}}{\cos ^{\frac {5}{2}}(c+d x)}dx+\frac {2 a \sin (c+d x)}{5 d \cos ^{\frac {5}{2}}(c+d x) \sqrt {a \cos (c+d x)+a}}\right )+\frac {2 a^2 (10 A+9 B) \sin (c+d x)}{7 d \cos ^{\frac {7}{2}}(c+d x) \sqrt {a \cos (c+d x)+a}}\right )+\frac {2 a A \sin (c+d x) \sqrt {a \cos (c+d x)+a}}{9 d \cos ^{\frac {9}{2}}(c+d x)}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {1}{9} \left (\frac {3}{7} a (34 A+39 B) \left (\frac {4}{5} \int \frac {\sqrt {\sin \left (c+d x+\frac {\pi }{2}\right ) a+a}}{\sin \left (c+d x+\frac {\pi }{2}\right )^{5/2}}dx+\frac {2 a \sin (c+d x)}{5 d \cos ^{\frac {5}{2}}(c+d x) \sqrt {a \cos (c+d x)+a}}\right )+\frac {2 a^2 (10 A+9 B) \sin (c+d x)}{7 d \cos ^{\frac {7}{2}}(c+d x) \sqrt {a \cos (c+d x)+a}}\right )+\frac {2 a A \sin (c+d x) \sqrt {a \cos (c+d x)+a}}{9 d \cos ^{\frac {9}{2}}(c+d x)}\)

\(\Big \downarrow \) 3251

\(\displaystyle \frac {1}{9} \left (\frac {3}{7} a (34 A+39 B) \left (\frac {4}{5} \left (\frac {2}{3} \int \frac {\sqrt {\cos (c+d x) a+a}}{\cos ^{\frac {3}{2}}(c+d x)}dx+\frac {2 a \sin (c+d x)}{3 d \cos ^{\frac {3}{2}}(c+d x) \sqrt {a \cos (c+d x)+a}}\right )+\frac {2 a \sin (c+d x)}{5 d \cos ^{\frac {5}{2}}(c+d x) \sqrt {a \cos (c+d x)+a}}\right )+\frac {2 a^2 (10 A+9 B) \sin (c+d x)}{7 d \cos ^{\frac {7}{2}}(c+d x) \sqrt {a \cos (c+d x)+a}}\right )+\frac {2 a A \sin (c+d x) \sqrt {a \cos (c+d x)+a}}{9 d \cos ^{\frac {9}{2}}(c+d x)}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {1}{9} \left (\frac {3}{7} a (34 A+39 B) \left (\frac {4}{5} \left (\frac {2}{3} \int \frac {\sqrt {\sin \left (c+d x+\frac {\pi }{2}\right ) a+a}}{\sin \left (c+d x+\frac {\pi }{2}\right )^{3/2}}dx+\frac {2 a \sin (c+d x)}{3 d \cos ^{\frac {3}{2}}(c+d x) \sqrt {a \cos (c+d x)+a}}\right )+\frac {2 a \sin (c+d x)}{5 d \cos ^{\frac {5}{2}}(c+d x) \sqrt {a \cos (c+d x)+a}}\right )+\frac {2 a^2 (10 A+9 B) \sin (c+d x)}{7 d \cos ^{\frac {7}{2}}(c+d x) \sqrt {a \cos (c+d x)+a}}\right )+\frac {2 a A \sin (c+d x) \sqrt {a \cos (c+d x)+a}}{9 d \cos ^{\frac {9}{2}}(c+d x)}\)

\(\Big \downarrow \) 3250

\(\displaystyle \frac {1}{9} \left (\frac {2 a^2 (10 A+9 B) \sin (c+d x)}{7 d \cos ^{\frac {7}{2}}(c+d x) \sqrt {a \cos (c+d x)+a}}+\frac {3}{7} a (34 A+39 B) \left (\frac {2 a \sin (c+d x)}{5 d \cos ^{\frac {5}{2}}(c+d x) \sqrt {a \cos (c+d x)+a}}+\frac {4}{5} \left (\frac {2 a \sin (c+d x)}{3 d \cos ^{\frac {3}{2}}(c+d x) \sqrt {a \cos (c+d x)+a}}+\frac {4 a \sin (c+d x)}{3 d \sqrt {\cos (c+d x)} \sqrt {a \cos (c+d x)+a}}\right )\right )\right )+\frac {2 a A \sin (c+d x) \sqrt {a \cos (c+d x)+a}}{9 d \cos ^{\frac {9}{2}}(c+d x)}\)

Input:

Int[((a + a*Cos[c + d*x])^(3/2)*(A + B*Cos[c + d*x]))/Cos[c + d*x]^(11/2), 
x]
 

Output:

(2*a*A*Sqrt[a + a*Cos[c + d*x]]*Sin[c + d*x])/(9*d*Cos[c + d*x]^(9/2)) + ( 
(2*a^2*(10*A + 9*B)*Sin[c + d*x])/(7*d*Cos[c + d*x]^(7/2)*Sqrt[a + a*Cos[c 
 + d*x]]) + (3*a*(34*A + 39*B)*((2*a*Sin[c + d*x])/(5*d*Cos[c + d*x]^(5/2) 
*Sqrt[a + a*Cos[c + d*x]]) + (4*((2*a*Sin[c + d*x])/(3*d*Cos[c + d*x]^(3/2 
)*Sqrt[a + a*Cos[c + d*x]]) + (4*a*Sin[c + d*x])/(3*d*Sqrt[Cos[c + d*x]]*S 
qrt[a + a*Cos[c + d*x]])))/5))/7)/9
 

Defintions of rubi rules used

rule 27
Int[(a_)*(Fx_), x_Symbol] :> Simp[a   Int[Fx, x], x] /; FreeQ[a, x] &&  !Ma 
tchQ[Fx, (b_)*(Gx_) /; FreeQ[b, x]]
 

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 3250
Int[Sqrt[(a_) + (b_.)*sin[(e_.) + (f_.)*(x_)]]/((c_.) + (d_.)*sin[(e_.) + ( 
f_.)*(x_)])^(3/2), x_Symbol] :> Simp[-2*b^2*(Cos[e + f*x]/(f*(b*c + a*d)*Sq 
rt[a + b*Sin[e + f*x]]*Sqrt[c + d*Sin[e + f*x]])), x] /; FreeQ[{a, b, c, d, 
 e, f}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0]
 

rule 3251
Int[Sqrt[(a_) + (b_.)*sin[(e_.) + (f_.)*(x_)]]*((c_.) + (d_.)*sin[(e_.) + ( 
f_.)*(x_)])^(n_), x_Symbol] :> Simp[(b*c - a*d)*Cos[e + f*x]*((c + d*Sin[e 
+ f*x])^(n + 1)/(f*(n + 1)*(c^2 - d^2)*Sqrt[a + b*Sin[e + f*x]])), x] + Sim 
p[(2*n + 3)*((b*c - a*d)/(2*b*(n + 1)*(c^2 - d^2)))   Int[Sqrt[a + b*Sin[e 
+ f*x]]*(c + d*Sin[e + f*x])^(n + 1), x], x] /; FreeQ[{a, b, c, d, e, f}, x 
] && NeQ[b*c - a*d, 0] && EqQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0] && LtQ[n, 
-1] && NeQ[2*n + 3, 0] && IntegerQ[2*n]
 

rule 3454
Int[((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((A_.) + (B_.)*sin[(e_.) + 
(f_.)*(x_)])*((c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)])^(n_), x_Symbol] :> Sim 
p[(-b^2)*(B*c - A*d)*Cos[e + f*x]*(a + b*Sin[e + f*x])^(m - 1)*((c + d*Sin[ 
e + f*x])^(n + 1)/(d*f*(n + 1)*(b*c + a*d))), x] - Simp[b/(d*(n + 1)*(b*c + 
 a*d))   Int[(a + b*Sin[e + f*x])^(m - 1)*(c + d*Sin[e + f*x])^(n + 1)*Simp 
[a*A*d*(m - n - 2) - B*(a*c*(m - 1) + b*d*(n + 1)) - (A*b*d*(m + n + 1) - B 
*(b*c*m - a*d*(n + 1)))*Sin[e + f*x], x], x], x] /; FreeQ[{a, b, c, d, e, f 
, A, B}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0] 
&& GtQ[m, 1/2] && LtQ[n, -1] && IntegerQ[2*m] && (IntegerQ[2*n] || EqQ[c, 0 
])
 

rule 3459
Int[Sqrt[(a_) + (b_.)*sin[(e_.) + (f_.)*(x_)]]*((A_.) + (B_.)*sin[(e_.) + ( 
f_.)*(x_)])*((c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)])^(n_), x_Symbol] :> Simp 
[(-b^2)*(B*c - A*d)*Cos[e + f*x]*((c + d*Sin[e + f*x])^(n + 1)/(d*f*(n + 1) 
*(b*c + a*d)*Sqrt[a + b*Sin[e + f*x]])), x] + Simp[(A*b*d*(2*n + 3) - B*(b* 
c - 2*a*d*(n + 1)))/(2*d*(n + 1)*(b*c + a*d))   Int[Sqrt[a + b*Sin[e + f*x] 
]*(c + d*Sin[e + f*x])^(n + 1), x], x] /; FreeQ[{a, b, c, d, e, f, A, B}, x 
] && NeQ[b*c - a*d, 0] && EqQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0] && LtQ[n, 
-1]
 
Maple [A] (verified)

Time = 13.20 (sec) , antiderivative size = 130, normalized size of antiderivative = 0.57

method result size
default \(\frac {2 \sin \left (d x +c \right ) \left (\left (272 \cos \left (d x +c \right )^{4}+136 \cos \left (d x +c \right )^{3}+102 \cos \left (d x +c \right )^{2}+85 \cos \left (d x +c \right )+35\right ) A +\cos \left (d x +c \right ) \left (312 \cos \left (d x +c \right )^{3}+156 \cos \left (d x +c \right )^{2}+117 \cos \left (d x +c \right )+45\right ) B \right ) \sqrt {a \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}}\, a \sqrt {2}}{315 d \cos \left (d x +c \right )^{\frac {9}{2}} \left (\cos \left (d x +c \right )+1\right )}\) \(130\)
parts \(\frac {2 A \sin \left (d x +c \right ) \left (272 \cos \left (d x +c \right )^{4}+136 \cos \left (d x +c \right )^{3}+102 \cos \left (d x +c \right )^{2}+85 \cos \left (d x +c \right )+35\right ) \sqrt {a \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}}\, a \sqrt {2}}{315 d \cos \left (d x +c \right )^{\frac {9}{2}} \left (\cos \left (d x +c \right )+1\right )}+\frac {2 B \sin \left (d x +c \right ) \left (104 \cos \left (d x +c \right )^{3}+52 \cos \left (d x +c \right )^{2}+39 \cos \left (d x +c \right )+15\right ) \sqrt {a \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}}\, a \sqrt {2}}{105 d \cos \left (d x +c \right )^{\frac {7}{2}} \left (\cos \left (d x +c \right )+1\right )}\) \(170\)

Input:

int((a+a*cos(d*x+c))^(3/2)*(A+B*cos(d*x+c))/cos(d*x+c)^(11/2),x,method=_RE 
TURNVERBOSE)
 

Output:

2/315/d*sin(d*x+c)*((272*cos(d*x+c)^4+136*cos(d*x+c)^3+102*cos(d*x+c)^2+85 
*cos(d*x+c)+35)*A+cos(d*x+c)*(312*cos(d*x+c)^3+156*cos(d*x+c)^2+117*cos(d* 
x+c)+45)*B)*(a*cos(1/2*d*x+1/2*c)^2)^(1/2)/cos(d*x+c)^(9/2)/(cos(d*x+c)+1) 
*a*2^(1/2)
 

Fricas [A] (verification not implemented)

Time = 0.10 (sec) , antiderivative size = 126, normalized size of antiderivative = 0.55 \[ \int \frac {(a+a \cos (c+d x))^{3/2} (A+B \cos (c+d x))}{\cos ^{\frac {11}{2}}(c+d x)} \, dx=\frac {2 \, {\left (8 \, {\left (34 \, A + 39 \, B\right )} a \cos \left (d x + c\right )^{4} + 4 \, {\left (34 \, A + 39 \, B\right )} a \cos \left (d x + c\right )^{3} + 3 \, {\left (34 \, A + 39 \, B\right )} a \cos \left (d x + c\right )^{2} + 5 \, {\left (17 \, A + 9 \, B\right )} a \cos \left (d x + c\right ) + 35 \, A a\right )} \sqrt {a \cos \left (d x + c\right ) + a} \sqrt {\cos \left (d x + c\right )} \sin \left (d x + c\right )}{315 \, {\left (d \cos \left (d x + c\right )^{6} + d \cos \left (d x + c\right )^{5}\right )}} \] Input:

integrate((a+a*cos(d*x+c))^(3/2)*(A+B*cos(d*x+c))/cos(d*x+c)^(11/2),x, alg 
orithm="fricas")
 

Output:

2/315*(8*(34*A + 39*B)*a*cos(d*x + c)^4 + 4*(34*A + 39*B)*a*cos(d*x + c)^3 
 + 3*(34*A + 39*B)*a*cos(d*x + c)^2 + 5*(17*A + 9*B)*a*cos(d*x + c) + 35*A 
*a)*sqrt(a*cos(d*x + c) + a)*sqrt(cos(d*x + c))*sin(d*x + c)/(d*cos(d*x + 
c)^6 + d*cos(d*x + c)^5)
 

Sympy [F(-1)]

Timed out. \[ \int \frac {(a+a \cos (c+d x))^{3/2} (A+B \cos (c+d x))}{\cos ^{\frac {11}{2}}(c+d x)} \, dx=\text {Timed out} \] Input:

integrate((a+a*cos(d*x+c))**(3/2)*(A+B*cos(d*x+c))/cos(d*x+c)**(11/2),x)
 

Output:

Timed out
 

Maxima [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 573 vs. \(2 (198) = 396\).

Time = 0.17 (sec) , antiderivative size = 573, normalized size of antiderivative = 2.51 \[ \int \frac {(a+a \cos (c+d x))^{3/2} (A+B \cos (c+d x))}{\cos ^{\frac {11}{2}}(c+d x)} \, dx =\text {Too large to display} \] Input:

integrate((a+a*cos(d*x+c))^(3/2)*(A+B*cos(d*x+c))/cos(d*x+c)^(11/2),x, alg 
orithm="maxima")
 

Output:

4/315*(3*(105*sqrt(2)*a^(3/2)*sin(d*x + c)/(cos(d*x + c) + 1) - 245*sqrt(2 
)*a^(3/2)*sin(d*x + c)^3/(cos(d*x + c) + 1)^3 + 273*sqrt(2)*a^(3/2)*sin(d* 
x + c)^5/(cos(d*x + c) + 1)^5 - 171*sqrt(2)*a^(3/2)*sin(d*x + c)^7/(cos(d* 
x + c) + 1)^7 + 38*sqrt(2)*a^(3/2)*sin(d*x + c)^9/(cos(d*x + c) + 1)^9)*B* 
(sin(d*x + c)^2/(cos(d*x + c) + 1)^2 + 1)^3/((sin(d*x + c)/(cos(d*x + c) + 
 1) + 1)^(9/2)*(-sin(d*x + c)/(cos(d*x + c) + 1) + 1)^(9/2)*(3*sin(d*x + c 
)^2/(cos(d*x + c) + 1)^2 + 3*sin(d*x + c)^4/(cos(d*x + c) + 1)^4 + sin(d*x 
 + c)^6/(cos(d*x + c) + 1)^6 + 1)) + (315*sqrt(2)*a^(3/2)*sin(d*x + c)/(co 
s(d*x + c) + 1) - 840*sqrt(2)*a^(3/2)*sin(d*x + c)^3/(cos(d*x + c) + 1)^3 
+ 1344*sqrt(2)*a^(3/2)*sin(d*x + c)^5/(cos(d*x + c) + 1)^5 - 1242*sqrt(2)* 
a^(3/2)*sin(d*x + c)^7/(cos(d*x + c) + 1)^7 + 517*sqrt(2)*a^(3/2)*sin(d*x 
+ c)^9/(cos(d*x + c) + 1)^9 - 94*sqrt(2)*a^(3/2)*sin(d*x + c)^11/(cos(d*x 
+ c) + 1)^11)*A*(sin(d*x + c)^2/(cos(d*x + c) + 1)^2 + 1)^4/((sin(d*x + c) 
/(cos(d*x + c) + 1) + 1)^(11/2)*(-sin(d*x + c)/(cos(d*x + c) + 1) + 1)^(11 
/2)*(4*sin(d*x + c)^2/(cos(d*x + c) + 1)^2 + 6*sin(d*x + c)^4/(cos(d*x + c 
) + 1)^4 + 4*sin(d*x + c)^6/(cos(d*x + c) + 1)^6 + sin(d*x + c)^8/(cos(d*x 
 + c) + 1)^8 + 1)))/d
 

Giac [F(-1)]

Timed out. \[ \int \frac {(a+a \cos (c+d x))^{3/2} (A+B \cos (c+d x))}{\cos ^{\frac {11}{2}}(c+d x)} \, dx=\text {Timed out} \] Input:

integrate((a+a*cos(d*x+c))^(3/2)*(A+B*cos(d*x+c))/cos(d*x+c)^(11/2),x, alg 
orithm="giac")
 

Output:

Timed out
 

Mupad [B] (verification not implemented)

Time = 55.01 (sec) , antiderivative size = 289, normalized size of antiderivative = 1.27 \[ \int \frac {(a+a \cos (c+d x))^{3/2} (A+B \cos (c+d x))}{\cos ^{\frac {11}{2}}(c+d x)} \, dx=\frac {\sqrt {a+a\,\cos \left (c+d\,x\right )}\,\left (-\frac {16\,B\,a\,{\mathrm {e}}^{\frac {c\,9{}\mathrm {i}}{2}+\frac {d\,x\,9{}\mathrm {i}}{2}}\,\sin \left (\frac {3\,c}{2}+\frac {3\,d\,x}{2}\right )}{3\,d}+\frac {16\,a\,{\mathrm {e}}^{\frac {c\,9{}\mathrm {i}}{2}+\frac {d\,x\,9{}\mathrm {i}}{2}}\,\sin \left (\frac {5\,c}{2}+\frac {5\,d\,x}{2}\right )\,\left (34\,A+39\,B\right )}{35\,d}+\frac {32\,a\,{\mathrm {e}}^{\frac {c\,9{}\mathrm {i}}{2}+\frac {d\,x\,9{}\mathrm {i}}{2}}\,\sin \left (\frac {9\,c}{2}+\frac {9\,d\,x}{2}\right )\,\left (34\,A+39\,B\right )}{315\,d}+\frac {96\,a\,{\mathrm {e}}^{\frac {c\,9{}\mathrm {i}}{2}+\frac {d\,x\,9{}\mathrm {i}}{2}}\,\sin \left (\frac {c}{2}+\frac {d\,x}{2}\right )\,\left (A+B\right )}{5\,d}\right )}{12\,\sqrt {\cos \left (c+d\,x\right )}\,{\mathrm {e}}^{\frac {c\,9{}\mathrm {i}}{2}+\frac {d\,x\,9{}\mathrm {i}}{2}}\,\cos \left (\frac {c}{2}+\frac {d\,x}{2}\right )+8\,\sqrt {\cos \left (c+d\,x\right )}\,{\mathrm {e}}^{\frac {c\,9{}\mathrm {i}}{2}+\frac {d\,x\,9{}\mathrm {i}}{2}}\,\cos \left (\frac {3\,c}{2}+\frac {3\,d\,x}{2}\right )+8\,\sqrt {\cos \left (c+d\,x\right )}\,{\mathrm {e}}^{\frac {c\,9{}\mathrm {i}}{2}+\frac {d\,x\,9{}\mathrm {i}}{2}}\,\cos \left (\frac {5\,c}{2}+\frac {5\,d\,x}{2}\right )+2\,\sqrt {\cos \left (c+d\,x\right )}\,{\mathrm {e}}^{\frac {c\,9{}\mathrm {i}}{2}+\frac {d\,x\,9{}\mathrm {i}}{2}}\,\cos \left (\frac {7\,c}{2}+\frac {7\,d\,x}{2}\right )+2\,\sqrt {\cos \left (c+d\,x\right )}\,{\mathrm {e}}^{\frac {c\,9{}\mathrm {i}}{2}+\frac {d\,x\,9{}\mathrm {i}}{2}}\,\cos \left (\frac {9\,c}{2}+\frac {9\,d\,x}{2}\right )} \] Input:

int(((A + B*cos(c + d*x))*(a + a*cos(c + d*x))^(3/2))/cos(c + d*x)^(11/2), 
x)
 

Output:

((a + a*cos(c + d*x))^(1/2)*((16*a*exp((c*9i)/2 + (d*x*9i)/2)*sin((5*c)/2 
+ (5*d*x)/2)*(34*A + 39*B))/(35*d) - (16*B*a*exp((c*9i)/2 + (d*x*9i)/2)*si 
n((3*c)/2 + (3*d*x)/2))/(3*d) + (32*a*exp((c*9i)/2 + (d*x*9i)/2)*sin((9*c) 
/2 + (9*d*x)/2)*(34*A + 39*B))/(315*d) + (96*a*exp((c*9i)/2 + (d*x*9i)/2)* 
sin(c/2 + (d*x)/2)*(A + B))/(5*d)))/(12*cos(c + d*x)^(1/2)*exp((c*9i)/2 + 
(d*x*9i)/2)*cos(c/2 + (d*x)/2) + 8*cos(c + d*x)^(1/2)*exp((c*9i)/2 + (d*x* 
9i)/2)*cos((3*c)/2 + (3*d*x)/2) + 8*cos(c + d*x)^(1/2)*exp((c*9i)/2 + (d*x 
*9i)/2)*cos((5*c)/2 + (5*d*x)/2) + 2*cos(c + d*x)^(1/2)*exp((c*9i)/2 + (d* 
x*9i)/2)*cos((7*c)/2 + (7*d*x)/2) + 2*cos(c + d*x)^(1/2)*exp((c*9i)/2 + (d 
*x*9i)/2)*cos((9*c)/2 + (9*d*x)/2))
 

Reduce [F]

\[ \int \frac {(a+a \cos (c+d x))^{3/2} (A+B \cos (c+d x))}{\cos ^{\frac {11}{2}}(c+d x)} \, dx=\sqrt {a}\, a \left (\left (\int \frac {\sqrt {\cos \left (d x +c \right )+1}\, \sqrt {\cos \left (d x +c \right )}}{\cos \left (d x +c \right )^{6}}d x \right ) a +\left (\int \frac {\sqrt {\cos \left (d x +c \right )+1}\, \sqrt {\cos \left (d x +c \right )}}{\cos \left (d x +c \right )^{5}}d x \right ) a +\left (\int \frac {\sqrt {\cos \left (d x +c \right )+1}\, \sqrt {\cos \left (d x +c \right )}}{\cos \left (d x +c \right )^{5}}d x \right ) b +\left (\int \frac {\sqrt {\cos \left (d x +c \right )+1}\, \sqrt {\cos \left (d x +c \right )}}{\cos \left (d x +c \right )^{4}}d x \right ) b \right ) \] Input:

int((a+a*cos(d*x+c))^(3/2)*(A+B*cos(d*x+c))/cos(d*x+c)^(11/2),x)
 

Output:

sqrt(a)*a*(int((sqrt(cos(c + d*x) + 1)*sqrt(cos(c + d*x)))/cos(c + d*x)**6 
,x)*a + int((sqrt(cos(c + d*x) + 1)*sqrt(cos(c + d*x)))/cos(c + d*x)**5,x) 
*a + int((sqrt(cos(c + d*x) + 1)*sqrt(cos(c + d*x)))/cos(c + d*x)**5,x)*b 
+ int((sqrt(cos(c + d*x) + 1)*sqrt(cos(c + d*x)))/cos(c + d*x)**4,x)*b)