\(\int \frac {(a+a \cos (c+d x))^{5/2} (A+B \cos (c+d x))}{\cos ^{\frac {11}{2}}(c+d x)} \, dx\) [189]

Optimal result
Mathematica [A] (verified)
Rubi [A] (verified)
Maple [A] (verified)
Fricas [A] (verification not implemented)
Sympy [F(-1)]
Maxima [B] (verification not implemented)
Giac [F(-1)]
Mupad [B] (verification not implemented)
Reduce [F]

Optimal result

Integrand size = 35, antiderivative size = 228 \[ \int \frac {(a+a \cos (c+d x))^{5/2} (A+B \cos (c+d x))}{\cos ^{\frac {11}{2}}(c+d x)} \, dx=\frac {2 a^3 (124 A+135 B) \sin (c+d x)}{315 d \cos ^{\frac {5}{2}}(c+d x) \sqrt {a+a \cos (c+d x)}}+\frac {2 a^3 (292 A+345 B) \sin (c+d x)}{315 d \cos ^{\frac {3}{2}}(c+d x) \sqrt {a+a \cos (c+d x)}}+\frac {4 a^3 (292 A+345 B) \sin (c+d x)}{315 d \sqrt {\cos (c+d x)} \sqrt {a+a \cos (c+d x)}}+\frac {2 a^2 (4 A+3 B) \sqrt {a+a \cos (c+d x)} \sin (c+d x)}{21 d \cos ^{\frac {7}{2}}(c+d x)}+\frac {2 a A (a+a \cos (c+d x))^{3/2} \sin (c+d x)}{9 d \cos ^{\frac {9}{2}}(c+d x)} \] Output:

2/315*a^3*(124*A+135*B)*sin(d*x+c)/d/cos(d*x+c)^(5/2)/(a+a*cos(d*x+c))^(1/ 
2)+2/315*a^3*(292*A+345*B)*sin(d*x+c)/d/cos(d*x+c)^(3/2)/(a+a*cos(d*x+c))^ 
(1/2)+4/315*a^3*(292*A+345*B)*sin(d*x+c)/d/cos(d*x+c)^(1/2)/(a+a*cos(d*x+c 
))^(1/2)+2/21*a^2*(4*A+3*B)*(a+a*cos(d*x+c))^(1/2)*sin(d*x+c)/d/cos(d*x+c) 
^(7/2)+2/9*a*A*(a+a*cos(d*x+c))^(3/2)*sin(d*x+c)/d/cos(d*x+c)^(9/2)
                                                                                    
                                                                                    
 

Mathematica [A] (verified)

Time = 0.85 (sec) , antiderivative size = 126, normalized size of antiderivative = 0.55 \[ \int \frac {(a+a \cos (c+d x))^{5/2} (A+B \cos (c+d x))}{\cos ^{\frac {11}{2}}(c+d x)} \, dx=\frac {a^2 \sqrt {a (1+\cos (c+d x))} (1454 A+1395 B+(1396 A+1215 B) \cos (c+d x)+2 (803 A+870 B) \cos (2 (c+d x))+292 A \cos (3 (c+d x))+345 B \cos (3 (c+d x))+292 A \cos (4 (c+d x))+345 B \cos (4 (c+d x))) \tan \left (\frac {1}{2} (c+d x)\right )}{630 d \cos ^{\frac {9}{2}}(c+d x)} \] Input:

Integrate[((a + a*Cos[c + d*x])^(5/2)*(A + B*Cos[c + d*x]))/Cos[c + d*x]^( 
11/2),x]
 

Output:

(a^2*Sqrt[a*(1 + Cos[c + d*x])]*(1454*A + 1395*B + (1396*A + 1215*B)*Cos[c 
 + d*x] + 2*(803*A + 870*B)*Cos[2*(c + d*x)] + 292*A*Cos[3*(c + d*x)] + 34 
5*B*Cos[3*(c + d*x)] + 292*A*Cos[4*(c + d*x)] + 345*B*Cos[4*(c + d*x)])*Ta 
n[(c + d*x)/2])/(630*d*Cos[c + d*x]^(9/2))
 

Rubi [A] (verified)

Time = 1.23 (sec) , antiderivative size = 235, normalized size of antiderivative = 1.03, number of steps used = 12, number of rules used = 12, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.343, Rules used = {3042, 3454, 27, 3042, 3454, 27, 3042, 3459, 3042, 3251, 3042, 3250}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {(a \cos (c+d x)+a)^{5/2} (A+B \cos (c+d x))}{\cos ^{\frac {11}{2}}(c+d x)} \, dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \frac {\left (a \sin \left (c+d x+\frac {\pi }{2}\right )+a\right )^{5/2} \left (A+B \sin \left (c+d x+\frac {\pi }{2}\right )\right )}{\sin \left (c+d x+\frac {\pi }{2}\right )^{11/2}}dx\)

\(\Big \downarrow \) 3454

\(\displaystyle \frac {2}{9} \int \frac {(\cos (c+d x) a+a)^{3/2} (3 a (4 A+3 B)+a (4 A+9 B) \cos (c+d x))}{2 \cos ^{\frac {9}{2}}(c+d x)}dx+\frac {2 a A \sin (c+d x) (a \cos (c+d x)+a)^{3/2}}{9 d \cos ^{\frac {9}{2}}(c+d x)}\)

\(\Big \downarrow \) 27

\(\displaystyle \frac {1}{9} \int \frac {(\cos (c+d x) a+a)^{3/2} (3 a (4 A+3 B)+a (4 A+9 B) \cos (c+d x))}{\cos ^{\frac {9}{2}}(c+d x)}dx+\frac {2 a A \sin (c+d x) (a \cos (c+d x)+a)^{3/2}}{9 d \cos ^{\frac {9}{2}}(c+d x)}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {1}{9} \int \frac {\left (\sin \left (c+d x+\frac {\pi }{2}\right ) a+a\right )^{3/2} \left (3 a (4 A+3 B)+a (4 A+9 B) \sin \left (c+d x+\frac {\pi }{2}\right )\right )}{\sin \left (c+d x+\frac {\pi }{2}\right )^{9/2}}dx+\frac {2 a A \sin (c+d x) (a \cos (c+d x)+a)^{3/2}}{9 d \cos ^{\frac {9}{2}}(c+d x)}\)

\(\Big \downarrow \) 3454

\(\displaystyle \frac {1}{9} \left (\frac {2}{7} \int \frac {\sqrt {\cos (c+d x) a+a} \left ((124 A+135 B) a^2+(76 A+99 B) \cos (c+d x) a^2\right )}{2 \cos ^{\frac {7}{2}}(c+d x)}dx+\frac {6 a^2 (4 A+3 B) \sin (c+d x) \sqrt {a \cos (c+d x)+a}}{7 d \cos ^{\frac {7}{2}}(c+d x)}\right )+\frac {2 a A \sin (c+d x) (a \cos (c+d x)+a)^{3/2}}{9 d \cos ^{\frac {9}{2}}(c+d x)}\)

\(\Big \downarrow \) 27

\(\displaystyle \frac {1}{9} \left (\frac {1}{7} \int \frac {\sqrt {\cos (c+d x) a+a} \left ((124 A+135 B) a^2+(76 A+99 B) \cos (c+d x) a^2\right )}{\cos ^{\frac {7}{2}}(c+d x)}dx+\frac {6 a^2 (4 A+3 B) \sin (c+d x) \sqrt {a \cos (c+d x)+a}}{7 d \cos ^{\frac {7}{2}}(c+d x)}\right )+\frac {2 a A \sin (c+d x) (a \cos (c+d x)+a)^{3/2}}{9 d \cos ^{\frac {9}{2}}(c+d x)}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {1}{9} \left (\frac {1}{7} \int \frac {\sqrt {\sin \left (c+d x+\frac {\pi }{2}\right ) a+a} \left ((124 A+135 B) a^2+(76 A+99 B) \sin \left (c+d x+\frac {\pi }{2}\right ) a^2\right )}{\sin \left (c+d x+\frac {\pi }{2}\right )^{7/2}}dx+\frac {6 a^2 (4 A+3 B) \sin (c+d x) \sqrt {a \cos (c+d x)+a}}{7 d \cos ^{\frac {7}{2}}(c+d x)}\right )+\frac {2 a A \sin (c+d x) (a \cos (c+d x)+a)^{3/2}}{9 d \cos ^{\frac {9}{2}}(c+d x)}\)

\(\Big \downarrow \) 3459

\(\displaystyle \frac {1}{9} \left (\frac {1}{7} \left (\frac {3}{5} a^2 (292 A+345 B) \int \frac {\sqrt {\cos (c+d x) a+a}}{\cos ^{\frac {5}{2}}(c+d x)}dx+\frac {2 a^3 (124 A+135 B) \sin (c+d x)}{5 d \cos ^{\frac {5}{2}}(c+d x) \sqrt {a \cos (c+d x)+a}}\right )+\frac {6 a^2 (4 A+3 B) \sin (c+d x) \sqrt {a \cos (c+d x)+a}}{7 d \cos ^{\frac {7}{2}}(c+d x)}\right )+\frac {2 a A \sin (c+d x) (a \cos (c+d x)+a)^{3/2}}{9 d \cos ^{\frac {9}{2}}(c+d x)}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {1}{9} \left (\frac {1}{7} \left (\frac {3}{5} a^2 (292 A+345 B) \int \frac {\sqrt {\sin \left (c+d x+\frac {\pi }{2}\right ) a+a}}{\sin \left (c+d x+\frac {\pi }{2}\right )^{5/2}}dx+\frac {2 a^3 (124 A+135 B) \sin (c+d x)}{5 d \cos ^{\frac {5}{2}}(c+d x) \sqrt {a \cos (c+d x)+a}}\right )+\frac {6 a^2 (4 A+3 B) \sin (c+d x) \sqrt {a \cos (c+d x)+a}}{7 d \cos ^{\frac {7}{2}}(c+d x)}\right )+\frac {2 a A \sin (c+d x) (a \cos (c+d x)+a)^{3/2}}{9 d \cos ^{\frac {9}{2}}(c+d x)}\)

\(\Big \downarrow \) 3251

\(\displaystyle \frac {1}{9} \left (\frac {1}{7} \left (\frac {3}{5} a^2 (292 A+345 B) \left (\frac {2}{3} \int \frac {\sqrt {\cos (c+d x) a+a}}{\cos ^{\frac {3}{2}}(c+d x)}dx+\frac {2 a \sin (c+d x)}{3 d \cos ^{\frac {3}{2}}(c+d x) \sqrt {a \cos (c+d x)+a}}\right )+\frac {2 a^3 (124 A+135 B) \sin (c+d x)}{5 d \cos ^{\frac {5}{2}}(c+d x) \sqrt {a \cos (c+d x)+a}}\right )+\frac {6 a^2 (4 A+3 B) \sin (c+d x) \sqrt {a \cos (c+d x)+a}}{7 d \cos ^{\frac {7}{2}}(c+d x)}\right )+\frac {2 a A \sin (c+d x) (a \cos (c+d x)+a)^{3/2}}{9 d \cos ^{\frac {9}{2}}(c+d x)}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {1}{9} \left (\frac {1}{7} \left (\frac {3}{5} a^2 (292 A+345 B) \left (\frac {2}{3} \int \frac {\sqrt {\sin \left (c+d x+\frac {\pi }{2}\right ) a+a}}{\sin \left (c+d x+\frac {\pi }{2}\right )^{3/2}}dx+\frac {2 a \sin (c+d x)}{3 d \cos ^{\frac {3}{2}}(c+d x) \sqrt {a \cos (c+d x)+a}}\right )+\frac {2 a^3 (124 A+135 B) \sin (c+d x)}{5 d \cos ^{\frac {5}{2}}(c+d x) \sqrt {a \cos (c+d x)+a}}\right )+\frac {6 a^2 (4 A+3 B) \sin (c+d x) \sqrt {a \cos (c+d x)+a}}{7 d \cos ^{\frac {7}{2}}(c+d x)}\right )+\frac {2 a A \sin (c+d x) (a \cos (c+d x)+a)^{3/2}}{9 d \cos ^{\frac {9}{2}}(c+d x)}\)

\(\Big \downarrow \) 3250

\(\displaystyle \frac {1}{9} \left (\frac {6 a^2 (4 A+3 B) \sin (c+d x) \sqrt {a \cos (c+d x)+a}}{7 d \cos ^{\frac {7}{2}}(c+d x)}+\frac {1}{7} \left (\frac {2 a^3 (124 A+135 B) \sin (c+d x)}{5 d \cos ^{\frac {5}{2}}(c+d x) \sqrt {a \cos (c+d x)+a}}+\frac {3}{5} a^2 (292 A+345 B) \left (\frac {2 a \sin (c+d x)}{3 d \cos ^{\frac {3}{2}}(c+d x) \sqrt {a \cos (c+d x)+a}}+\frac {4 a \sin (c+d x)}{3 d \sqrt {\cos (c+d x)} \sqrt {a \cos (c+d x)+a}}\right )\right )\right )+\frac {2 a A \sin (c+d x) (a \cos (c+d x)+a)^{3/2}}{9 d \cos ^{\frac {9}{2}}(c+d x)}\)

Input:

Int[((a + a*Cos[c + d*x])^(5/2)*(A + B*Cos[c + d*x]))/Cos[c + d*x]^(11/2), 
x]
 

Output:

(2*a*A*(a + a*Cos[c + d*x])^(3/2)*Sin[c + d*x])/(9*d*Cos[c + d*x]^(9/2)) + 
 ((6*a^2*(4*A + 3*B)*Sqrt[a + a*Cos[c + d*x]]*Sin[c + d*x])/(7*d*Cos[c + d 
*x]^(7/2)) + ((2*a^3*(124*A + 135*B)*Sin[c + d*x])/(5*d*Cos[c + d*x]^(5/2) 
*Sqrt[a + a*Cos[c + d*x]]) + (3*a^2*(292*A + 345*B)*((2*a*Sin[c + d*x])/(3 
*d*Cos[c + d*x]^(3/2)*Sqrt[a + a*Cos[c + d*x]]) + (4*a*Sin[c + d*x])/(3*d* 
Sqrt[Cos[c + d*x]]*Sqrt[a + a*Cos[c + d*x]])))/5)/7)/9
 

Defintions of rubi rules used

rule 27
Int[(a_)*(Fx_), x_Symbol] :> Simp[a   Int[Fx, x], x] /; FreeQ[a, x] &&  !Ma 
tchQ[Fx, (b_)*(Gx_) /; FreeQ[b, x]]
 

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 3250
Int[Sqrt[(a_) + (b_.)*sin[(e_.) + (f_.)*(x_)]]/((c_.) + (d_.)*sin[(e_.) + ( 
f_.)*(x_)])^(3/2), x_Symbol] :> Simp[-2*b^2*(Cos[e + f*x]/(f*(b*c + a*d)*Sq 
rt[a + b*Sin[e + f*x]]*Sqrt[c + d*Sin[e + f*x]])), x] /; FreeQ[{a, b, c, d, 
 e, f}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0]
 

rule 3251
Int[Sqrt[(a_) + (b_.)*sin[(e_.) + (f_.)*(x_)]]*((c_.) + (d_.)*sin[(e_.) + ( 
f_.)*(x_)])^(n_), x_Symbol] :> Simp[(b*c - a*d)*Cos[e + f*x]*((c + d*Sin[e 
+ f*x])^(n + 1)/(f*(n + 1)*(c^2 - d^2)*Sqrt[a + b*Sin[e + f*x]])), x] + Sim 
p[(2*n + 3)*((b*c - a*d)/(2*b*(n + 1)*(c^2 - d^2)))   Int[Sqrt[a + b*Sin[e 
+ f*x]]*(c + d*Sin[e + f*x])^(n + 1), x], x] /; FreeQ[{a, b, c, d, e, f}, x 
] && NeQ[b*c - a*d, 0] && EqQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0] && LtQ[n, 
-1] && NeQ[2*n + 3, 0] && IntegerQ[2*n]
 

rule 3454
Int[((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((A_.) + (B_.)*sin[(e_.) + 
(f_.)*(x_)])*((c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)])^(n_), x_Symbol] :> Sim 
p[(-b^2)*(B*c - A*d)*Cos[e + f*x]*(a + b*Sin[e + f*x])^(m - 1)*((c + d*Sin[ 
e + f*x])^(n + 1)/(d*f*(n + 1)*(b*c + a*d))), x] - Simp[b/(d*(n + 1)*(b*c + 
 a*d))   Int[(a + b*Sin[e + f*x])^(m - 1)*(c + d*Sin[e + f*x])^(n + 1)*Simp 
[a*A*d*(m - n - 2) - B*(a*c*(m - 1) + b*d*(n + 1)) - (A*b*d*(m + n + 1) - B 
*(b*c*m - a*d*(n + 1)))*Sin[e + f*x], x], x], x] /; FreeQ[{a, b, c, d, e, f 
, A, B}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0] 
&& GtQ[m, 1/2] && LtQ[n, -1] && IntegerQ[2*m] && (IntegerQ[2*n] || EqQ[c, 0 
])
 

rule 3459
Int[Sqrt[(a_) + (b_.)*sin[(e_.) + (f_.)*(x_)]]*((A_.) + (B_.)*sin[(e_.) + ( 
f_.)*(x_)])*((c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)])^(n_), x_Symbol] :> Simp 
[(-b^2)*(B*c - A*d)*Cos[e + f*x]*((c + d*Sin[e + f*x])^(n + 1)/(d*f*(n + 1) 
*(b*c + a*d)*Sqrt[a + b*Sin[e + f*x]])), x] + Simp[(A*b*d*(2*n + 3) - B*(b* 
c - 2*a*d*(n + 1)))/(2*d*(n + 1)*(b*c + a*d))   Int[Sqrt[a + b*Sin[e + f*x] 
]*(c + d*Sin[e + f*x])^(n + 1), x], x] /; FreeQ[{a, b, c, d, e, f, A, B}, x 
] && NeQ[b*c - a*d, 0] && EqQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0] && LtQ[n, 
-1]
 
Maple [A] (verified)

Time = 12.97 (sec) , antiderivative size = 126, normalized size of antiderivative = 0.55

method result size
default \(\frac {2 \sin \left (d x +c \right ) \left (\left (584 \cos \left (d x +c \right )^{4}+292 \cos \left (d x +c \right )^{3}+219 \cos \left (d x +c \right )^{2}+130 \cos \left (d x +c \right )+35\right ) A +\cos \left (d x +c \right ) \left (690 \cos \left (d x +c \right )^{3}+345 \cos \left (d x +c \right )^{2}+180 \cos \left (d x +c \right )+45\right ) B \right ) \sqrt {a \left (\cos \left (d x +c \right )+1\right )}\, a^{2}}{315 d \cos \left (d x +c \right )^{\frac {9}{2}} \left (\cos \left (d x +c \right )+1\right )}\) \(126\)
parts \(\frac {2 A \sin \left (d x +c \right ) \left (584 \cos \left (d x +c \right )^{4}+292 \cos \left (d x +c \right )^{3}+219 \cos \left (d x +c \right )^{2}+130 \cos \left (d x +c \right )+35\right ) \sqrt {a \left (\cos \left (d x +c \right )+1\right )}\, a^{2}}{315 d \cos \left (d x +c \right )^{\frac {9}{2}} \left (\cos \left (d x +c \right )+1\right )}+\frac {2 B \sin \left (d x +c \right ) \left (46 \cos \left (d x +c \right )^{3}+23 \cos \left (d x +c \right )^{2}+12 \cos \left (d x +c \right )+3\right ) \sqrt {a \left (\cos \left (d x +c \right )+1\right )}\, a^{2}}{21 d \cos \left (d x +c \right )^{\frac {7}{2}} \left (\cos \left (d x +c \right )+1\right )}\) \(162\)

Input:

int((a+a*cos(d*x+c))^(5/2)*(A+B*cos(d*x+c))/cos(d*x+c)^(11/2),x,method=_RE 
TURNVERBOSE)
 

Output:

2/315/d*sin(d*x+c)*((584*cos(d*x+c)^4+292*cos(d*x+c)^3+219*cos(d*x+c)^2+13 
0*cos(d*x+c)+35)*A+cos(d*x+c)*(690*cos(d*x+c)^3+345*cos(d*x+c)^2+180*cos(d 
*x+c)+45)*B)*(a*(cos(d*x+c)+1))^(1/2)/cos(d*x+c)^(9/2)/(cos(d*x+c)+1)*a^2
 

Fricas [A] (verification not implemented)

Time = 0.09 (sec) , antiderivative size = 135, normalized size of antiderivative = 0.59 \[ \int \frac {(a+a \cos (c+d x))^{5/2} (A+B \cos (c+d x))}{\cos ^{\frac {11}{2}}(c+d x)} \, dx=\frac {2 \, {\left (2 \, {\left (292 \, A + 345 \, B\right )} a^{2} \cos \left (d x + c\right )^{4} + {\left (292 \, A + 345 \, B\right )} a^{2} \cos \left (d x + c\right )^{3} + 3 \, {\left (73 \, A + 60 \, B\right )} a^{2} \cos \left (d x + c\right )^{2} + 5 \, {\left (26 \, A + 9 \, B\right )} a^{2} \cos \left (d x + c\right ) + 35 \, A a^{2}\right )} \sqrt {a \cos \left (d x + c\right ) + a} \sqrt {\cos \left (d x + c\right )} \sin \left (d x + c\right )}{315 \, {\left (d \cos \left (d x + c\right )^{6} + d \cos \left (d x + c\right )^{5}\right )}} \] Input:

integrate((a+a*cos(d*x+c))^(5/2)*(A+B*cos(d*x+c))/cos(d*x+c)^(11/2),x, alg 
orithm="fricas")
 

Output:

2/315*(2*(292*A + 345*B)*a^2*cos(d*x + c)^4 + (292*A + 345*B)*a^2*cos(d*x 
+ c)^3 + 3*(73*A + 60*B)*a^2*cos(d*x + c)^2 + 5*(26*A + 9*B)*a^2*cos(d*x + 
 c) + 35*A*a^2)*sqrt(a*cos(d*x + c) + a)*sqrt(cos(d*x + c))*sin(d*x + c)/( 
d*cos(d*x + c)^6 + d*cos(d*x + c)^5)
 

Sympy [F(-1)]

Timed out. \[ \int \frac {(a+a \cos (c+d x))^{5/2} (A+B \cos (c+d x))}{\cos ^{\frac {11}{2}}(c+d x)} \, dx=\text {Timed out} \] Input:

integrate((a+a*cos(d*x+c))**(5/2)*(A+B*cos(d*x+c))/cos(d*x+c)**(11/2),x)
 

Output:

Timed out
 

Maxima [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 533 vs. \(2 (198) = 396\).

Time = 0.16 (sec) , antiderivative size = 533, normalized size of antiderivative = 2.34 \[ \int \frac {(a+a \cos (c+d x))^{5/2} (A+B \cos (c+d x))}{\cos ^{\frac {11}{2}}(c+d x)} \, dx =\text {Too large to display} \] Input:

integrate((a+a*cos(d*x+c))^(5/2)*(A+B*cos(d*x+c))/cos(d*x+c)^(11/2),x, alg 
orithm="maxima")
 

Output:

8/315*(15*(21*sqrt(2)*a^(5/2)*sin(d*x + c)/(cos(d*x + c) + 1) - 56*sqrt(2) 
*a^(5/2)*sin(d*x + c)^3/(cos(d*x + c) + 1)^3 + 63*sqrt(2)*a^(5/2)*sin(d*x 
+ c)^5/(cos(d*x + c) + 1)^5 - 36*sqrt(2)*a^(5/2)*sin(d*x + c)^7/(cos(d*x + 
 c) + 1)^7 + 8*sqrt(2)*a^(5/2)*sin(d*x + c)^9/(cos(d*x + c) + 1)^9)*B*(sin 
(d*x + c)^2/(cos(d*x + c) + 1)^2 + 1)^2/((sin(d*x + c)/(cos(d*x + c) + 1) 
+ 1)^(9/2)*(-sin(d*x + c)/(cos(d*x + c) + 1) + 1)^(9/2)*(2*sin(d*x + c)^2/ 
(cos(d*x + c) + 1)^2 + sin(d*x + c)^4/(cos(d*x + c) + 1)^4 + 1)) + (315*sq 
rt(2)*a^(5/2)*sin(d*x + c)/(cos(d*x + c) + 1) - 945*sqrt(2)*a^(5/2)*sin(d* 
x + c)^3/(cos(d*x + c) + 1)^3 + 1449*sqrt(2)*a^(5/2)*sin(d*x + c)^5/(cos(d 
*x + c) + 1)^5 - 1287*sqrt(2)*a^(5/2)*sin(d*x + c)^7/(cos(d*x + c) + 1)^7 
+ 572*sqrt(2)*a^(5/2)*sin(d*x + c)^9/(cos(d*x + c) + 1)^9 - 104*sqrt(2)*a^ 
(5/2)*sin(d*x + c)^11/(cos(d*x + c) + 1)^11)*A*(sin(d*x + c)^2/(cos(d*x + 
c) + 1)^2 + 1)^3/((sin(d*x + c)/(cos(d*x + c) + 1) + 1)^(11/2)*(-sin(d*x + 
 c)/(cos(d*x + c) + 1) + 1)^(11/2)*(3*sin(d*x + c)^2/(cos(d*x + c) + 1)^2 
+ 3*sin(d*x + c)^4/(cos(d*x + c) + 1)^4 + sin(d*x + c)^6/(cos(d*x + c) + 1 
)^6 + 1)))/d
 

Giac [F(-1)]

Timed out. \[ \int \frac {(a+a \cos (c+d x))^{5/2} (A+B \cos (c+d x))}{\cos ^{\frac {11}{2}}(c+d x)} \, dx=\text {Timed out} \] Input:

integrate((a+a*cos(d*x+c))^(5/2)*(A+B*cos(d*x+c))/cos(d*x+c)^(11/2),x, alg 
orithm="giac")
 

Output:

Timed out
 

Mupad [B] (verification not implemented)

Time = 55.94 (sec) , antiderivative size = 647, normalized size of antiderivative = 2.84 \[ \int \frac {(a+a \cos (c+d x))^{5/2} (A+B \cos (c+d x))}{\cos ^{\frac {11}{2}}(c+d x)} \, dx =\text {Too large to display} \] Input:

int(((A + B*cos(c + d*x))*(a + a*cos(c + d*x))^(5/2))/cos(c + d*x)^(11/2), 
x)
 

Output:

((a + a*(exp(- c*1i - d*x*1i)/2 + exp(c*1i + d*x*1i)/2))^(1/2)*((a^2*(292* 
A + 345*B)*4i)/(315*d) - (a^2*exp(c*3i + d*x*3i)*(2*A + 5*B)*4i)/(3*d) + ( 
a^2*exp(c*6i + d*x*6i)*(2*A + 5*B)*4i)/(3*d) + (a^2*exp(c*4i + d*x*4i)*(24 
*A + 25*B)*4i)/(5*d) - (a^2*exp(c*5i + d*x*5i)*(24*A + 25*B)*4i)/(5*d) + ( 
a^2*exp(c*2i + d*x*2i)*(146*A + 155*B)*4i)/(35*d) - (a^2*exp(c*7i + d*x*7i 
)*(146*A + 155*B)*4i)/(35*d) - (a^2*exp(c*9i + d*x*9i)*(292*A + 345*B)*4i) 
/(315*d)))/((exp(- c*1i - d*x*1i)/2 + exp(c*1i + d*x*1i)/2)^(1/2) + exp(c* 
1i + d*x*1i)*(exp(- c*1i - d*x*1i)/2 + exp(c*1i + d*x*1i)/2)^(1/2) + 4*exp 
(c*2i + d*x*2i)*(exp(- c*1i - d*x*1i)/2 + exp(c*1i + d*x*1i)/2)^(1/2) + 4* 
exp(c*3i + d*x*3i)*(exp(- c*1i - d*x*1i)/2 + exp(c*1i + d*x*1i)/2)^(1/2) + 
 6*exp(c*4i + d*x*4i)*(exp(- c*1i - d*x*1i)/2 + exp(c*1i + d*x*1i)/2)^(1/2 
) + 6*exp(c*5i + d*x*5i)*(exp(- c*1i - d*x*1i)/2 + exp(c*1i + d*x*1i)/2)^( 
1/2) + 4*exp(c*6i + d*x*6i)*(exp(- c*1i - d*x*1i)/2 + exp(c*1i + d*x*1i)/2 
)^(1/2) + 4*exp(c*7i + d*x*7i)*(exp(- c*1i - d*x*1i)/2 + exp(c*1i + d*x*1i 
)/2)^(1/2) + exp(c*8i + d*x*8i)*(exp(- c*1i - d*x*1i)/2 + exp(c*1i + d*x*1 
i)/2)^(1/2) + exp(c*9i + d*x*9i)*(exp(- c*1i - d*x*1i)/2 + exp(c*1i + d*x* 
1i)/2)^(1/2))
 

Reduce [F]

\[ \int \frac {(a+a \cos (c+d x))^{5/2} (A+B \cos (c+d x))}{\cos ^{\frac {11}{2}}(c+d x)} \, dx=\sqrt {a}\, a^{2} \left (\left (\int \frac {\sqrt {\cos \left (d x +c \right )+1}\, \sqrt {\cos \left (d x +c \right )}}{\cos \left (d x +c \right )^{6}}d x \right ) a +2 \left (\int \frac {\sqrt {\cos \left (d x +c \right )+1}\, \sqrt {\cos \left (d x +c \right )}}{\cos \left (d x +c \right )^{5}}d x \right ) a +\left (\int \frac {\sqrt {\cos \left (d x +c \right )+1}\, \sqrt {\cos \left (d x +c \right )}}{\cos \left (d x +c \right )^{5}}d x \right ) b +\left (\int \frac {\sqrt {\cos \left (d x +c \right )+1}\, \sqrt {\cos \left (d x +c \right )}}{\cos \left (d x +c \right )^{4}}d x \right ) a +2 \left (\int \frac {\sqrt {\cos \left (d x +c \right )+1}\, \sqrt {\cos \left (d x +c \right )}}{\cos \left (d x +c \right )^{4}}d x \right ) b +\left (\int \frac {\sqrt {\cos \left (d x +c \right )+1}\, \sqrt {\cos \left (d x +c \right )}}{\cos \left (d x +c \right )^{3}}d x \right ) b \right ) \] Input:

int((a+a*cos(d*x+c))^(5/2)*(A+B*cos(d*x+c))/cos(d*x+c)^(11/2),x)
 

Output:

sqrt(a)*a**2*(int((sqrt(cos(c + d*x) + 1)*sqrt(cos(c + d*x)))/cos(c + d*x) 
**6,x)*a + 2*int((sqrt(cos(c + d*x) + 1)*sqrt(cos(c + d*x)))/cos(c + d*x)* 
*5,x)*a + int((sqrt(cos(c + d*x) + 1)*sqrt(cos(c + d*x)))/cos(c + d*x)**5, 
x)*b + int((sqrt(cos(c + d*x) + 1)*sqrt(cos(c + d*x)))/cos(c + d*x)**4,x)* 
a + 2*int((sqrt(cos(c + d*x) + 1)*sqrt(cos(c + d*x)))/cos(c + d*x)**4,x)*b 
 + int((sqrt(cos(c + d*x) + 1)*sqrt(cos(c + d*x)))/cos(c + d*x)**3,x)*b)