\(\int (a+b \cos (c+d x))^3 (A+B \cos (c+d x)) \sec ^6(c+d x) \, dx\) [239]

Optimal result
Mathematica [A] (verified)
Rubi [A] (verified)
Maple [A] (verified)
Fricas [A] (verification not implemented)
Sympy [F(-1)]
Maxima [A] (verification not implemented)
Giac [B] (verification not implemented)
Mupad [B] (verification not implemented)
Reduce [B] (verification not implemented)

Optimal result

Integrand size = 31, antiderivative size = 236 \[ \int (a+b \cos (c+d x))^3 (A+B \cos (c+d x)) \sec ^6(c+d x) \, dx=\frac {\left (9 a^2 A b+4 A b^3+3 a^3 B+12 a b^2 B\right ) \text {arctanh}(\sin (c+d x))}{8 d}+\frac {\left (8 a^3 A+30 a A b^2+30 a^2 b B+15 b^3 B\right ) \tan (c+d x)}{15 d}+\frac {\left (9 a^2 A b+4 A b^3+3 a^3 B+12 a b^2 B\right ) \sec (c+d x) \tan (c+d x)}{8 d}+\frac {a \left (4 a^2 A+12 A b^2+15 a b B\right ) \sec ^2(c+d x) \tan (c+d x)}{15 d}+\frac {a^2 (7 A b+5 a B) \sec ^3(c+d x) \tan (c+d x)}{20 d}+\frac {a A (a+b \cos (c+d x))^2 \sec ^4(c+d x) \tan (c+d x)}{5 d} \] Output:

1/8*(9*A*a^2*b+4*A*b^3+3*B*a^3+12*B*a*b^2)*arctanh(sin(d*x+c))/d+1/15*(8*A 
*a^3+30*A*a*b^2+30*B*a^2*b+15*B*b^3)*tan(d*x+c)/d+1/8*(9*A*a^2*b+4*A*b^3+3 
*B*a^3+12*B*a*b^2)*sec(d*x+c)*tan(d*x+c)/d+1/15*a*(4*A*a^2+12*A*b^2+15*B*a 
*b)*sec(d*x+c)^2*tan(d*x+c)/d+1/20*a^2*(7*A*b+5*B*a)*sec(d*x+c)^3*tan(d*x+ 
c)/d+1/5*a*A*(a+b*cos(d*x+c))^2*sec(d*x+c)^4*tan(d*x+c)/d
 

Mathematica [A] (verified)

Time = 3.73 (sec) , antiderivative size = 181, normalized size of antiderivative = 0.77 \[ \int (a+b \cos (c+d x))^3 (A+B \cos (c+d x)) \sec ^6(c+d x) \, dx=\frac {15 \left (9 a^2 A b+4 A b^3+3 a^3 B+12 a b^2 B\right ) \text {arctanh}(\sin (c+d x))+\tan (c+d x) \left (15 \left (9 a^2 A b+4 A b^3+3 a^3 B+12 a b^2 B\right ) \sec (c+d x)+30 a^2 (3 A b+a B) \sec ^3(c+d x)+8 \left (15 \left (a^3 A+3 a A b^2+3 a^2 b B+b^3 B\right )+5 a \left (2 a^2 A+3 A b^2+3 a b B\right ) \tan ^2(c+d x)+3 a^3 A \tan ^4(c+d x)\right )\right )}{120 d} \] Input:

Integrate[(a + b*Cos[c + d*x])^3*(A + B*Cos[c + d*x])*Sec[c + d*x]^6,x]
 

Output:

(15*(9*a^2*A*b + 4*A*b^3 + 3*a^3*B + 12*a*b^2*B)*ArcTanh[Sin[c + d*x]] + T 
an[c + d*x]*(15*(9*a^2*A*b + 4*A*b^3 + 3*a^3*B + 12*a*b^2*B)*Sec[c + d*x] 
+ 30*a^2*(3*A*b + a*B)*Sec[c + d*x]^3 + 8*(15*(a^3*A + 3*a*A*b^2 + 3*a^2*b 
*B + b^3*B) + 5*a*(2*a^2*A + 3*A*b^2 + 3*a*b*B)*Tan[c + d*x]^2 + 3*a^3*A*T 
an[c + d*x]^4)))/(120*d)
 

Rubi [A] (verified)

Time = 1.39 (sec) , antiderivative size = 225, normalized size of antiderivative = 0.95, number of steps used = 16, number of rules used = 15, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.484, Rules used = {3042, 3468, 3042, 3510, 25, 3042, 3500, 3042, 3227, 3042, 4254, 24, 4255, 3042, 4257}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \sec ^6(c+d x) (a+b \cos (c+d x))^3 (A+B \cos (c+d x)) \, dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \frac {\left (a+b \sin \left (c+d x+\frac {\pi }{2}\right )\right )^3 \left (A+B \sin \left (c+d x+\frac {\pi }{2}\right )\right )}{\sin \left (c+d x+\frac {\pi }{2}\right )^6}dx\)

\(\Big \downarrow \) 3468

\(\displaystyle \frac {1}{5} \int (a+b \cos (c+d x)) \left (b (2 a A+5 b B) \cos ^2(c+d x)+\left (4 A a^2+10 b B a+5 A b^2\right ) \cos (c+d x)+a (7 A b+5 a B)\right ) \sec ^5(c+d x)dx+\frac {a A \tan (c+d x) \sec ^4(c+d x) (a+b \cos (c+d x))^2}{5 d}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {1}{5} \int \frac {\left (a+b \sin \left (c+d x+\frac {\pi }{2}\right )\right ) \left (b (2 a A+5 b B) \sin \left (c+d x+\frac {\pi }{2}\right )^2+\left (4 A a^2+10 b B a+5 A b^2\right ) \sin \left (c+d x+\frac {\pi }{2}\right )+a (7 A b+5 a B)\right )}{\sin \left (c+d x+\frac {\pi }{2}\right )^5}dx+\frac {a A \tan (c+d x) \sec ^4(c+d x) (a+b \cos (c+d x))^2}{5 d}\)

\(\Big \downarrow \) 3510

\(\displaystyle \frac {1}{5} \left (\frac {a^2 (5 a B+7 A b) \tan (c+d x) \sec ^3(c+d x)}{4 d}-\frac {1}{4} \int -\left (\left (4 b^2 (2 a A+5 b B) \cos ^2(c+d x)+5 \left (3 B a^3+9 A b a^2+12 b^2 B a+4 A b^3\right ) \cos (c+d x)+4 a \left (4 A a^2+15 b B a+12 A b^2\right )\right ) \sec ^4(c+d x)\right )dx\right )+\frac {a A \tan (c+d x) \sec ^4(c+d x) (a+b \cos (c+d x))^2}{5 d}\)

\(\Big \downarrow \) 25

\(\displaystyle \frac {1}{5} \left (\frac {1}{4} \int \left (4 b^2 (2 a A+5 b B) \cos ^2(c+d x)+5 \left (3 B a^3+9 A b a^2+12 b^2 B a+4 A b^3\right ) \cos (c+d x)+4 a \left (4 A a^2+15 b B a+12 A b^2\right )\right ) \sec ^4(c+d x)dx+\frac {a^2 (5 a B+7 A b) \tan (c+d x) \sec ^3(c+d x)}{4 d}\right )+\frac {a A \tan (c+d x) \sec ^4(c+d x) (a+b \cos (c+d x))^2}{5 d}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {1}{5} \left (\frac {1}{4} \int \frac {4 b^2 (2 a A+5 b B) \sin \left (c+d x+\frac {\pi }{2}\right )^2+5 \left (3 B a^3+9 A b a^2+12 b^2 B a+4 A b^3\right ) \sin \left (c+d x+\frac {\pi }{2}\right )+4 a \left (4 A a^2+15 b B a+12 A b^2\right )}{\sin \left (c+d x+\frac {\pi }{2}\right )^4}dx+\frac {a^2 (5 a B+7 A b) \tan (c+d x) \sec ^3(c+d x)}{4 d}\right )+\frac {a A \tan (c+d x) \sec ^4(c+d x) (a+b \cos (c+d x))^2}{5 d}\)

\(\Big \downarrow \) 3500

\(\displaystyle \frac {1}{5} \left (\frac {1}{4} \left (\frac {1}{3} \int \left (15 \left (3 B a^3+9 A b a^2+12 b^2 B a+4 A b^3\right )+4 \left (8 A a^3+30 b B a^2+30 A b^2 a+15 b^3 B\right ) \cos (c+d x)\right ) \sec ^3(c+d x)dx+\frac {4 a \left (4 a^2 A+15 a b B+12 A b^2\right ) \tan (c+d x) \sec ^2(c+d x)}{3 d}\right )+\frac {a^2 (5 a B+7 A b) \tan (c+d x) \sec ^3(c+d x)}{4 d}\right )+\frac {a A \tan (c+d x) \sec ^4(c+d x) (a+b \cos (c+d x))^2}{5 d}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {1}{5} \left (\frac {1}{4} \left (\frac {1}{3} \int \frac {15 \left (3 B a^3+9 A b a^2+12 b^2 B a+4 A b^3\right )+4 \left (8 A a^3+30 b B a^2+30 A b^2 a+15 b^3 B\right ) \sin \left (c+d x+\frac {\pi }{2}\right )}{\sin \left (c+d x+\frac {\pi }{2}\right )^3}dx+\frac {4 a \left (4 a^2 A+15 a b B+12 A b^2\right ) \tan (c+d x) \sec ^2(c+d x)}{3 d}\right )+\frac {a^2 (5 a B+7 A b) \tan (c+d x) \sec ^3(c+d x)}{4 d}\right )+\frac {a A \tan (c+d x) \sec ^4(c+d x) (a+b \cos (c+d x))^2}{5 d}\)

\(\Big \downarrow \) 3227

\(\displaystyle \frac {1}{5} \left (\frac {1}{4} \left (\frac {1}{3} \left (15 \left (3 a^3 B+9 a^2 A b+12 a b^2 B+4 A b^3\right ) \int \sec ^3(c+d x)dx+4 \left (8 a^3 A+30 a^2 b B+30 a A b^2+15 b^3 B\right ) \int \sec ^2(c+d x)dx\right )+\frac {4 a \left (4 a^2 A+15 a b B+12 A b^2\right ) \tan (c+d x) \sec ^2(c+d x)}{3 d}\right )+\frac {a^2 (5 a B+7 A b) \tan (c+d x) \sec ^3(c+d x)}{4 d}\right )+\frac {a A \tan (c+d x) \sec ^4(c+d x) (a+b \cos (c+d x))^2}{5 d}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {1}{5} \left (\frac {1}{4} \left (\frac {1}{3} \left (4 \left (8 a^3 A+30 a^2 b B+30 a A b^2+15 b^3 B\right ) \int \csc \left (c+d x+\frac {\pi }{2}\right )^2dx+15 \left (3 a^3 B+9 a^2 A b+12 a b^2 B+4 A b^3\right ) \int \csc \left (c+d x+\frac {\pi }{2}\right )^3dx\right )+\frac {4 a \left (4 a^2 A+15 a b B+12 A b^2\right ) \tan (c+d x) \sec ^2(c+d x)}{3 d}\right )+\frac {a^2 (5 a B+7 A b) \tan (c+d x) \sec ^3(c+d x)}{4 d}\right )+\frac {a A \tan (c+d x) \sec ^4(c+d x) (a+b \cos (c+d x))^2}{5 d}\)

\(\Big \downarrow \) 4254

\(\displaystyle \frac {1}{5} \left (\frac {1}{4} \left (\frac {1}{3} \left (15 \left (3 a^3 B+9 a^2 A b+12 a b^2 B+4 A b^3\right ) \int \csc \left (c+d x+\frac {\pi }{2}\right )^3dx-\frac {4 \left (8 a^3 A+30 a^2 b B+30 a A b^2+15 b^3 B\right ) \int 1d(-\tan (c+d x))}{d}\right )+\frac {4 a \left (4 a^2 A+15 a b B+12 A b^2\right ) \tan (c+d x) \sec ^2(c+d x)}{3 d}\right )+\frac {a^2 (5 a B+7 A b) \tan (c+d x) \sec ^3(c+d x)}{4 d}\right )+\frac {a A \tan (c+d x) \sec ^4(c+d x) (a+b \cos (c+d x))^2}{5 d}\)

\(\Big \downarrow \) 24

\(\displaystyle \frac {1}{5} \left (\frac {1}{4} \left (\frac {1}{3} \left (15 \left (3 a^3 B+9 a^2 A b+12 a b^2 B+4 A b^3\right ) \int \csc \left (c+d x+\frac {\pi }{2}\right )^3dx+\frac {4 \left (8 a^3 A+30 a^2 b B+30 a A b^2+15 b^3 B\right ) \tan (c+d x)}{d}\right )+\frac {4 a \left (4 a^2 A+15 a b B+12 A b^2\right ) \tan (c+d x) \sec ^2(c+d x)}{3 d}\right )+\frac {a^2 (5 a B+7 A b) \tan (c+d x) \sec ^3(c+d x)}{4 d}\right )+\frac {a A \tan (c+d x) \sec ^4(c+d x) (a+b \cos (c+d x))^2}{5 d}\)

\(\Big \downarrow \) 4255

\(\displaystyle \frac {1}{5} \left (\frac {1}{4} \left (\frac {1}{3} \left (15 \left (3 a^3 B+9 a^2 A b+12 a b^2 B+4 A b^3\right ) \left (\frac {1}{2} \int \sec (c+d x)dx+\frac {\tan (c+d x) \sec (c+d x)}{2 d}\right )+\frac {4 \left (8 a^3 A+30 a^2 b B+30 a A b^2+15 b^3 B\right ) \tan (c+d x)}{d}\right )+\frac {4 a \left (4 a^2 A+15 a b B+12 A b^2\right ) \tan (c+d x) \sec ^2(c+d x)}{3 d}\right )+\frac {a^2 (5 a B+7 A b) \tan (c+d x) \sec ^3(c+d x)}{4 d}\right )+\frac {a A \tan (c+d x) \sec ^4(c+d x) (a+b \cos (c+d x))^2}{5 d}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {1}{5} \left (\frac {1}{4} \left (\frac {1}{3} \left (15 \left (3 a^3 B+9 a^2 A b+12 a b^2 B+4 A b^3\right ) \left (\frac {1}{2} \int \csc \left (c+d x+\frac {\pi }{2}\right )dx+\frac {\tan (c+d x) \sec (c+d x)}{2 d}\right )+\frac {4 \left (8 a^3 A+30 a^2 b B+30 a A b^2+15 b^3 B\right ) \tan (c+d x)}{d}\right )+\frac {4 a \left (4 a^2 A+15 a b B+12 A b^2\right ) \tan (c+d x) \sec ^2(c+d x)}{3 d}\right )+\frac {a^2 (5 a B+7 A b) \tan (c+d x) \sec ^3(c+d x)}{4 d}\right )+\frac {a A \tan (c+d x) \sec ^4(c+d x) (a+b \cos (c+d x))^2}{5 d}\)

\(\Big \downarrow \) 4257

\(\displaystyle \frac {1}{5} \left (\frac {a^2 (5 a B+7 A b) \tan (c+d x) \sec ^3(c+d x)}{4 d}+\frac {1}{4} \left (\frac {4 a \left (4 a^2 A+15 a b B+12 A b^2\right ) \tan (c+d x) \sec ^2(c+d x)}{3 d}+\frac {1}{3} \left (15 \left (3 a^3 B+9 a^2 A b+12 a b^2 B+4 A b^3\right ) \left (\frac {\text {arctanh}(\sin (c+d x))}{2 d}+\frac {\tan (c+d x) \sec (c+d x)}{2 d}\right )+\frac {4 \left (8 a^3 A+30 a^2 b B+30 a A b^2+15 b^3 B\right ) \tan (c+d x)}{d}\right )\right )\right )+\frac {a A \tan (c+d x) \sec ^4(c+d x) (a+b \cos (c+d x))^2}{5 d}\)

Input:

Int[(a + b*Cos[c + d*x])^3*(A + B*Cos[c + d*x])*Sec[c + d*x]^6,x]
 

Output:

(a*A*(a + b*Cos[c + d*x])^2*Sec[c + d*x]^4*Tan[c + d*x])/(5*d) + ((a^2*(7* 
A*b + 5*a*B)*Sec[c + d*x]^3*Tan[c + d*x])/(4*d) + ((4*a*(4*a^2*A + 12*A*b^ 
2 + 15*a*b*B)*Sec[c + d*x]^2*Tan[c + d*x])/(3*d) + ((4*(8*a^3*A + 30*a*A*b 
^2 + 30*a^2*b*B + 15*b^3*B)*Tan[c + d*x])/d + 15*(9*a^2*A*b + 4*A*b^3 + 3* 
a^3*B + 12*a*b^2*B)*(ArcTanh[Sin[c + d*x]]/(2*d) + (Sec[c + d*x]*Tan[c + d 
*x])/(2*d)))/3)/4)/5
 

Defintions of rubi rules used

rule 24
Int[a_, x_Symbol] :> Simp[a*x, x] /; FreeQ[a, x]
 

rule 25
Int[-(Fx_), x_Symbol] :> Simp[Identity[-1]   Int[Fx, x], x]
 

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 3227
Int[((b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((c_) + (d_.)*sin[(e_.) + (f_.)*(x 
_)]), x_Symbol] :> Simp[c   Int[(b*Sin[e + f*x])^m, x], x] + Simp[d/b   Int 
[(b*Sin[e + f*x])^(m + 1), x], x] /; FreeQ[{b, c, d, e, f, m}, x]
 

rule 3468
Int[((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((A_.) + (B_.)*sin[(e_.) + 
 (f_.)*(x_)])*((c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)])^(n_), x_Symbol] :> Si 
mp[(-(b*c - a*d))*(B*c - A*d)*Cos[e + f*x]*(a + b*Sin[e + f*x])^(m - 1)*((c 
 + d*Sin[e + f*x])^(n + 1)/(d*f*(n + 1)*(c^2 - d^2))), x] + Simp[1/(d*(n + 
1)*(c^2 - d^2))   Int[(a + b*Sin[e + f*x])^(m - 2)*(c + d*Sin[e + f*x])^(n 
+ 1)*Simp[b*(b*c - a*d)*(B*c - A*d)*(m - 1) + a*d*(a*A*c + b*B*c - (A*b + a 
*B)*d)*(n + 1) + (b*(b*d*(B*c - A*d) + a*(A*c*d + B*(c^2 - 2*d^2)))*(n + 1) 
 - a*(b*c - a*d)*(B*c - A*d)*(n + 2))*Sin[e + f*x] + b*(d*(A*b*c + a*B*c - 
a*A*d)*(m + n + 1) - b*B*(c^2*m + d^2*(n + 1)))*Sin[e + f*x]^2, x], x], x] 
/; FreeQ[{a, b, c, d, e, f, A, B}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 - b^2 
, 0] && NeQ[c^2 - d^2, 0] && GtQ[m, 1] && LtQ[n, -1]
 

rule 3500
Int[((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((A_.) + (B_.)*sin[(e_.) + 
 (f_.)*(x_)] + (C_.)*sin[(e_.) + (f_.)*(x_)]^2), x_Symbol] :> Simp[(-(A*b^2 
 - a*b*B + a^2*C))*Cos[e + f*x]*((a + b*Sin[e + f*x])^(m + 1)/(b*f*(m + 1)* 
(a^2 - b^2))), x] + Simp[1/(b*(m + 1)*(a^2 - b^2))   Int[(a + b*Sin[e + f*x 
])^(m + 1)*Simp[b*(a*A - b*B + a*C)*(m + 1) - (A*b^2 - a*b*B + a^2*C + b*(A 
*b - a*B + b*C)*(m + 1))*Sin[e + f*x], x], x], x] /; FreeQ[{a, b, e, f, A, 
B, C}, x] && LtQ[m, -1] && NeQ[a^2 - b^2, 0]
 

rule 3510
Int[((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((c_.) + (d_.)*sin[(e_.) + 
 (f_.)*(x_)])*((A_.) + (B_.)*sin[(e_.) + (f_.)*(x_)] + (C_.)*sin[(e_.) + (f 
_.)*(x_)]^2), x_Symbol] :> Simp[(-(b*c - a*d))*(A*b^2 - a*b*B + a^2*C)*Cos[ 
e + f*x]*((a + b*Sin[e + f*x])^(m + 1)/(b^2*f*(m + 1)*(a^2 - b^2))), x] - S 
imp[1/(b^2*(m + 1)*(a^2 - b^2))   Int[(a + b*Sin[e + f*x])^(m + 1)*Simp[b*( 
m + 1)*((b*B - a*C)*(b*c - a*d) - A*b*(a*c - b*d)) + (b*B*(a^2*d + b^2*d*(m 
 + 1) - a*b*c*(m + 2)) + (b*c - a*d)*(A*b^2*(m + 2) + C*(a^2 + b^2*(m + 1)) 
))*Sin[e + f*x] - b*C*d*(m + 1)*(a^2 - b^2)*Sin[e + f*x]^2, x], x], x] /; F 
reeQ[{a, b, c, d, e, f, A, B, C}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 - b^2, 
 0] && LtQ[m, -1]
 

rule 4254
Int[csc[(c_.) + (d_.)*(x_)]^(n_), x_Symbol] :> Simp[-d^(-1)   Subst[Int[Exp 
andIntegrand[(1 + x^2)^(n/2 - 1), x], x], x, Cot[c + d*x]], x] /; FreeQ[{c, 
 d}, x] && IGtQ[n/2, 0]
 

rule 4255
Int[(csc[(c_.) + (d_.)*(x_)]*(b_.))^(n_), x_Symbol] :> Simp[(-b)*Cos[c + d* 
x]*((b*Csc[c + d*x])^(n - 1)/(d*(n - 1))), x] + Simp[b^2*((n - 2)/(n - 1)) 
  Int[(b*Csc[c + d*x])^(n - 2), x], x] /; FreeQ[{b, c, d}, x] && GtQ[n, 1] 
&& IntegerQ[2*n]
 

rule 4257
Int[csc[(c_.) + (d_.)*(x_)], x_Symbol] :> Simp[-ArcTanh[Cos[c + d*x]]/d, x] 
 /; FreeQ[{c, d}, x]
 
Maple [A] (verified)

Time = 12.79 (sec) , antiderivative size = 200, normalized size of antiderivative = 0.85

method result size
parts \(-\frac {a^{3} A \left (-\frac {8}{15}-\frac {\sec \left (d x +c \right )^{4}}{5}-\frac {4 \sec \left (d x +c \right )^{2}}{15}\right ) \tan \left (d x +c \right )}{d}+\frac {\left (A \,b^{3}+3 B a \,b^{2}\right ) \left (\frac {\sec \left (d x +c \right ) \tan \left (d x +c \right )}{2}+\frac {\ln \left (\sec \left (d x +c \right )+\tan \left (d x +c \right )\right )}{2}\right )}{d}-\frac {\left (3 A a \,b^{2}+3 B \,a^{2} b \right ) \left (-\frac {2}{3}-\frac {\sec \left (d x +c \right )^{2}}{3}\right ) \tan \left (d x +c \right )}{d}+\frac {\left (3 A \,a^{2} b +a^{3} B \right ) \left (-\left (-\frac {\sec \left (d x +c \right )^{3}}{4}-\frac {3 \sec \left (d x +c \right )}{8}\right ) \tan \left (d x +c \right )+\frac {3 \ln \left (\sec \left (d x +c \right )+\tan \left (d x +c \right )\right )}{8}\right )}{d}+\frac {b^{3} B \tan \left (d x +c \right )}{d}\) \(200\)
derivativedivides \(\frac {-a^{3} A \left (-\frac {8}{15}-\frac {\sec \left (d x +c \right )^{4}}{5}-\frac {4 \sec \left (d x +c \right )^{2}}{15}\right ) \tan \left (d x +c \right )+a^{3} B \left (-\left (-\frac {\sec \left (d x +c \right )^{3}}{4}-\frac {3 \sec \left (d x +c \right )}{8}\right ) \tan \left (d x +c \right )+\frac {3 \ln \left (\sec \left (d x +c \right )+\tan \left (d x +c \right )\right )}{8}\right )+3 A \,a^{2} b \left (-\left (-\frac {\sec \left (d x +c \right )^{3}}{4}-\frac {3 \sec \left (d x +c \right )}{8}\right ) \tan \left (d x +c \right )+\frac {3 \ln \left (\sec \left (d x +c \right )+\tan \left (d x +c \right )\right )}{8}\right )-3 B \,a^{2} b \left (-\frac {2}{3}-\frac {\sec \left (d x +c \right )^{2}}{3}\right ) \tan \left (d x +c \right )-3 A a \,b^{2} \left (-\frac {2}{3}-\frac {\sec \left (d x +c \right )^{2}}{3}\right ) \tan \left (d x +c \right )+3 B a \,b^{2} \left (\frac {\sec \left (d x +c \right ) \tan \left (d x +c \right )}{2}+\frac {\ln \left (\sec \left (d x +c \right )+\tan \left (d x +c \right )\right )}{2}\right )+A \,b^{3} \left (\frac {\sec \left (d x +c \right ) \tan \left (d x +c \right )}{2}+\frac {\ln \left (\sec \left (d x +c \right )+\tan \left (d x +c \right )\right )}{2}\right )+B \tan \left (d x +c \right ) b^{3}}{d}\) \(275\)
default \(\frac {-a^{3} A \left (-\frac {8}{15}-\frac {\sec \left (d x +c \right )^{4}}{5}-\frac {4 \sec \left (d x +c \right )^{2}}{15}\right ) \tan \left (d x +c \right )+a^{3} B \left (-\left (-\frac {\sec \left (d x +c \right )^{3}}{4}-\frac {3 \sec \left (d x +c \right )}{8}\right ) \tan \left (d x +c \right )+\frac {3 \ln \left (\sec \left (d x +c \right )+\tan \left (d x +c \right )\right )}{8}\right )+3 A \,a^{2} b \left (-\left (-\frac {\sec \left (d x +c \right )^{3}}{4}-\frac {3 \sec \left (d x +c \right )}{8}\right ) \tan \left (d x +c \right )+\frac {3 \ln \left (\sec \left (d x +c \right )+\tan \left (d x +c \right )\right )}{8}\right )-3 B \,a^{2} b \left (-\frac {2}{3}-\frac {\sec \left (d x +c \right )^{2}}{3}\right ) \tan \left (d x +c \right )-3 A a \,b^{2} \left (-\frac {2}{3}-\frac {\sec \left (d x +c \right )^{2}}{3}\right ) \tan \left (d x +c \right )+3 B a \,b^{2} \left (\frac {\sec \left (d x +c \right ) \tan \left (d x +c \right )}{2}+\frac {\ln \left (\sec \left (d x +c \right )+\tan \left (d x +c \right )\right )}{2}\right )+A \,b^{3} \left (\frac {\sec \left (d x +c \right ) \tan \left (d x +c \right )}{2}+\frac {\ln \left (\sec \left (d x +c \right )+\tan \left (d x +c \right )\right )}{2}\right )+B \tan \left (d x +c \right ) b^{3}}{d}\) \(275\)
parallelrisch \(\frac {-135 \left (\cos \left (5 d x +5 c \right )+5 \cos \left (3 d x +3 c \right )+10 \cos \left (d x +c \right )\right ) \left (A \,a^{2} b +\frac {4}{9} A \,b^{3}+\frac {1}{3} a^{3} B +\frac {4}{3} B a \,b^{2}\right ) \ln \left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )-1\right )+135 \left (\cos \left (5 d x +5 c \right )+5 \cos \left (3 d x +3 c \right )+10 \cos \left (d x +c \right )\right ) \left (A \,a^{2} b +\frac {4}{9} A \,b^{3}+\frac {1}{3} a^{3} B +\frac {4}{3} B a \,b^{2}\right ) \ln \left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )+1\right )+\left (1260 A \,a^{2} b +240 A \,b^{3}+420 a^{3} B +720 B a \,b^{2}\right ) \sin \left (2 d x +2 c \right )+\left (320 a^{3} A +1200 A a \,b^{2}+1200 B \,a^{2} b +360 b^{3} B \right ) \sin \left (3 d x +3 c \right )+\left (270 A \,a^{2} b +120 A \,b^{3}+90 a^{3} B +360 B a \,b^{2}\right ) \sin \left (4 d x +4 c \right )+\left (64 a^{3} A +240 A a \,b^{2}+240 B \,a^{2} b +120 b^{3} B \right ) \sin \left (5 d x +5 c \right )+640 \sin \left (d x +c \right ) \left (a^{3} A +\frac {3}{2} A a \,b^{2}+\frac {3}{2} B \,a^{2} b +\frac {3}{8} b^{3} B \right )}{120 d \left (\cos \left (5 d x +5 c \right )+5 \cos \left (3 d x +3 c \right )+10 \cos \left (d x +c \right )\right )}\) \(358\)
risch \(-\frac {i \left (-64 a^{3} A -240 A a \,b^{2}-240 B \,a^{2} b -120 b^{3} B +60 A \,b^{3} {\mathrm e}^{9 i \left (d x +c \right )}+210 B \,a^{3} {\mathrm e}^{7 i \left (d x +c \right )}-480 b^{3} B \,{\mathrm e}^{2 i \left (d x +c \right )}-60 A \,b^{3} {\mathrm e}^{i \left (d x +c \right )}-45 B \,a^{3} {\mathrm e}^{i \left (d x +c \right )}+120 A \,b^{3} {\mathrm e}^{7 i \left (d x +c \right )}-720 B \,b^{3} {\mathrm e}^{4 i \left (d x +c \right )}-480 B \,b^{3} {\mathrm e}^{6 i \left (d x +c \right )}-120 B \,b^{3} {\mathrm e}^{8 i \left (d x +c \right )}-120 A \,b^{3} {\mathrm e}^{3 i \left (d x +c \right )}+45 B \,a^{3} {\mathrm e}^{9 i \left (d x +c \right )}-640 A \,a^{3} {\mathrm e}^{4 i \left (d x +c \right )}-210 B \,a^{3} {\mathrm e}^{3 i \left (d x +c \right )}-320 A \,a^{3} {\mathrm e}^{2 i \left (d x +c \right )}+180 B a \,b^{2} {\mathrm e}^{9 i \left (d x +c \right )}+630 A \,a^{2} b \,{\mathrm e}^{7 i \left (d x +c \right )}+360 B a \,b^{2} {\mathrm e}^{7 i \left (d x +c \right )}-720 A a \,b^{2} {\mathrm e}^{6 i \left (d x +c \right )}-720 B \,a^{2} b \,{\mathrm e}^{6 i \left (d x +c \right )}-1680 A a \,b^{2} {\mathrm e}^{4 i \left (d x +c \right )}+135 A \,a^{2} b \,{\mathrm e}^{9 i \left (d x +c \right )}-1680 B \,a^{2} b \,{\mathrm e}^{4 i \left (d x +c \right )}-630 A \,a^{2} b \,{\mathrm e}^{3 i \left (d x +c \right )}-360 B a \,b^{2} {\mathrm e}^{3 i \left (d x +c \right )}-1200 A a \,b^{2} {\mathrm e}^{2 i \left (d x +c \right )}-1200 B \,a^{2} b \,{\mathrm e}^{2 i \left (d x +c \right )}-135 A \,a^{2} b \,{\mathrm e}^{i \left (d x +c \right )}-180 B a \,b^{2} {\mathrm e}^{i \left (d x +c \right )}\right )}{60 d \left ({\mathrm e}^{2 i \left (d x +c \right )}+1\right )^{5}}-\frac {9 a^{2} \ln \left ({\mathrm e}^{i \left (d x +c \right )}-i\right ) A b}{8 d}-\frac {\ln \left ({\mathrm e}^{i \left (d x +c \right )}-i\right ) A \,b^{3}}{2 d}-\frac {3 a^{3} \ln \left ({\mathrm e}^{i \left (d x +c \right )}-i\right ) B}{8 d}-\frac {3 \ln \left ({\mathrm e}^{i \left (d x +c \right )}-i\right ) B a \,b^{2}}{2 d}+\frac {9 a^{2} \ln \left ({\mathrm e}^{i \left (d x +c \right )}+i\right ) A b}{8 d}+\frac {\ln \left ({\mathrm e}^{i \left (d x +c \right )}+i\right ) A \,b^{3}}{2 d}+\frac {3 a^{3} \ln \left ({\mathrm e}^{i \left (d x +c \right )}+i\right ) B}{8 d}+\frac {3 \ln \left ({\mathrm e}^{i \left (d x +c \right )}+i\right ) B a \,b^{2}}{2 d}\) \(662\)

Input:

int((a+cos(d*x+c)*b)^3*(A+B*cos(d*x+c))*sec(d*x+c)^6,x,method=_RETURNVERBO 
SE)
 

Output:

-a^3*A/d*(-8/15-1/5*sec(d*x+c)^4-4/15*sec(d*x+c)^2)*tan(d*x+c)+(A*b^3+3*B* 
a*b^2)/d*(1/2*sec(d*x+c)*tan(d*x+c)+1/2*ln(sec(d*x+c)+tan(d*x+c)))-(3*A*a* 
b^2+3*B*a^2*b)/d*(-2/3-1/3*sec(d*x+c)^2)*tan(d*x+c)+(3*A*a^2*b+B*a^3)/d*(- 
(-1/4*sec(d*x+c)^3-3/8*sec(d*x+c))*tan(d*x+c)+3/8*ln(sec(d*x+c)+tan(d*x+c) 
))+b^3*B/d*tan(d*x+c)
 

Fricas [A] (verification not implemented)

Time = 0.10 (sec) , antiderivative size = 249, normalized size of antiderivative = 1.06 \[ \int (a+b \cos (c+d x))^3 (A+B \cos (c+d x)) \sec ^6(c+d x) \, dx=\frac {15 \, {\left (3 \, B a^{3} + 9 \, A a^{2} b + 12 \, B a b^{2} + 4 \, A b^{3}\right )} \cos \left (d x + c\right )^{5} \log \left (\sin \left (d x + c\right ) + 1\right ) - 15 \, {\left (3 \, B a^{3} + 9 \, A a^{2} b + 12 \, B a b^{2} + 4 \, A b^{3}\right )} \cos \left (d x + c\right )^{5} \log \left (-\sin \left (d x + c\right ) + 1\right ) + 2 \, {\left (8 \, {\left (8 \, A a^{3} + 30 \, B a^{2} b + 30 \, A a b^{2} + 15 \, B b^{3}\right )} \cos \left (d x + c\right )^{4} + 24 \, A a^{3} + 15 \, {\left (3 \, B a^{3} + 9 \, A a^{2} b + 12 \, B a b^{2} + 4 \, A b^{3}\right )} \cos \left (d x + c\right )^{3} + 8 \, {\left (4 \, A a^{3} + 15 \, B a^{2} b + 15 \, A a b^{2}\right )} \cos \left (d x + c\right )^{2} + 30 \, {\left (B a^{3} + 3 \, A a^{2} b\right )} \cos \left (d x + c\right )\right )} \sin \left (d x + c\right )}{240 \, d \cos \left (d x + c\right )^{5}} \] Input:

integrate((a+b*cos(d*x+c))^3*(A+B*cos(d*x+c))*sec(d*x+c)^6,x, algorithm="f 
ricas")
 

Output:

1/240*(15*(3*B*a^3 + 9*A*a^2*b + 12*B*a*b^2 + 4*A*b^3)*cos(d*x + c)^5*log( 
sin(d*x + c) + 1) - 15*(3*B*a^3 + 9*A*a^2*b + 12*B*a*b^2 + 4*A*b^3)*cos(d* 
x + c)^5*log(-sin(d*x + c) + 1) + 2*(8*(8*A*a^3 + 30*B*a^2*b + 30*A*a*b^2 
+ 15*B*b^3)*cos(d*x + c)^4 + 24*A*a^3 + 15*(3*B*a^3 + 9*A*a^2*b + 12*B*a*b 
^2 + 4*A*b^3)*cos(d*x + c)^3 + 8*(4*A*a^3 + 15*B*a^2*b + 15*A*a*b^2)*cos(d 
*x + c)^2 + 30*(B*a^3 + 3*A*a^2*b)*cos(d*x + c))*sin(d*x + c))/(d*cos(d*x 
+ c)^5)
 

Sympy [F(-1)]

Timed out. \[ \int (a+b \cos (c+d x))^3 (A+B \cos (c+d x)) \sec ^6(c+d x) \, dx=\text {Timed out} \] Input:

integrate((a+b*cos(d*x+c))**3*(A+B*cos(d*x+c))*sec(d*x+c)**6,x)
 

Output:

Timed out
 

Maxima [A] (verification not implemented)

Time = 0.05 (sec) , antiderivative size = 341, normalized size of antiderivative = 1.44 \[ \int (a+b \cos (c+d x))^3 (A+B \cos (c+d x)) \sec ^6(c+d x) \, dx=\frac {16 \, {\left (3 \, \tan \left (d x + c\right )^{5} + 10 \, \tan \left (d x + c\right )^{3} + 15 \, \tan \left (d x + c\right )\right )} A a^{3} + 240 \, {\left (\tan \left (d x + c\right )^{3} + 3 \, \tan \left (d x + c\right )\right )} B a^{2} b + 240 \, {\left (\tan \left (d x + c\right )^{3} + 3 \, \tan \left (d x + c\right )\right )} A a b^{2} - 15 \, B a^{3} {\left (\frac {2 \, {\left (3 \, \sin \left (d x + c\right )^{3} - 5 \, \sin \left (d x + c\right )\right )}}{\sin \left (d x + c\right )^{4} - 2 \, \sin \left (d x + c\right )^{2} + 1} - 3 \, \log \left (\sin \left (d x + c\right ) + 1\right ) + 3 \, \log \left (\sin \left (d x + c\right ) - 1\right )\right )} - 45 \, A a^{2} b {\left (\frac {2 \, {\left (3 \, \sin \left (d x + c\right )^{3} - 5 \, \sin \left (d x + c\right )\right )}}{\sin \left (d x + c\right )^{4} - 2 \, \sin \left (d x + c\right )^{2} + 1} - 3 \, \log \left (\sin \left (d x + c\right ) + 1\right ) + 3 \, \log \left (\sin \left (d x + c\right ) - 1\right )\right )} - 180 \, B a b^{2} {\left (\frac {2 \, \sin \left (d x + c\right )}{\sin \left (d x + c\right )^{2} - 1} - \log \left (\sin \left (d x + c\right ) + 1\right ) + \log \left (\sin \left (d x + c\right ) - 1\right )\right )} - 60 \, A b^{3} {\left (\frac {2 \, \sin \left (d x + c\right )}{\sin \left (d x + c\right )^{2} - 1} - \log \left (\sin \left (d x + c\right ) + 1\right ) + \log \left (\sin \left (d x + c\right ) - 1\right )\right )} + 240 \, B b^{3} \tan \left (d x + c\right )}{240 \, d} \] Input:

integrate((a+b*cos(d*x+c))^3*(A+B*cos(d*x+c))*sec(d*x+c)^6,x, algorithm="m 
axima")
 

Output:

1/240*(16*(3*tan(d*x + c)^5 + 10*tan(d*x + c)^3 + 15*tan(d*x + c))*A*a^3 + 
 240*(tan(d*x + c)^3 + 3*tan(d*x + c))*B*a^2*b + 240*(tan(d*x + c)^3 + 3*t 
an(d*x + c))*A*a*b^2 - 15*B*a^3*(2*(3*sin(d*x + c)^3 - 5*sin(d*x + c))/(si 
n(d*x + c)^4 - 2*sin(d*x + c)^2 + 1) - 3*log(sin(d*x + c) + 1) + 3*log(sin 
(d*x + c) - 1)) - 45*A*a^2*b*(2*(3*sin(d*x + c)^3 - 5*sin(d*x + c))/(sin(d 
*x + c)^4 - 2*sin(d*x + c)^2 + 1) - 3*log(sin(d*x + c) + 1) + 3*log(sin(d* 
x + c) - 1)) - 180*B*a*b^2*(2*sin(d*x + c)/(sin(d*x + c)^2 - 1) - log(sin( 
d*x + c) + 1) + log(sin(d*x + c) - 1)) - 60*A*b^3*(2*sin(d*x + c)/(sin(d*x 
 + c)^2 - 1) - log(sin(d*x + c) + 1) + log(sin(d*x + c) - 1)) + 240*B*b^3* 
tan(d*x + c))/d
 

Giac [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 722 vs. \(2 (224) = 448\).

Time = 0.19 (sec) , antiderivative size = 722, normalized size of antiderivative = 3.06 \[ \int (a+b \cos (c+d x))^3 (A+B \cos (c+d x)) \sec ^6(c+d x) \, dx=\text {Too large to display} \] Input:

integrate((a+b*cos(d*x+c))^3*(A+B*cos(d*x+c))*sec(d*x+c)^6,x, algorithm="g 
iac")
 

Output:

1/120*(15*(3*B*a^3 + 9*A*a^2*b + 12*B*a*b^2 + 4*A*b^3)*log(abs(tan(1/2*d*x 
 + 1/2*c) + 1)) - 15*(3*B*a^3 + 9*A*a^2*b + 12*B*a*b^2 + 4*A*b^3)*log(abs( 
tan(1/2*d*x + 1/2*c) - 1)) - 2*(120*A*a^3*tan(1/2*d*x + 1/2*c)^9 - 75*B*a^ 
3*tan(1/2*d*x + 1/2*c)^9 - 225*A*a^2*b*tan(1/2*d*x + 1/2*c)^9 + 360*B*a^2* 
b*tan(1/2*d*x + 1/2*c)^9 + 360*A*a*b^2*tan(1/2*d*x + 1/2*c)^9 - 180*B*a*b^ 
2*tan(1/2*d*x + 1/2*c)^9 - 60*A*b^3*tan(1/2*d*x + 1/2*c)^9 + 120*B*b^3*tan 
(1/2*d*x + 1/2*c)^9 - 160*A*a^3*tan(1/2*d*x + 1/2*c)^7 + 30*B*a^3*tan(1/2* 
d*x + 1/2*c)^7 + 90*A*a^2*b*tan(1/2*d*x + 1/2*c)^7 - 960*B*a^2*b*tan(1/2*d 
*x + 1/2*c)^7 - 960*A*a*b^2*tan(1/2*d*x + 1/2*c)^7 + 360*B*a*b^2*tan(1/2*d 
*x + 1/2*c)^7 + 120*A*b^3*tan(1/2*d*x + 1/2*c)^7 - 480*B*b^3*tan(1/2*d*x + 
 1/2*c)^7 + 464*A*a^3*tan(1/2*d*x + 1/2*c)^5 + 1200*B*a^2*b*tan(1/2*d*x + 
1/2*c)^5 + 1200*A*a*b^2*tan(1/2*d*x + 1/2*c)^5 + 720*B*b^3*tan(1/2*d*x + 1 
/2*c)^5 - 160*A*a^3*tan(1/2*d*x + 1/2*c)^3 - 30*B*a^3*tan(1/2*d*x + 1/2*c) 
^3 - 90*A*a^2*b*tan(1/2*d*x + 1/2*c)^3 - 960*B*a^2*b*tan(1/2*d*x + 1/2*c)^ 
3 - 960*A*a*b^2*tan(1/2*d*x + 1/2*c)^3 - 360*B*a*b^2*tan(1/2*d*x + 1/2*c)^ 
3 - 120*A*b^3*tan(1/2*d*x + 1/2*c)^3 - 480*B*b^3*tan(1/2*d*x + 1/2*c)^3 + 
120*A*a^3*tan(1/2*d*x + 1/2*c) + 75*B*a^3*tan(1/2*d*x + 1/2*c) + 225*A*a^2 
*b*tan(1/2*d*x + 1/2*c) + 360*B*a^2*b*tan(1/2*d*x + 1/2*c) + 360*A*a*b^2*t 
an(1/2*d*x + 1/2*c) + 180*B*a*b^2*tan(1/2*d*x + 1/2*c) + 60*A*b^3*tan(1/2* 
d*x + 1/2*c) + 120*B*b^3*tan(1/2*d*x + 1/2*c))/(tan(1/2*d*x + 1/2*c)^2 ...
 

Mupad [B] (verification not implemented)

Time = 45.59 (sec) , antiderivative size = 470, normalized size of antiderivative = 1.99 \[ \int (a+b \cos (c+d x))^3 (A+B \cos (c+d x)) \sec ^6(c+d x) \, dx=\frac {\mathrm {atanh}\left (\frac {4\,\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )\,\left (\frac {3\,B\,a^3}{8}+\frac {9\,A\,a^2\,b}{8}+\frac {3\,B\,a\,b^2}{2}+\frac {A\,b^3}{2}\right )}{\frac {3\,B\,a^3}{2}+\frac {9\,A\,a^2\,b}{2}+6\,B\,a\,b^2+2\,A\,b^3}\right )\,\left (\frac {3\,B\,a^3}{4}+\frac {9\,A\,a^2\,b}{4}+3\,B\,a\,b^2+A\,b^3\right )}{d}-\frac {\left (2\,A\,a^3-A\,b^3-\frac {5\,B\,a^3}{4}+2\,B\,b^3+6\,A\,a\,b^2-\frac {15\,A\,a^2\,b}{4}-3\,B\,a\,b^2+6\,B\,a^2\,b\right )\,{\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}^9+\left (2\,A\,b^3-\frac {8\,A\,a^3}{3}+\frac {B\,a^3}{2}-8\,B\,b^3-16\,A\,a\,b^2+\frac {3\,A\,a^2\,b}{2}+6\,B\,a\,b^2-16\,B\,a^2\,b\right )\,{\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}^7+\left (\frac {116\,A\,a^3}{15}+20\,B\,a^2\,b+20\,A\,a\,b^2+12\,B\,b^3\right )\,{\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}^5+\left (-\frac {8\,A\,a^3}{3}-2\,A\,b^3-\frac {B\,a^3}{2}-8\,B\,b^3-16\,A\,a\,b^2-\frac {3\,A\,a^2\,b}{2}-6\,B\,a\,b^2-16\,B\,a^2\,b\right )\,{\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}^3+\left (2\,A\,a^3+A\,b^3+\frac {5\,B\,a^3}{4}+2\,B\,b^3+6\,A\,a\,b^2+\frac {15\,A\,a^2\,b}{4}+3\,B\,a\,b^2+6\,B\,a^2\,b\right )\,\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}{d\,\left ({\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}^{10}-5\,{\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}^8+10\,{\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}^6-10\,{\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}^4+5\,{\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}^2-1\right )} \] Input:

int(((A + B*cos(c + d*x))*(a + b*cos(c + d*x))^3)/cos(c + d*x)^6,x)
 

Output:

(atanh((4*tan(c/2 + (d*x)/2)*((A*b^3)/2 + (3*B*a^3)/8 + (9*A*a^2*b)/8 + (3 
*B*a*b^2)/2))/(2*A*b^3 + (3*B*a^3)/2 + (9*A*a^2*b)/2 + 6*B*a*b^2))*(A*b^3 
+ (3*B*a^3)/4 + (9*A*a^2*b)/4 + 3*B*a*b^2))/d - (tan(c/2 + (d*x)/2)*(2*A*a 
^3 + A*b^3 + (5*B*a^3)/4 + 2*B*b^3 + 6*A*a*b^2 + (15*A*a^2*b)/4 + 3*B*a*b^ 
2 + 6*B*a^2*b) + tan(c/2 + (d*x)/2)^5*((116*A*a^3)/15 + 12*B*b^3 + 20*A*a* 
b^2 + 20*B*a^2*b) + tan(c/2 + (d*x)/2)^9*(2*A*a^3 - A*b^3 - (5*B*a^3)/4 + 
2*B*b^3 + 6*A*a*b^2 - (15*A*a^2*b)/4 - 3*B*a*b^2 + 6*B*a^2*b) - tan(c/2 + 
(d*x)/2)^3*((8*A*a^3)/3 + 2*A*b^3 + (B*a^3)/2 + 8*B*b^3 + 16*A*a*b^2 + (3* 
A*a^2*b)/2 + 6*B*a*b^2 + 16*B*a^2*b) - tan(c/2 + (d*x)/2)^7*((8*A*a^3)/3 - 
 2*A*b^3 - (B*a^3)/2 + 8*B*b^3 + 16*A*a*b^2 - (3*A*a^2*b)/2 - 6*B*a*b^2 + 
16*B*a^2*b))/(d*(5*tan(c/2 + (d*x)/2)^2 - 10*tan(c/2 + (d*x)/2)^4 + 10*tan 
(c/2 + (d*x)/2)^6 - 5*tan(c/2 + (d*x)/2)^8 + tan(c/2 + (d*x)/2)^10 - 1))
 

Reduce [B] (verification not implemented)

Time = 0.19 (sec) , antiderivative size = 584, normalized size of antiderivative = 2.47 \[ \int (a+b \cos (c+d x))^3 (A+B \cos (c+d x)) \sec ^6(c+d x) \, dx =\text {Too large to display} \] Input:

int((a+b*cos(d*x+c))^3*(A+B*cos(d*x+c))*sec(d*x+c)^6,x)
 

Output:

( - 45*cos(c + d*x)*log(tan((c + d*x)/2) - 1)*sin(c + d*x)**4*a**3*b - 60* 
cos(c + d*x)*log(tan((c + d*x)/2) - 1)*sin(c + d*x)**4*a*b**3 + 90*cos(c + 
 d*x)*log(tan((c + d*x)/2) - 1)*sin(c + d*x)**2*a**3*b + 120*cos(c + d*x)* 
log(tan((c + d*x)/2) - 1)*sin(c + d*x)**2*a*b**3 - 45*cos(c + d*x)*log(tan 
((c + d*x)/2) - 1)*a**3*b - 60*cos(c + d*x)*log(tan((c + d*x)/2) - 1)*a*b* 
*3 + 45*cos(c + d*x)*log(tan((c + d*x)/2) + 1)*sin(c + d*x)**4*a**3*b + 60 
*cos(c + d*x)*log(tan((c + d*x)/2) + 1)*sin(c + d*x)**4*a*b**3 - 90*cos(c 
+ d*x)*log(tan((c + d*x)/2) + 1)*sin(c + d*x)**2*a**3*b - 120*cos(c + d*x) 
*log(tan((c + d*x)/2) + 1)*sin(c + d*x)**2*a*b**3 + 45*cos(c + d*x)*log(ta 
n((c + d*x)/2) + 1)*a**3*b + 60*cos(c + d*x)*log(tan((c + d*x)/2) + 1)*a*b 
**3 - 45*cos(c + d*x)*sin(c + d*x)**3*a**3*b - 60*cos(c + d*x)*sin(c + d*x 
)**3*a*b**3 + 75*cos(c + d*x)*sin(c + d*x)*a**3*b + 60*cos(c + d*x)*sin(c 
+ d*x)*a*b**3 + 16*sin(c + d*x)**5*a**4 + 120*sin(c + d*x)**5*a**2*b**2 + 
30*sin(c + d*x)**5*b**4 - 40*sin(c + d*x)**3*a**4 - 300*sin(c + d*x)**3*a* 
*2*b**2 - 60*sin(c + d*x)**3*b**4 + 30*sin(c + d*x)*a**4 + 180*sin(c + d*x 
)*a**2*b**2 + 30*sin(c + d*x)*b**4)/(30*cos(c + d*x)*d*(sin(c + d*x)**4 - 
2*sin(c + d*x)**2 + 1))