\(\int (a+b \cos (c+d x))^2 (A+B \cos (c+d x)) \sec ^3(c+d x) \, dx\) [228]

Optimal result
Mathematica [A] (verified)
Rubi [A] (verified)
Maple [A] (verified)
Fricas [A] (verification not implemented)
Sympy [F]
Maxima [A] (verification not implemented)
Giac [B] (verification not implemented)
Mupad [B] (verification not implemented)
Reduce [B] (verification not implemented)

Optimal result

Integrand size = 31, antiderivative size = 80 \[ \int (a+b \cos (c+d x))^2 (A+B \cos (c+d x)) \sec ^3(c+d x) \, dx=b^2 B x+\frac {\left (a^2 A+2 A b^2+4 a b B\right ) \text {arctanh}(\sin (c+d x))}{2 d}+\frac {a (2 A b+a B) \tan (c+d x)}{d}+\frac {a^2 A \sec (c+d x) \tan (c+d x)}{2 d} \] Output:

b^2*B*x+1/2*(A*a^2+2*A*b^2+4*B*a*b)*arctanh(sin(d*x+c))/d+a*(2*A*b+B*a)*ta 
n(d*x+c)/d+1/2*a^2*A*sec(d*x+c)*tan(d*x+c)/d
 

Mathematica [A] (verified)

Time = 0.29 (sec) , antiderivative size = 87, normalized size of antiderivative = 1.09 \[ \int (a+b \cos (c+d x))^2 (A+B \cos (c+d x)) \sec ^3(c+d x) \, dx=b^2 B x+\frac {b (A b+2 a B) \coth ^{-1}(\sin (c+d x))}{d}+\frac {a^2 A \text {arctanh}(\sin (c+d x))}{2 d}+\frac {a (2 A b+a B) \tan (c+d x)}{d}+\frac {a^2 A \sec (c+d x) \tan (c+d x)}{2 d} \] Input:

Integrate[(a + b*Cos[c + d*x])^2*(A + B*Cos[c + d*x])*Sec[c + d*x]^3,x]
 

Output:

b^2*B*x + (b*(A*b + 2*a*B)*ArcCoth[Sin[c + d*x]])/d + (a^2*A*ArcTanh[Sin[c 
 + d*x]])/(2*d) + (a*(2*A*b + a*B)*Tan[c + d*x])/d + (a^2*A*Sec[c + d*x]*T 
an[c + d*x])/(2*d)
 

Rubi [A] (verified)

Time = 0.64 (sec) , antiderivative size = 84, normalized size of antiderivative = 1.05, number of steps used = 9, number of rules used = 9, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.290, Rules used = {3042, 3467, 25, 3042, 3500, 3042, 3214, 3042, 4257}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \sec ^3(c+d x) (a+b \cos (c+d x))^2 (A+B \cos (c+d x)) \, dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \frac {\left (a+b \sin \left (c+d x+\frac {\pi }{2}\right )\right )^2 \left (A+B \sin \left (c+d x+\frac {\pi }{2}\right )\right )}{\sin \left (c+d x+\frac {\pi }{2}\right )^3}dx\)

\(\Big \downarrow \) 3467

\(\displaystyle \frac {a^2 A \tan (c+d x) \sec (c+d x)}{2 d}-\frac {1}{2} \int -\left (\left (2 b^2 B \cos ^2(c+d x)+\left (A a^2+4 b B a+2 A b^2\right ) \cos (c+d x)+2 a (2 A b+a B)\right ) \sec ^2(c+d x)\right )dx\)

\(\Big \downarrow \) 25

\(\displaystyle \frac {1}{2} \int \left (2 b^2 B \cos ^2(c+d x)+\left (A a^2+4 b B a+2 A b^2\right ) \cos (c+d x)+2 a (2 A b+a B)\right ) \sec ^2(c+d x)dx+\frac {a^2 A \tan (c+d x) \sec (c+d x)}{2 d}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {1}{2} \int \frac {2 b^2 B \sin \left (c+d x+\frac {\pi }{2}\right )^2+\left (A a^2+4 b B a+2 A b^2\right ) \sin \left (c+d x+\frac {\pi }{2}\right )+2 a (2 A b+a B)}{\sin \left (c+d x+\frac {\pi }{2}\right )^2}dx+\frac {a^2 A \tan (c+d x) \sec (c+d x)}{2 d}\)

\(\Big \downarrow \) 3500

\(\displaystyle \frac {1}{2} \left (\int \left (A a^2+4 b B a+2 A b^2+2 b^2 B \cos (c+d x)\right ) \sec (c+d x)dx+\frac {2 a (a B+2 A b) \tan (c+d x)}{d}\right )+\frac {a^2 A \tan (c+d x) \sec (c+d x)}{2 d}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {1}{2} \left (\int \frac {A a^2+4 b B a+2 A b^2+2 b^2 B \sin \left (c+d x+\frac {\pi }{2}\right )}{\sin \left (c+d x+\frac {\pi }{2}\right )}dx+\frac {2 a (a B+2 A b) \tan (c+d x)}{d}\right )+\frac {a^2 A \tan (c+d x) \sec (c+d x)}{2 d}\)

\(\Big \downarrow \) 3214

\(\displaystyle \frac {1}{2} \left (\left (a^2 A+4 a b B+2 A b^2\right ) \int \sec (c+d x)dx+\frac {2 a (a B+2 A b) \tan (c+d x)}{d}+2 b^2 B x\right )+\frac {a^2 A \tan (c+d x) \sec (c+d x)}{2 d}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {1}{2} \left (\left (a^2 A+4 a b B+2 A b^2\right ) \int \csc \left (c+d x+\frac {\pi }{2}\right )dx+\frac {2 a (a B+2 A b) \tan (c+d x)}{d}+2 b^2 B x\right )+\frac {a^2 A \tan (c+d x) \sec (c+d x)}{2 d}\)

\(\Big \downarrow \) 4257

\(\displaystyle \frac {1}{2} \left (\frac {\left (a^2 A+4 a b B+2 A b^2\right ) \text {arctanh}(\sin (c+d x))}{d}+\frac {2 a (a B+2 A b) \tan (c+d x)}{d}+2 b^2 B x\right )+\frac {a^2 A \tan (c+d x) \sec (c+d x)}{2 d}\)

Input:

Int[(a + b*Cos[c + d*x])^2*(A + B*Cos[c + d*x])*Sec[c + d*x]^3,x]
 

Output:

(a^2*A*Sec[c + d*x]*Tan[c + d*x])/(2*d) + (2*b^2*B*x + ((a^2*A + 2*A*b^2 + 
 4*a*b*B)*ArcTanh[Sin[c + d*x]])/d + (2*a*(2*A*b + a*B)*Tan[c + d*x])/d)/2
 

Defintions of rubi rules used

rule 25
Int[-(Fx_), x_Symbol] :> Simp[Identity[-1]   Int[Fx, x], x]
 

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 3214
Int[((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])/((c_.) + (d_.)*sin[(e_.) + (f_. 
)*(x_)]), x_Symbol] :> Simp[b*(x/d), x] - Simp[(b*c - a*d)/d   Int[1/(c + d 
*Sin[e + f*x]), x], x] /; FreeQ[{a, b, c, d, e, f}, x] && NeQ[b*c - a*d, 0]
 

rule 3467
Int[((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])^2*((A_.) + (B_.)*sin[(e_.) + (f 
_.)*(x_)])*((c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)])^(n_), x_Symbol] :> Simp[ 
(B*c - A*d)*(b*c - a*d)^2*Cos[e + f*x]*((c + d*Sin[e + f*x])^(n + 1)/(f*d^2 
*(n + 1)*(c^2 - d^2))), x] - Simp[1/(d^2*(n + 1)*(c^2 - d^2))   Int[(c + d* 
Sin[e + f*x])^(n + 1)*Simp[d*(n + 1)*(B*(b*c - a*d)^2 - A*d*(a^2*c + b^2*c 
- 2*a*b*d)) - ((B*c - A*d)*(a^2*d^2*(n + 2) + b^2*(c^2 + d^2*(n + 1))) + 2* 
a*b*d*(A*c*d*(n + 2) - B*(c^2 + d^2*(n + 1))))*Sin[e + f*x] - b^2*B*d*(n + 
1)*(c^2 - d^2)*Sin[e + f*x]^2, x], x], x] /; FreeQ[{a, b, c, d, e, f, A, B} 
, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0] && LtQ[ 
n, -1]
 

rule 3500
Int[((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((A_.) + (B_.)*sin[(e_.) + 
 (f_.)*(x_)] + (C_.)*sin[(e_.) + (f_.)*(x_)]^2), x_Symbol] :> Simp[(-(A*b^2 
 - a*b*B + a^2*C))*Cos[e + f*x]*((a + b*Sin[e + f*x])^(m + 1)/(b*f*(m + 1)* 
(a^2 - b^2))), x] + Simp[1/(b*(m + 1)*(a^2 - b^2))   Int[(a + b*Sin[e + f*x 
])^(m + 1)*Simp[b*(a*A - b*B + a*C)*(m + 1) - (A*b^2 - a*b*B + a^2*C + b*(A 
*b - a*B + b*C)*(m + 1))*Sin[e + f*x], x], x], x] /; FreeQ[{a, b, e, f, A, 
B, C}, x] && LtQ[m, -1] && NeQ[a^2 - b^2, 0]
 

rule 4257
Int[csc[(c_.) + (d_.)*(x_)], x_Symbol] :> Simp[-ArcTanh[Cos[c + d*x]]/d, x] 
 /; FreeQ[{c, d}, x]
 
Maple [A] (verified)

Time = 6.12 (sec) , antiderivative size = 104, normalized size of antiderivative = 1.30

method result size
parts \(\frac {a^{2} A \left (\frac {\sec \left (d x +c \right ) \tan \left (d x +c \right )}{2}+\frac {\ln \left (\sec \left (d x +c \right )+\tan \left (d x +c \right )\right )}{2}\right )}{d}+\frac {\left (A \,b^{2}+2 B a b \right ) \ln \left (\sec \left (d x +c \right )+\tan \left (d x +c \right )\right )}{d}+\frac {\left (2 A a b +a^{2} B \right ) \tan \left (d x +c \right )}{d}+\frac {B \,b^{2} \left (d x +c \right )}{d}\) \(104\)
derivativedivides \(\frac {a^{2} A \left (\frac {\sec \left (d x +c \right ) \tan \left (d x +c \right )}{2}+\frac {\ln \left (\sec \left (d x +c \right )+\tan \left (d x +c \right )\right )}{2}\right )+a^{2} B \tan \left (d x +c \right )+2 A a b \tan \left (d x +c \right )+2 B a b \ln \left (\sec \left (d x +c \right )+\tan \left (d x +c \right )\right )+A \,b^{2} \ln \left (\sec \left (d x +c \right )+\tan \left (d x +c \right )\right )+B \,b^{2} \left (d x +c \right )}{d}\) \(112\)
default \(\frac {a^{2} A \left (\frac {\sec \left (d x +c \right ) \tan \left (d x +c \right )}{2}+\frac {\ln \left (\sec \left (d x +c \right )+\tan \left (d x +c \right )\right )}{2}\right )+a^{2} B \tan \left (d x +c \right )+2 A a b \tan \left (d x +c \right )+2 B a b \ln \left (\sec \left (d x +c \right )+\tan \left (d x +c \right )\right )+A \,b^{2} \ln \left (\sec \left (d x +c \right )+\tan \left (d x +c \right )\right )+B \,b^{2} \left (d x +c \right )}{d}\) \(112\)
parallelrisch \(\frac {-\left (\cos \left (2 d x +2 c \right )+1\right ) \left (a^{2} A +2 A \,b^{2}+4 B a b \right ) \ln \left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )-1\right )+\left (\cos \left (2 d x +2 c \right )+1\right ) \left (a^{2} A +2 A \,b^{2}+4 B a b \right ) \ln \left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )+1\right )+2 B \,b^{2} d x \cos \left (2 d x +2 c \right )+\left (4 A a b +2 a^{2} B \right ) \sin \left (2 d x +2 c \right )+2 B \,b^{2} d x +2 a^{2} A \sin \left (d x +c \right )}{2 d \left (\cos \left (2 d x +2 c \right )+1\right )}\) \(162\)
risch \(b^{2} B x -\frac {i a \left (A a \,{\mathrm e}^{3 i \left (d x +c \right )}-4 A b \,{\mathrm e}^{2 i \left (d x +c \right )}-2 B a \,{\mathrm e}^{2 i \left (d x +c \right )}-A a \,{\mathrm e}^{i \left (d x +c \right )}-4 A b -2 B a \right )}{d \left ({\mathrm e}^{2 i \left (d x +c \right )}+1\right )^{2}}+\frac {a^{2} A \ln \left ({\mathrm e}^{i \left (d x +c \right )}+i\right )}{2 d}+\frac {\ln \left ({\mathrm e}^{i \left (d x +c \right )}+i\right ) A \,b^{2}}{d}+\frac {2 \ln \left ({\mathrm e}^{i \left (d x +c \right )}+i\right ) B a b}{d}-\frac {a^{2} A \ln \left ({\mathrm e}^{i \left (d x +c \right )}-i\right )}{2 d}-\frac {\ln \left ({\mathrm e}^{i \left (d x +c \right )}-i\right ) A \,b^{2}}{d}-\frac {2 \ln \left ({\mathrm e}^{i \left (d x +c \right )}-i\right ) B a b}{d}\) \(217\)
norman \(\frac {b^{2} B x +\frac {a \left (A a -4 A b -2 B a \right ) \tan \left (\frac {d x}{2}+\frac {c}{2}\right )^{9}}{d}+\frac {a \left (A a +4 A b +2 B a \right ) \tan \left (\frac {d x}{2}+\frac {c}{2}\right )}{d}+b^{2} B x \tan \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}+b^{2} B x \tan \left (\frac {d x}{2}+\frac {c}{2}\right )^{8}+b^{2} B x \tan \left (\frac {d x}{2}+\frac {c}{2}\right )^{10}+\frac {4 a \left (A a -2 A b -B a \right ) \tan \left (\frac {d x}{2}+\frac {c}{2}\right )^{7}}{d}+\frac {4 a \left (A a +2 A b +B a \right ) \tan \left (\frac {d x}{2}+\frac {c}{2}\right )^{3}}{d}+\frac {6 a^{2} A \tan \left (\frac {d x}{2}+\frac {c}{2}\right )^{5}}{d}-2 b^{2} B x \tan \left (\frac {d x}{2}+\frac {c}{2}\right )^{4}-2 b^{2} B x \tan \left (\frac {d x}{2}+\frac {c}{2}\right )^{6}}{\left (1+\tan \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}\right )^{3} \left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-1\right )^{2}}-\frac {\left (a^{2} A +2 A \,b^{2}+4 B a b \right ) \ln \left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )-1\right )}{2 d}+\frac {\left (a^{2} A +2 A \,b^{2}+4 B a b \right ) \ln \left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )+1\right )}{2 d}\) \(326\)

Input:

int((a+cos(d*x+c)*b)^2*(A+B*cos(d*x+c))*sec(d*x+c)^3,x,method=_RETURNVERBO 
SE)
 

Output:

a^2*A/d*(1/2*sec(d*x+c)*tan(d*x+c)+1/2*ln(sec(d*x+c)+tan(d*x+c)))+(A*b^2+2 
*B*a*b)/d*ln(sec(d*x+c)+tan(d*x+c))+(2*A*a*b+B*a^2)/d*tan(d*x+c)+B*b^2/d*( 
d*x+c)
 

Fricas [A] (verification not implemented)

Time = 0.09 (sec) , antiderivative size = 136, normalized size of antiderivative = 1.70 \[ \int (a+b \cos (c+d x))^2 (A+B \cos (c+d x)) \sec ^3(c+d x) \, dx=\frac {4 \, B b^{2} d x \cos \left (d x + c\right )^{2} + {\left (A a^{2} + 4 \, B a b + 2 \, A b^{2}\right )} \cos \left (d x + c\right )^{2} \log \left (\sin \left (d x + c\right ) + 1\right ) - {\left (A a^{2} + 4 \, B a b + 2 \, A b^{2}\right )} \cos \left (d x + c\right )^{2} \log \left (-\sin \left (d x + c\right ) + 1\right ) + 2 \, {\left (A a^{2} + 2 \, {\left (B a^{2} + 2 \, A a b\right )} \cos \left (d x + c\right )\right )} \sin \left (d x + c\right )}{4 \, d \cos \left (d x + c\right )^{2}} \] Input:

integrate((a+b*cos(d*x+c))^2*(A+B*cos(d*x+c))*sec(d*x+c)^3,x, algorithm="f 
ricas")
 

Output:

1/4*(4*B*b^2*d*x*cos(d*x + c)^2 + (A*a^2 + 4*B*a*b + 2*A*b^2)*cos(d*x + c) 
^2*log(sin(d*x + c) + 1) - (A*a^2 + 4*B*a*b + 2*A*b^2)*cos(d*x + c)^2*log( 
-sin(d*x + c) + 1) + 2*(A*a^2 + 2*(B*a^2 + 2*A*a*b)*cos(d*x + c))*sin(d*x 
+ c))/(d*cos(d*x + c)^2)
 

Sympy [F]

\[ \int (a+b \cos (c+d x))^2 (A+B \cos (c+d x)) \sec ^3(c+d x) \, dx=\int \left (A + B \cos {\left (c + d x \right )}\right ) \left (a + b \cos {\left (c + d x \right )}\right )^{2} \sec ^{3}{\left (c + d x \right )}\, dx \] Input:

integrate((a+b*cos(d*x+c))**2*(A+B*cos(d*x+c))*sec(d*x+c)**3,x)
 

Output:

Integral((A + B*cos(c + d*x))*(a + b*cos(c + d*x))**2*sec(c + d*x)**3, x)
 

Maxima [A] (verification not implemented)

Time = 0.05 (sec) , antiderivative size = 140, normalized size of antiderivative = 1.75 \[ \int (a+b \cos (c+d x))^2 (A+B \cos (c+d x)) \sec ^3(c+d x) \, dx=\frac {4 \, {\left (d x + c\right )} B b^{2} - A a^{2} {\left (\frac {2 \, \sin \left (d x + c\right )}{\sin \left (d x + c\right )^{2} - 1} - \log \left (\sin \left (d x + c\right ) + 1\right ) + \log \left (\sin \left (d x + c\right ) - 1\right )\right )} + 4 \, B a b {\left (\log \left (\sin \left (d x + c\right ) + 1\right ) - \log \left (\sin \left (d x + c\right ) - 1\right )\right )} + 2 \, A b^{2} {\left (\log \left (\sin \left (d x + c\right ) + 1\right ) - \log \left (\sin \left (d x + c\right ) - 1\right )\right )} + 4 \, B a^{2} \tan \left (d x + c\right ) + 8 \, A a b \tan \left (d x + c\right )}{4 \, d} \] Input:

integrate((a+b*cos(d*x+c))^2*(A+B*cos(d*x+c))*sec(d*x+c)^3,x, algorithm="m 
axima")
 

Output:

1/4*(4*(d*x + c)*B*b^2 - A*a^2*(2*sin(d*x + c)/(sin(d*x + c)^2 - 1) - log( 
sin(d*x + c) + 1) + log(sin(d*x + c) - 1)) + 4*B*a*b*(log(sin(d*x + c) + 1 
) - log(sin(d*x + c) - 1)) + 2*A*b^2*(log(sin(d*x + c) + 1) - log(sin(d*x 
+ c) - 1)) + 4*B*a^2*tan(d*x + c) + 8*A*a*b*tan(d*x + c))/d
 

Giac [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 190 vs. \(2 (76) = 152\).

Time = 0.18 (sec) , antiderivative size = 190, normalized size of antiderivative = 2.38 \[ \int (a+b \cos (c+d x))^2 (A+B \cos (c+d x)) \sec ^3(c+d x) \, dx=\frac {2 \, {\left (d x + c\right )} B b^{2} + {\left (A a^{2} + 4 \, B a b + 2 \, A b^{2}\right )} \log \left ({\left | \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) + 1 \right |}\right ) - {\left (A a^{2} + 4 \, B a b + 2 \, A b^{2}\right )} \log \left ({\left | \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) - 1 \right |}\right ) + \frac {2 \, {\left (A a^{2} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{3} - 2 \, B a^{2} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{3} - 4 \, A a b \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{3} + A a^{2} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) + 2 \, B a^{2} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) + 4 \, A a b \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )\right )}}{{\left (\tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{2} - 1\right )}^{2}}}{2 \, d} \] Input:

integrate((a+b*cos(d*x+c))^2*(A+B*cos(d*x+c))*sec(d*x+c)^3,x, algorithm="g 
iac")
 

Output:

1/2*(2*(d*x + c)*B*b^2 + (A*a^2 + 4*B*a*b + 2*A*b^2)*log(abs(tan(1/2*d*x + 
 1/2*c) + 1)) - (A*a^2 + 4*B*a*b + 2*A*b^2)*log(abs(tan(1/2*d*x + 1/2*c) - 
 1)) + 2*(A*a^2*tan(1/2*d*x + 1/2*c)^3 - 2*B*a^2*tan(1/2*d*x + 1/2*c)^3 - 
4*A*a*b*tan(1/2*d*x + 1/2*c)^3 + A*a^2*tan(1/2*d*x + 1/2*c) + 2*B*a^2*tan( 
1/2*d*x + 1/2*c) + 4*A*a*b*tan(1/2*d*x + 1/2*c))/(tan(1/2*d*x + 1/2*c)^2 - 
 1)^2)/d
 

Mupad [B] (verification not implemented)

Time = 42.40 (sec) , antiderivative size = 176, normalized size of antiderivative = 2.20 \[ \int (a+b \cos (c+d x))^2 (A+B \cos (c+d x)) \sec ^3(c+d x) \, dx=\frac {2\,\left (\frac {A\,a^2\,\mathrm {atanh}\left (\frac {\sin \left (\frac {c}{2}+\frac {d\,x}{2}\right )}{\cos \left (\frac {c}{2}+\frac {d\,x}{2}\right )}\right )}{2}+A\,b^2\,\mathrm {atanh}\left (\frac {\sin \left (\frac {c}{2}+\frac {d\,x}{2}\right )}{\cos \left (\frac {c}{2}+\frac {d\,x}{2}\right )}\right )+B\,b^2\,\mathrm {atan}\left (\frac {\sin \left (\frac {c}{2}+\frac {d\,x}{2}\right )}{\cos \left (\frac {c}{2}+\frac {d\,x}{2}\right )}\right )+2\,B\,a\,b\,\mathrm {atanh}\left (\frac {\sin \left (\frac {c}{2}+\frac {d\,x}{2}\right )}{\cos \left (\frac {c}{2}+\frac {d\,x}{2}\right )}\right )\right )}{d}+\frac {\frac {B\,a^2\,\sin \left (2\,c+2\,d\,x\right )}{2}+\frac {A\,a^2\,\sin \left (c+d\,x\right )}{2}+A\,a\,b\,\sin \left (2\,c+2\,d\,x\right )}{d\,\left (\frac {\cos \left (2\,c+2\,d\,x\right )}{2}+\frac {1}{2}\right )} \] Input:

int(((A + B*cos(c + d*x))*(a + b*cos(c + d*x))^2)/cos(c + d*x)^3,x)
 

Output:

(2*((A*a^2*atanh(sin(c/2 + (d*x)/2)/cos(c/2 + (d*x)/2)))/2 + A*b^2*atanh(s 
in(c/2 + (d*x)/2)/cos(c/2 + (d*x)/2)) + B*b^2*atan(sin(c/2 + (d*x)/2)/cos( 
c/2 + (d*x)/2)) + 2*B*a*b*atanh(sin(c/2 + (d*x)/2)/cos(c/2 + (d*x)/2))))/d 
 + ((B*a^2*sin(2*c + 2*d*x))/2 + (A*a^2*sin(c + d*x))/2 + A*a*b*sin(2*c + 
2*d*x))/(d*(cos(2*c + 2*d*x)/2 + 1/2))
 

Reduce [B] (verification not implemented)

Time = 0.17 (sec) , antiderivative size = 321, normalized size of antiderivative = 4.01 \[ \int (a+b \cos (c+d x))^2 (A+B \cos (c+d x)) \sec ^3(c+d x) \, dx=\frac {-\cos \left (d x +c \right ) \mathrm {log}\left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )-1\right ) \sin \left (d x +c \right )^{2} a^{3}-6 \cos \left (d x +c \right ) \mathrm {log}\left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )-1\right ) \sin \left (d x +c \right )^{2} a \,b^{2}+\cos \left (d x +c \right ) \mathrm {log}\left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )-1\right ) a^{3}+6 \cos \left (d x +c \right ) \mathrm {log}\left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )-1\right ) a \,b^{2}+\cos \left (d x +c \right ) \mathrm {log}\left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )+1\right ) \sin \left (d x +c \right )^{2} a^{3}+6 \cos \left (d x +c \right ) \mathrm {log}\left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )+1\right ) \sin \left (d x +c \right )^{2} a \,b^{2}-\cos \left (d x +c \right ) \mathrm {log}\left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )+1\right ) a^{3}-6 \cos \left (d x +c \right ) \mathrm {log}\left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )+1\right ) a \,b^{2}+2 \cos \left (d x +c \right ) \sin \left (d x +c \right )^{2} b^{3} d x -\cos \left (d x +c \right ) \sin \left (d x +c \right ) a^{3}-2 \cos \left (d x +c \right ) b^{3} d x +6 \sin \left (d x +c \right )^{3} a^{2} b -6 \sin \left (d x +c \right ) a^{2} b}{2 \cos \left (d x +c \right ) d \left (\sin \left (d x +c \right )^{2}-1\right )} \] Input:

int((a+b*cos(d*x+c))^2*(A+B*cos(d*x+c))*sec(d*x+c)^3,x)
 

Output:

( - cos(c + d*x)*log(tan((c + d*x)/2) - 1)*sin(c + d*x)**2*a**3 - 6*cos(c 
+ d*x)*log(tan((c + d*x)/2) - 1)*sin(c + d*x)**2*a*b**2 + cos(c + d*x)*log 
(tan((c + d*x)/2) - 1)*a**3 + 6*cos(c + d*x)*log(tan((c + d*x)/2) - 1)*a*b 
**2 + cos(c + d*x)*log(tan((c + d*x)/2) + 1)*sin(c + d*x)**2*a**3 + 6*cos( 
c + d*x)*log(tan((c + d*x)/2) + 1)*sin(c + d*x)**2*a*b**2 - cos(c + d*x)*l 
og(tan((c + d*x)/2) + 1)*a**3 - 6*cos(c + d*x)*log(tan((c + d*x)/2) + 1)*a 
*b**2 + 2*cos(c + d*x)*sin(c + d*x)**2*b**3*d*x - cos(c + d*x)*sin(c + d*x 
)*a**3 - 2*cos(c + d*x)*b**3*d*x + 6*sin(c + d*x)**3*a**2*b - 6*sin(c + d* 
x)*a**2*b)/(2*cos(c + d*x)*d*(sin(c + d*x)**2 - 1))