\(\int \frac {(A+B \cos (c+d x)) \sec (c+d x)}{(a+b \cos (c+d x))^2} \, dx\) [262]

Optimal result
Mathematica [A] (verified)
Rubi [A] (verified)
Maple [A] (verified)
Fricas [B] (verification not implemented)
Sympy [F]
Maxima [F(-2)]
Giac [A] (verification not implemented)
Mupad [B] (verification not implemented)
Reduce [B] (verification not implemented)

Optimal result

Integrand size = 29, antiderivative size = 133 \[ \int \frac {(A+B \cos (c+d x)) \sec (c+d x)}{(a+b \cos (c+d x))^2} \, dx=-\frac {2 \left (2 a^2 A b-A b^3-a^3 B\right ) \arctan \left (\frac {\sqrt {a-b} \tan \left (\frac {1}{2} (c+d x)\right )}{\sqrt {a+b}}\right )}{a^2 (a-b)^{3/2} (a+b)^{3/2} d}+\frac {A \text {arctanh}(\sin (c+d x))}{a^2 d}+\frac {b (A b-a B) \sin (c+d x)}{a \left (a^2-b^2\right ) d (a+b \cos (c+d x))} \] Output:

-2*(2*A*a^2*b-A*b^3-B*a^3)*arctan((a-b)^(1/2)*tan(1/2*d*x+1/2*c)/(a+b)^(1/ 
2))/a^2/(a-b)^(3/2)/(a+b)^(3/2)/d+A*arctanh(sin(d*x+c))/a^2/d+b*(A*b-B*a)* 
sin(d*x+c)/a/(a^2-b^2)/d/(a+b*cos(d*x+c))
 

Mathematica [A] (verified)

Time = 1.42 (sec) , antiderivative size = 191, normalized size of antiderivative = 1.44 \[ \int \frac {(A+B \cos (c+d x)) \sec (c+d x)}{(a+b \cos (c+d x))^2} \, dx=\frac {\cos (c+d x) (B+A \sec (c+d x)) \left (\frac {2 \left (-2 a^2 A b+A b^3+a^3 B\right ) \text {arctanh}\left (\frac {(a-b) \tan \left (\frac {1}{2} (c+d x)\right )}{\sqrt {-a^2+b^2}}\right )}{\left (-a^2+b^2\right )^{3/2}}-A \log \left (\cos \left (\frac {1}{2} (c+d x)\right )-\sin \left (\frac {1}{2} (c+d x)\right )\right )+A \log \left (\cos \left (\frac {1}{2} (c+d x)\right )+\sin \left (\frac {1}{2} (c+d x)\right )\right )+\frac {a b (A b-a B) \sin (c+d x)}{(a-b) (a+b) (a+b \cos (c+d x))}\right )}{a^2 d (A+B \cos (c+d x))} \] Input:

Integrate[((A + B*Cos[c + d*x])*Sec[c + d*x])/(a + b*Cos[c + d*x])^2,x]
 

Output:

(Cos[c + d*x]*(B + A*Sec[c + d*x])*((2*(-2*a^2*A*b + A*b^3 + a^3*B)*ArcTan 
h[((a - b)*Tan[(c + d*x)/2])/Sqrt[-a^2 + b^2]])/(-a^2 + b^2)^(3/2) - A*Log 
[Cos[(c + d*x)/2] - Sin[(c + d*x)/2]] + A*Log[Cos[(c + d*x)/2] + Sin[(c + 
d*x)/2]] + (a*b*(A*b - a*B)*Sin[c + d*x])/((a - b)*(a + b)*(a + b*Cos[c + 
d*x]))))/(a^2*d*(A + B*Cos[c + d*x]))
 

Rubi [A] (verified)

Time = 0.74 (sec) , antiderivative size = 158, normalized size of antiderivative = 1.19, number of steps used = 9, number of rules used = 8, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.276, Rules used = {3042, 3479, 3042, 3480, 3042, 3138, 218, 4257}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {\sec (c+d x) (A+B \cos (c+d x))}{(a+b \cos (c+d x))^2} \, dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \frac {A+B \sin \left (c+d x+\frac {\pi }{2}\right )}{\sin \left (c+d x+\frac {\pi }{2}\right ) \left (a+b \sin \left (c+d x+\frac {\pi }{2}\right )\right )^2}dx\)

\(\Big \downarrow \) 3479

\(\displaystyle \frac {\int \frac {\left (A \left (a^2-b^2\right )-a (A b-a B) \cos (c+d x)\right ) \sec (c+d x)}{a+b \cos (c+d x)}dx}{a \left (a^2-b^2\right )}+\frac {b (A b-a B) \sin (c+d x)}{a d \left (a^2-b^2\right ) (a+b \cos (c+d x))}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {\int \frac {A \left (a^2-b^2\right )-a (A b-a B) \sin \left (c+d x+\frac {\pi }{2}\right )}{\sin \left (c+d x+\frac {\pi }{2}\right ) \left (a+b \sin \left (c+d x+\frac {\pi }{2}\right )\right )}dx}{a \left (a^2-b^2\right )}+\frac {b (A b-a B) \sin (c+d x)}{a d \left (a^2-b^2\right ) (a+b \cos (c+d x))}\)

\(\Big \downarrow \) 3480

\(\displaystyle \frac {\frac {A \left (a^2-b^2\right ) \int \sec (c+d x)dx}{a}-\frac {\left (a^3 (-B)+2 a^2 A b-A b^3\right ) \int \frac {1}{a+b \cos (c+d x)}dx}{a}}{a \left (a^2-b^2\right )}+\frac {b (A b-a B) \sin (c+d x)}{a d \left (a^2-b^2\right ) (a+b \cos (c+d x))}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {\frac {A \left (a^2-b^2\right ) \int \csc \left (c+d x+\frac {\pi }{2}\right )dx}{a}-\frac {\left (a^3 (-B)+2 a^2 A b-A b^3\right ) \int \frac {1}{a+b \sin \left (c+d x+\frac {\pi }{2}\right )}dx}{a}}{a \left (a^2-b^2\right )}+\frac {b (A b-a B) \sin (c+d x)}{a d \left (a^2-b^2\right ) (a+b \cos (c+d x))}\)

\(\Big \downarrow \) 3138

\(\displaystyle \frac {\frac {A \left (a^2-b^2\right ) \int \csc \left (c+d x+\frac {\pi }{2}\right )dx}{a}-\frac {2 \left (a^3 (-B)+2 a^2 A b-A b^3\right ) \int \frac {1}{(a-b) \tan ^2\left (\frac {1}{2} (c+d x)\right )+a+b}d\tan \left (\frac {1}{2} (c+d x)\right )}{a d}}{a \left (a^2-b^2\right )}+\frac {b (A b-a B) \sin (c+d x)}{a d \left (a^2-b^2\right ) (a+b \cos (c+d x))}\)

\(\Big \downarrow \) 218

\(\displaystyle \frac {\frac {A \left (a^2-b^2\right ) \int \csc \left (c+d x+\frac {\pi }{2}\right )dx}{a}-\frac {2 \left (a^3 (-B)+2 a^2 A b-A b^3\right ) \arctan \left (\frac {\sqrt {a-b} \tan \left (\frac {1}{2} (c+d x)\right )}{\sqrt {a+b}}\right )}{a d \sqrt {a-b} \sqrt {a+b}}}{a \left (a^2-b^2\right )}+\frac {b (A b-a B) \sin (c+d x)}{a d \left (a^2-b^2\right ) (a+b \cos (c+d x))}\)

\(\Big \downarrow \) 4257

\(\displaystyle \frac {b (A b-a B) \sin (c+d x)}{a d \left (a^2-b^2\right ) (a+b \cos (c+d x))}+\frac {\frac {A \left (a^2-b^2\right ) \text {arctanh}(\sin (c+d x))}{a d}-\frac {2 \left (a^3 (-B)+2 a^2 A b-A b^3\right ) \arctan \left (\frac {\sqrt {a-b} \tan \left (\frac {1}{2} (c+d x)\right )}{\sqrt {a+b}}\right )}{a d \sqrt {a-b} \sqrt {a+b}}}{a \left (a^2-b^2\right )}\)

Input:

Int[((A + B*Cos[c + d*x])*Sec[c + d*x])/(a + b*Cos[c + d*x])^2,x]
 

Output:

((-2*(2*a^2*A*b - A*b^3 - a^3*B)*ArcTan[(Sqrt[a - b]*Tan[(c + d*x)/2])/Sqr 
t[a + b]])/(a*Sqrt[a - b]*Sqrt[a + b]*d) + (A*(a^2 - b^2)*ArcTanh[Sin[c + 
d*x]])/(a*d))/(a*(a^2 - b^2)) + (b*(A*b - a*B)*Sin[c + d*x])/(a*(a^2 - b^2 
)*d*(a + b*Cos[c + d*x]))
 

Defintions of rubi rules used

rule 218
Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[a/b, 2]/a)*ArcTan[x/R 
t[a/b, 2]], x] /; FreeQ[{a, b}, x] && PosQ[a/b]
 

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 3138
Int[((a_) + (b_.)*sin[Pi/2 + (c_.) + (d_.)*(x_)])^(-1), x_Symbol] :> With[{ 
e = FreeFactors[Tan[(c + d*x)/2], x]}, Simp[2*(e/d)   Subst[Int[1/(a + b + 
(a - b)*e^2*x^2), x], x, Tan[(c + d*x)/2]/e], x]] /; FreeQ[{a, b, c, d}, x] 
 && NeQ[a^2 - b^2, 0]
 

rule 3479
Int[((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((A_.) + (B_.)*sin[(e_.) + 
 (f_.)*(x_)])*((c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)])^(n_), x_Symbol] :> Si 
mp[(-(A*b^2 - a*b*B))*Cos[e + f*x]*(a + b*Sin[e + f*x])^(m + 1)*((c + d*Sin 
[e + f*x])^(1 + n)/(f*(m + 1)*(b*c - a*d)*(a^2 - b^2))), x] + Simp[1/((m + 
1)*(b*c - a*d)*(a^2 - b^2))   Int[(a + b*Sin[e + f*x])^(m + 1)*(c + d*Sin[e 
 + f*x])^n*Simp[(a*A - b*B)*(b*c - a*d)*(m + 1) + b*d*(A*b - a*B)*(m + n + 
2) + (A*b - a*B)*(a*d*(m + 1) - b*c*(m + 2))*Sin[e + f*x] - b*d*(A*b - a*B) 
*(m + n + 3)*Sin[e + f*x]^2, x], x], x] /; FreeQ[{a, b, c, d, e, f, A, B, n 
}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0] && Rat 
ionalQ[m] && m < -1 && ((EqQ[a, 0] && IntegerQ[m] &&  !IntegerQ[n]) ||  !(I 
ntegerQ[2*n] && LtQ[n, -1] && ((IntegerQ[n] &&  !IntegerQ[m]) || EqQ[a, 0]) 
))
 

rule 3480
Int[((A_.) + (B_.)*sin[(e_.) + (f_.)*(x_)])/(((a_.) + (b_.)*sin[(e_.) + (f_ 
.)*(x_)])*((c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)])), x_Symbol] :> Simp[(A*b 
- a*B)/(b*c - a*d)   Int[1/(a + b*Sin[e + f*x]), x], x] + Simp[(B*c - A*d)/ 
(b*c - a*d)   Int[1/(c + d*Sin[e + f*x]), x], x] /; FreeQ[{a, b, c, d, e, f 
, A, B}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0]
 

rule 4257
Int[csc[(c_.) + (d_.)*(x_)], x_Symbol] :> Simp[-ArcTanh[Cos[c + d*x]]/d, x] 
 /; FreeQ[{c, d}, x]
 
Maple [A] (verified)

Time = 2.05 (sec) , antiderivative size = 182, normalized size of antiderivative = 1.37

method result size
derivativedivides \(\frac {-\frac {A \ln \left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )-1\right )}{a^{2}}+\frac {A \ln \left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )+1\right )}{a^{2}}-\frac {2 \left (-\frac {a \left (A b -B a \right ) b \tan \left (\frac {d x}{2}+\frac {c}{2}\right )}{\left (a^{2}-b^{2}\right ) \left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )^{2} a -\tan \left (\frac {d x}{2}+\frac {c}{2}\right )^{2} b +a +b \right )}+\frac {\left (2 A \,a^{2} b -A \,b^{3}-a^{3} B \right ) \arctan \left (\frac {\left (a -b \right ) \tan \left (\frac {d x}{2}+\frac {c}{2}\right )}{\sqrt {\left (a -b \right ) \left (a +b \right )}}\right )}{\left (a -b \right ) \left (a +b \right ) \sqrt {\left (a -b \right ) \left (a +b \right )}}\right )}{a^{2}}}{d}\) \(182\)
default \(\frac {-\frac {A \ln \left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )-1\right )}{a^{2}}+\frac {A \ln \left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )+1\right )}{a^{2}}-\frac {2 \left (-\frac {a \left (A b -B a \right ) b \tan \left (\frac {d x}{2}+\frac {c}{2}\right )}{\left (a^{2}-b^{2}\right ) \left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )^{2} a -\tan \left (\frac {d x}{2}+\frac {c}{2}\right )^{2} b +a +b \right )}+\frac {\left (2 A \,a^{2} b -A \,b^{3}-a^{3} B \right ) \arctan \left (\frac {\left (a -b \right ) \tan \left (\frac {d x}{2}+\frac {c}{2}\right )}{\sqrt {\left (a -b \right ) \left (a +b \right )}}\right )}{\left (a -b \right ) \left (a +b \right ) \sqrt {\left (a -b \right ) \left (a +b \right )}}\right )}{a^{2}}}{d}\) \(182\)
risch \(-\frac {2 i \left (A b -B a \right ) \left (a \,{\mathrm e}^{i \left (d x +c \right )}+b \right )}{\left (-a^{2}+b^{2}\right ) d a \left (b \,{\mathrm e}^{2 i \left (d x +c \right )}+2 a \,{\mathrm e}^{i \left (d x +c \right )}+b \right )}-\frac {2 b \ln \left ({\mathrm e}^{i \left (d x +c \right )}-\frac {i a^{2}-i b^{2}-a \sqrt {-a^{2}+b^{2}}}{b \sqrt {-a^{2}+b^{2}}}\right ) A}{\sqrt {-a^{2}+b^{2}}\, \left (a +b \right ) \left (a -b \right ) d}+\frac {\ln \left ({\mathrm e}^{i \left (d x +c \right )}-\frac {i a^{2}-i b^{2}-a \sqrt {-a^{2}+b^{2}}}{b \sqrt {-a^{2}+b^{2}}}\right ) A \,b^{3}}{\sqrt {-a^{2}+b^{2}}\, \left (a +b \right ) \left (a -b \right ) d \,a^{2}}+\frac {\ln \left ({\mathrm e}^{i \left (d x +c \right )}-\frac {i a^{2}-i b^{2}-a \sqrt {-a^{2}+b^{2}}}{b \sqrt {-a^{2}+b^{2}}}\right ) B a}{\sqrt {-a^{2}+b^{2}}\, \left (a +b \right ) \left (a -b \right ) d}+\frac {2 b \ln \left ({\mathrm e}^{i \left (d x +c \right )}+\frac {i a^{2}-i b^{2}+a \sqrt {-a^{2}+b^{2}}}{b \sqrt {-a^{2}+b^{2}}}\right ) A}{\sqrt {-a^{2}+b^{2}}\, \left (a +b \right ) \left (a -b \right ) d}-\frac {\ln \left ({\mathrm e}^{i \left (d x +c \right )}+\frac {i a^{2}-i b^{2}+a \sqrt {-a^{2}+b^{2}}}{b \sqrt {-a^{2}+b^{2}}}\right ) A \,b^{3}}{\sqrt {-a^{2}+b^{2}}\, \left (a +b \right ) \left (a -b \right ) d \,a^{2}}-\frac {\ln \left ({\mathrm e}^{i \left (d x +c \right )}+\frac {i a^{2}-i b^{2}+a \sqrt {-a^{2}+b^{2}}}{b \sqrt {-a^{2}+b^{2}}}\right ) B a}{\sqrt {-a^{2}+b^{2}}\, \left (a +b \right ) \left (a -b \right ) d}-\frac {A \ln \left ({\mathrm e}^{i \left (d x +c \right )}-i\right )}{a^{2} d}+\frac {A \ln \left ({\mathrm e}^{i \left (d x +c \right )}+i\right )}{a^{2} d}\) \(619\)

Input:

int((A+B*cos(d*x+c))*sec(d*x+c)/(a+cos(d*x+c)*b)^2,x,method=_RETURNVERBOSE 
)
 

Output:

1/d*(-A/a^2*ln(tan(1/2*d*x+1/2*c)-1)+A/a^2*ln(tan(1/2*d*x+1/2*c)+1)-2/a^2* 
(-a*(A*b-B*a)*b/(a^2-b^2)*tan(1/2*d*x+1/2*c)/(tan(1/2*d*x+1/2*c)^2*a-tan(1 
/2*d*x+1/2*c)^2*b+a+b)+(2*A*a^2*b-A*b^3-B*a^3)/(a-b)/(a+b)/((a-b)*(a+b))^( 
1/2)*arctan((a-b)*tan(1/2*d*x+1/2*c)/((a-b)*(a+b))^(1/2))))
 

Fricas [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 308 vs. \(2 (123) = 246\).

Time = 2.46 (sec) , antiderivative size = 684, normalized size of antiderivative = 5.14 \[ \int \frac {(A+B \cos (c+d x)) \sec (c+d x)}{(a+b \cos (c+d x))^2} \, dx =\text {Too large to display} \] Input:

integrate((A+B*cos(d*x+c))*sec(d*x+c)/(a+b*cos(d*x+c))^2,x, algorithm="fri 
cas")
 

Output:

[1/2*((B*a^4 - 2*A*a^3*b + A*a*b^3 + (B*a^3*b - 2*A*a^2*b^2 + A*b^4)*cos(d 
*x + c))*sqrt(-a^2 + b^2)*log((2*a*b*cos(d*x + c) + (2*a^2 - b^2)*cos(d*x 
+ c)^2 - 2*sqrt(-a^2 + b^2)*(a*cos(d*x + c) + b)*sin(d*x + c) - a^2 + 2*b^ 
2)/(b^2*cos(d*x + c)^2 + 2*a*b*cos(d*x + c) + a^2)) + (A*a^5 - 2*A*a^3*b^2 
 + A*a*b^4 + (A*a^4*b - 2*A*a^2*b^3 + A*b^5)*cos(d*x + c))*log(sin(d*x + c 
) + 1) - (A*a^5 - 2*A*a^3*b^2 + A*a*b^4 + (A*a^4*b - 2*A*a^2*b^3 + A*b^5)* 
cos(d*x + c))*log(-sin(d*x + c) + 1) - 2*(B*a^4*b - A*a^3*b^2 - B*a^2*b^3 
+ A*a*b^4)*sin(d*x + c))/((a^6*b - 2*a^4*b^3 + a^2*b^5)*d*cos(d*x + c) + ( 
a^7 - 2*a^5*b^2 + a^3*b^4)*d), 1/2*(2*(B*a^4 - 2*A*a^3*b + A*a*b^3 + (B*a^ 
3*b - 2*A*a^2*b^2 + A*b^4)*cos(d*x + c))*sqrt(a^2 - b^2)*arctan(-(a*cos(d* 
x + c) + b)/(sqrt(a^2 - b^2)*sin(d*x + c))) + (A*a^5 - 2*A*a^3*b^2 + A*a*b 
^4 + (A*a^4*b - 2*A*a^2*b^3 + A*b^5)*cos(d*x + c))*log(sin(d*x + c) + 1) - 
 (A*a^5 - 2*A*a^3*b^2 + A*a*b^4 + (A*a^4*b - 2*A*a^2*b^3 + A*b^5)*cos(d*x 
+ c))*log(-sin(d*x + c) + 1) - 2*(B*a^4*b - A*a^3*b^2 - B*a^2*b^3 + A*a*b^ 
4)*sin(d*x + c))/((a^6*b - 2*a^4*b^3 + a^2*b^5)*d*cos(d*x + c) + (a^7 - 2* 
a^5*b^2 + a^3*b^4)*d)]
 

Sympy [F]

\[ \int \frac {(A+B \cos (c+d x)) \sec (c+d x)}{(a+b \cos (c+d x))^2} \, dx=\int \frac {\left (A + B \cos {\left (c + d x \right )}\right ) \sec {\left (c + d x \right )}}{\left (a + b \cos {\left (c + d x \right )}\right )^{2}}\, dx \] Input:

integrate((A+B*cos(d*x+c))*sec(d*x+c)/(a+b*cos(d*x+c))**2,x)
 

Output:

Integral((A + B*cos(c + d*x))*sec(c + d*x)/(a + b*cos(c + d*x))**2, x)
 

Maxima [F(-2)]

Exception generated. \[ \int \frac {(A+B \cos (c+d x)) \sec (c+d x)}{(a+b \cos (c+d x))^2} \, dx=\text {Exception raised: ValueError} \] Input:

integrate((A+B*cos(d*x+c))*sec(d*x+c)/(a+b*cos(d*x+c))^2,x, algorithm="max 
ima")
 

Output:

Exception raised: ValueError >> Computation failed since Maxima requested 
additional constraints; using the 'assume' command before evaluation *may* 
 help (example of legal syntax is 'assume(4*b^2-4*a^2>0)', see `assume?` f 
or more de
 

Giac [A] (verification not implemented)

Time = 0.20 (sec) , antiderivative size = 223, normalized size of antiderivative = 1.68 \[ \int \frac {(A+B \cos (c+d x)) \sec (c+d x)}{(a+b \cos (c+d x))^2} \, dx=\frac {\frac {2 \, {\left (B a^{3} - 2 \, A a^{2} b + A b^{3}\right )} {\left (\pi \left \lfloor \frac {d x + c}{2 \, \pi } + \frac {1}{2} \right \rfloor \mathrm {sgn}\left (2 \, a - 2 \, b\right ) + \arctan \left (\frac {a \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) - b \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )}{\sqrt {a^{2} - b^{2}}}\right )\right )}}{{\left (a^{4} - a^{2} b^{2}\right )} \sqrt {a^{2} - b^{2}}} + \frac {A \log \left ({\left | \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) + 1 \right |}\right )}{a^{2}} - \frac {A \log \left ({\left | \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) - 1 \right |}\right )}{a^{2}} - \frac {2 \, {\left (B a b \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) - A b^{2} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )\right )}}{{\left (a^{3} - a b^{2}\right )} {\left (a \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{2} - b \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{2} + a + b\right )}}}{d} \] Input:

integrate((A+B*cos(d*x+c))*sec(d*x+c)/(a+b*cos(d*x+c))^2,x, algorithm="gia 
c")
 

Output:

(2*(B*a^3 - 2*A*a^2*b + A*b^3)*(pi*floor(1/2*(d*x + c)/pi + 1/2)*sgn(2*a - 
 2*b) + arctan((a*tan(1/2*d*x + 1/2*c) - b*tan(1/2*d*x + 1/2*c))/sqrt(a^2 
- b^2)))/((a^4 - a^2*b^2)*sqrt(a^2 - b^2)) + A*log(abs(tan(1/2*d*x + 1/2*c 
) + 1))/a^2 - A*log(abs(tan(1/2*d*x + 1/2*c) - 1))/a^2 - 2*(B*a*b*tan(1/2* 
d*x + 1/2*c) - A*b^2*tan(1/2*d*x + 1/2*c))/((a^3 - a*b^2)*(a*tan(1/2*d*x + 
 1/2*c)^2 - b*tan(1/2*d*x + 1/2*c)^2 + a + b)))/d
 

Mupad [B] (verification not implemented)

Time = 30.39 (sec) , antiderivative size = 3763, normalized size of antiderivative = 28.29 \[ \int \frac {(A+B \cos (c+d x)) \sec (c+d x)}{(a+b \cos (c+d x))^2} \, dx=\text {Too large to display} \] Input:

int((A + B*cos(c + d*x))/(cos(c + d*x)*(a + b*cos(c + d*x))^2),x)
 

Output:

- (A*atan(((A*((A*((32*(A*a^4*b^5 - B*a^9 - A*a^9 - 3*A*a^6*b^3 + A*a^7*b^ 
2 - B*a^6*b^3 + B*a^7*b^2 + 2*A*a^8*b + B*a^8*b))/(a^5*b + a^6 - a^3*b^3 - 
 a^4*b^2) - (32*A*tan(c/2 + (d*x)/2)*(2*a^9*b - 2*a^4*b^6 + 2*a^5*b^5 + 4* 
a^6*b^4 - 4*a^7*b^3 - 2*a^8*b^2))/(a^2*(a^4*b + a^5 - a^2*b^3 - a^3*b^2))) 
)/a^2 - (32*tan(c/2 + (d*x)/2)*(A^2*a^6 + 2*A^2*b^6 + B^2*a^6 - 2*A^2*a*b^ 
5 - 2*A^2*a^5*b - 5*A^2*a^2*b^4 + 4*A^2*a^3*b^3 + 3*A^2*a^4*b^2 - 4*A*B*a^ 
5*b + 2*A*B*a^3*b^3))/(a^4*b + a^5 - a^2*b^3 - a^3*b^2))*1i)/a^2 - (A*((A* 
((32*(A*a^4*b^5 - B*a^9 - A*a^9 - 3*A*a^6*b^3 + A*a^7*b^2 - B*a^6*b^3 + B* 
a^7*b^2 + 2*A*a^8*b + B*a^8*b))/(a^5*b + a^6 - a^3*b^3 - a^4*b^2) + (32*A* 
tan(c/2 + (d*x)/2)*(2*a^9*b - 2*a^4*b^6 + 2*a^5*b^5 + 4*a^6*b^4 - 4*a^7*b^ 
3 - 2*a^8*b^2))/(a^2*(a^4*b + a^5 - a^2*b^3 - a^3*b^2))))/a^2 + (32*tan(c/ 
2 + (d*x)/2)*(A^2*a^6 + 2*A^2*b^6 + B^2*a^6 - 2*A^2*a*b^5 - 2*A^2*a^5*b - 
5*A^2*a^2*b^4 + 4*A^2*a^3*b^3 + 3*A^2*a^4*b^2 - 4*A*B*a^5*b + 2*A*B*a^3*b^ 
3))/(a^4*b + a^5 - a^2*b^3 - a^3*b^2))*1i)/a^2)/((A*((A*((32*(A*a^4*b^5 - 
B*a^9 - A*a^9 - 3*A*a^6*b^3 + A*a^7*b^2 - B*a^6*b^3 + B*a^7*b^2 + 2*A*a^8* 
b + B*a^8*b))/(a^5*b + a^6 - a^3*b^3 - a^4*b^2) - (32*A*tan(c/2 + (d*x)/2) 
*(2*a^9*b - 2*a^4*b^6 + 2*a^5*b^5 + 4*a^6*b^4 - 4*a^7*b^3 - 2*a^8*b^2))/(a 
^2*(a^4*b + a^5 - a^2*b^3 - a^3*b^2))))/a^2 - (32*tan(c/2 + (d*x)/2)*(A^2* 
a^6 + 2*A^2*b^6 + B^2*a^6 - 2*A^2*a*b^5 - 2*A^2*a^5*b - 5*A^2*a^2*b^4 + 4* 
A^2*a^3*b^3 + 3*A^2*a^4*b^2 - 4*A*B*a^5*b + 2*A*B*a^3*b^3))/(a^4*b + a^...
 

Reduce [B] (verification not implemented)

Time = 0.18 (sec) , antiderivative size = 136, normalized size of antiderivative = 1.02 \[ \int \frac {(A+B \cos (c+d x)) \sec (c+d x)}{(a+b \cos (c+d x))^2} \, dx=\frac {-2 \sqrt {a^{2}-b^{2}}\, \mathit {atan} \left (\frac {\tan \left (\frac {d x}{2}+\frac {c}{2}\right ) a -\tan \left (\frac {d x}{2}+\frac {c}{2}\right ) b}{\sqrt {a^{2}-b^{2}}}\right ) b -\mathrm {log}\left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )-1\right ) a^{2}+\mathrm {log}\left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )-1\right ) b^{2}+\mathrm {log}\left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )+1\right ) a^{2}-\mathrm {log}\left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )+1\right ) b^{2}}{a d \left (a^{2}-b^{2}\right )} \] Input:

int((A+B*cos(d*x+c))*sec(d*x+c)/(a+b*cos(d*x+c))^2,x)
 

Output:

( - 2*sqrt(a**2 - b**2)*atan((tan((c + d*x)/2)*a - tan((c + d*x)/2)*b)/sqr 
t(a**2 - b**2))*b - log(tan((c + d*x)/2) - 1)*a**2 + log(tan((c + d*x)/2) 
- 1)*b**2 + log(tan((c + d*x)/2) + 1)*a**2 - log(tan((c + d*x)/2) + 1)*b** 
2)/(a*d*(a**2 - b**2))