\(\int \frac {A+B \cos (c+d x)}{\sqrt {a+b \cos (c+d x)}} \, dx\) [322]

Optimal result
Mathematica [A] (verified)
Rubi [A] (verified)
Maple [A] (verified)
Fricas [C] (verification not implemented)
Sympy [F]
Maxima [F]
Giac [F]
Mupad [B] (verification not implemented)
Reduce [F]

Optimal result

Integrand size = 25, antiderivative size = 130 \[ \int \frac {A+B \cos (c+d x)}{\sqrt {a+b \cos (c+d x)}} \, dx=\frac {2 B \sqrt {a+b \cos (c+d x)} E\left (\frac {1}{2} (c+d x)|\frac {2 b}{a+b}\right )}{b d \sqrt {\frac {a+b \cos (c+d x)}{a+b}}}+\frac {2 (A b-a B) \sqrt {\frac {a+b \cos (c+d x)}{a+b}} \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),\frac {2 b}{a+b}\right )}{b d \sqrt {a+b \cos (c+d x)}} \] Output:

2*B*(a+b*cos(d*x+c))^(1/2)*EllipticE(sin(1/2*d*x+1/2*c),2^(1/2)*(b/(a+b))^ 
(1/2))/b/d/((a+b*cos(d*x+c))/(a+b))^(1/2)+2*(A*b-B*a)*((a+b*cos(d*x+c))/(a 
+b))^(1/2)*InverseJacobiAM(1/2*d*x+1/2*c,2^(1/2)*(b/(a+b))^(1/2))/b/d/(a+b 
*cos(d*x+c))^(1/2)
 

Mathematica [A] (verified)

Time = 5.18 (sec) , antiderivative size = 93, normalized size of antiderivative = 0.72 \[ \int \frac {A+B \cos (c+d x)}{\sqrt {a+b \cos (c+d x)}} \, dx=\frac {2 \sqrt {\frac {a+b \cos (c+d x)}{a+b}} \left ((a+b) B E\left (\frac {1}{2} (c+d x)|\frac {2 b}{a+b}\right )+(A b-a B) \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),\frac {2 b}{a+b}\right )\right )}{b d \sqrt {a+b \cos (c+d x)}} \] Input:

Integrate[(A + B*Cos[c + d*x])/Sqrt[a + b*Cos[c + d*x]],x]
 

Output:

(2*Sqrt[(a + b*Cos[c + d*x])/(a + b)]*((a + b)*B*EllipticE[(c + d*x)/2, (2 
*b)/(a + b)] + (A*b - a*B)*EllipticF[(c + d*x)/2, (2*b)/(a + b)]))/(b*d*Sq 
rt[a + b*Cos[c + d*x]])
 

Rubi [A] (verified)

Time = 0.61 (sec) , antiderivative size = 130, normalized size of antiderivative = 1.00, number of steps used = 9, number of rules used = 9, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.360, Rules used = {3042, 3231, 3042, 3134, 3042, 3132, 3142, 3042, 3140}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {A+B \cos (c+d x)}{\sqrt {a+b \cos (c+d x)}} \, dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \frac {A+B \sin \left (c+d x+\frac {\pi }{2}\right )}{\sqrt {a+b \sin \left (c+d x+\frac {\pi }{2}\right )}}dx\)

\(\Big \downarrow \) 3231

\(\displaystyle \frac {(A b-a B) \int \frac {1}{\sqrt {a+b \cos (c+d x)}}dx}{b}+\frac {B \int \sqrt {a+b \cos (c+d x)}dx}{b}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {(A b-a B) \int \frac {1}{\sqrt {a+b \sin \left (c+d x+\frac {\pi }{2}\right )}}dx}{b}+\frac {B \int \sqrt {a+b \sin \left (c+d x+\frac {\pi }{2}\right )}dx}{b}\)

\(\Big \downarrow \) 3134

\(\displaystyle \frac {(A b-a B) \int \frac {1}{\sqrt {a+b \sin \left (c+d x+\frac {\pi }{2}\right )}}dx}{b}+\frac {B \sqrt {a+b \cos (c+d x)} \int \sqrt {\frac {a}{a+b}+\frac {b \cos (c+d x)}{a+b}}dx}{b \sqrt {\frac {a+b \cos (c+d x)}{a+b}}}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {(A b-a B) \int \frac {1}{\sqrt {a+b \sin \left (c+d x+\frac {\pi }{2}\right )}}dx}{b}+\frac {B \sqrt {a+b \cos (c+d x)} \int \sqrt {\frac {a}{a+b}+\frac {b \sin \left (c+d x+\frac {\pi }{2}\right )}{a+b}}dx}{b \sqrt {\frac {a+b \cos (c+d x)}{a+b}}}\)

\(\Big \downarrow \) 3132

\(\displaystyle \frac {(A b-a B) \int \frac {1}{\sqrt {a+b \sin \left (c+d x+\frac {\pi }{2}\right )}}dx}{b}+\frac {2 B \sqrt {a+b \cos (c+d x)} E\left (\frac {1}{2} (c+d x)|\frac {2 b}{a+b}\right )}{b d \sqrt {\frac {a+b \cos (c+d x)}{a+b}}}\)

\(\Big \downarrow \) 3142

\(\displaystyle \frac {(A b-a B) \sqrt {\frac {a+b \cos (c+d x)}{a+b}} \int \frac {1}{\sqrt {\frac {a}{a+b}+\frac {b \cos (c+d x)}{a+b}}}dx}{b \sqrt {a+b \cos (c+d x)}}+\frac {2 B \sqrt {a+b \cos (c+d x)} E\left (\frac {1}{2} (c+d x)|\frac {2 b}{a+b}\right )}{b d \sqrt {\frac {a+b \cos (c+d x)}{a+b}}}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {(A b-a B) \sqrt {\frac {a+b \cos (c+d x)}{a+b}} \int \frac {1}{\sqrt {\frac {a}{a+b}+\frac {b \sin \left (c+d x+\frac {\pi }{2}\right )}{a+b}}}dx}{b \sqrt {a+b \cos (c+d x)}}+\frac {2 B \sqrt {a+b \cos (c+d x)} E\left (\frac {1}{2} (c+d x)|\frac {2 b}{a+b}\right )}{b d \sqrt {\frac {a+b \cos (c+d x)}{a+b}}}\)

\(\Big \downarrow \) 3140

\(\displaystyle \frac {2 (A b-a B) \sqrt {\frac {a+b \cos (c+d x)}{a+b}} \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),\frac {2 b}{a+b}\right )}{b d \sqrt {a+b \cos (c+d x)}}+\frac {2 B \sqrt {a+b \cos (c+d x)} E\left (\frac {1}{2} (c+d x)|\frac {2 b}{a+b}\right )}{b d \sqrt {\frac {a+b \cos (c+d x)}{a+b}}}\)

Input:

Int[(A + B*Cos[c + d*x])/Sqrt[a + b*Cos[c + d*x]],x]
 

Output:

(2*B*Sqrt[a + b*Cos[c + d*x]]*EllipticE[(c + d*x)/2, (2*b)/(a + b)])/(b*d* 
Sqrt[(a + b*Cos[c + d*x])/(a + b)]) + (2*(A*b - a*B)*Sqrt[(a + b*Cos[c + d 
*x])/(a + b)]*EllipticF[(c + d*x)/2, (2*b)/(a + b)])/(b*d*Sqrt[a + b*Cos[c 
 + d*x]])
 

Defintions of rubi rules used

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 3132
Int[Sqrt[(a_) + (b_.)*sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[2*(Sqrt[a 
 + b]/d)*EllipticE[(1/2)*(c - Pi/2 + d*x), 2*(b/(a + b))], x] /; FreeQ[{a, 
b, c, d}, x] && NeQ[a^2 - b^2, 0] && GtQ[a + b, 0]
 

rule 3134
Int[Sqrt[(a_) + (b_.)*sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[Sqrt[a + 
b*Sin[c + d*x]]/Sqrt[(a + b*Sin[c + d*x])/(a + b)]   Int[Sqrt[a/(a + b) + ( 
b/(a + b))*Sin[c + d*x]], x], x] /; FreeQ[{a, b, c, d}, x] && NeQ[a^2 - b^2 
, 0] &&  !GtQ[a + b, 0]
 

rule 3140
Int[1/Sqrt[(a_) + (b_.)*sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2/(d*S 
qrt[a + b]))*EllipticF[(1/2)*(c - Pi/2 + d*x), 2*(b/(a + b))], x] /; FreeQ[ 
{a, b, c, d}, x] && NeQ[a^2 - b^2, 0] && GtQ[a + b, 0]
 

rule 3142
Int[1/Sqrt[(a_) + (b_.)*sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[Sqrt[(a 
 + b*Sin[c + d*x])/(a + b)]/Sqrt[a + b*Sin[c + d*x]]   Int[1/Sqrt[a/(a + b) 
 + (b/(a + b))*Sin[c + d*x]], x], x] /; FreeQ[{a, b, c, d}, x] && NeQ[a^2 - 
 b^2, 0] &&  !GtQ[a + b, 0]
 

rule 3231
Int[((c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)])/Sqrt[(a_) + (b_.)*sin[(e_.) + ( 
f_.)*(x_)]], x_Symbol] :> Simp[(b*c - a*d)/b   Int[1/Sqrt[a + b*Sin[e + f*x 
]], x], x] + Simp[d/b   Int[Sqrt[a + b*Sin[e + f*x]], x], x] /; FreeQ[{a, b 
, c, d, e, f}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 - b^2, 0]
 
Maple [A] (verified)

Time = 5.83 (sec) , antiderivative size = 249, normalized size of antiderivative = 1.92

method result size
default \(-\frac {2 \sqrt {\left (2 b \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}+a -b \right ) \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}}\, \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {\frac {2 b \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}+a -b}{a -b}}\, \left (A b \operatorname {EllipticF}\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {-\frac {2 b}{a -b}}\right )-B \operatorname {EllipticF}\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {-\frac {2 b}{a -b}}\right ) a +B \operatorname {EllipticE}\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {-\frac {2 b}{a -b}}\right ) a -B \operatorname {EllipticE}\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {-\frac {2 b}{a -b}}\right ) b \right )}{\sqrt {-2 b \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{4}+\left (a +b \right ) \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}}\, b \sin \left (\frac {d x}{2}+\frac {c}{2}\right ) \sqrt {-2 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2} b +a +b}\, d}\) \(249\)
parts \(\frac {2 A \sqrt {\frac {a +\cos \left (d x +c \right ) b}{a +b}}\, \operatorname {InverseJacobiAM}\left (\frac {d x}{2}+\frac {c}{2}, \frac {\sqrt {2}\, \sqrt {b}}{\sqrt {a +b}}\right )}{d \sqrt {a +\cos \left (d x +c \right ) b}}+\frac {2 B \sqrt {\left (2 b \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}+a -b \right ) \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}}\, \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {\frac {2 b \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}+a -b}{a -b}}\, \left (\operatorname {EllipticF}\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {-\frac {2 b}{a -b}}\right ) a -\operatorname {EllipticE}\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {-\frac {2 b}{a -b}}\right ) a +\operatorname {EllipticE}\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {-\frac {2 b}{a -b}}\right ) b \right )}{\sqrt {-2 b \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{4}+\left (a +b \right ) \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}}\, b \sin \left (\frac {d x}{2}+\frac {c}{2}\right ) \sqrt {-2 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2} b +a +b}\, d}\) \(279\)
risch \(\text {Expression too large to display}\) \(1070\)

Input:

int((A+B*cos(d*x+c))/(a+cos(d*x+c)*b)^(1/2),x,method=_RETURNVERBOSE)
 

Output:

-2*((2*b*cos(1/2*d*x+1/2*c)^2+a-b)*sin(1/2*d*x+1/2*c)^2)^(1/2)*(sin(1/2*d* 
x+1/2*c)^2)^(1/2)*((2*b*cos(1/2*d*x+1/2*c)^2+a-b)/(a-b))^(1/2)*(A*b*Ellipt 
icF(cos(1/2*d*x+1/2*c),(-2*b/(a-b))^(1/2))-B*EllipticF(cos(1/2*d*x+1/2*c), 
(-2*b/(a-b))^(1/2))*a+B*EllipticE(cos(1/2*d*x+1/2*c),(-2*b/(a-b))^(1/2))*a 
-B*EllipticE(cos(1/2*d*x+1/2*c),(-2*b/(a-b))^(1/2))*b)/(-2*b*sin(1/2*d*x+1 
/2*c)^4+(a+b)*sin(1/2*d*x+1/2*c)^2)^(1/2)/b/sin(1/2*d*x+1/2*c)/(-2*sin(1/2 
*d*x+1/2*c)^2*b+a+b)^(1/2)/d
 

Fricas [C] (verification not implemented)

Result contains complex when optimal does not.

Time = 0.09 (sec) , antiderivative size = 371, normalized size of antiderivative = 2.85 \[ \int \frac {A+B \cos (c+d x)}{\sqrt {a+b \cos (c+d x)}} \, dx=-\frac {2 \, {\left (-3 i \, \sqrt {\frac {1}{2}} B b^{\frac {3}{2}} {\rm weierstrassZeta}\left (\frac {4 \, {\left (4 \, a^{2} - 3 \, b^{2}\right )}}{3 \, b^{2}}, -\frac {8 \, {\left (8 \, a^{3} - 9 \, a b^{2}\right )}}{27 \, b^{3}}, {\rm weierstrassPInverse}\left (\frac {4 \, {\left (4 \, a^{2} - 3 \, b^{2}\right )}}{3 \, b^{2}}, -\frac {8 \, {\left (8 \, a^{3} - 9 \, a b^{2}\right )}}{27 \, b^{3}}, \frac {3 \, b \cos \left (d x + c\right ) + 3 i \, b \sin \left (d x + c\right ) + 2 \, a}{3 \, b}\right )\right ) + 3 i \, \sqrt {\frac {1}{2}} B b^{\frac {3}{2}} {\rm weierstrassZeta}\left (\frac {4 \, {\left (4 \, a^{2} - 3 \, b^{2}\right )}}{3 \, b^{2}}, -\frac {8 \, {\left (8 \, a^{3} - 9 \, a b^{2}\right )}}{27 \, b^{3}}, {\rm weierstrassPInverse}\left (\frac {4 \, {\left (4 \, a^{2} - 3 \, b^{2}\right )}}{3 \, b^{2}}, -\frac {8 \, {\left (8 \, a^{3} - 9 \, a b^{2}\right )}}{27 \, b^{3}}, \frac {3 \, b \cos \left (d x + c\right ) - 3 i \, b \sin \left (d x + c\right ) + 2 \, a}{3 \, b}\right )\right ) + \sqrt {\frac {1}{2}} {\left (-2 i \, B a + 3 i \, A b\right )} \sqrt {b} {\rm weierstrassPInverse}\left (\frac {4 \, {\left (4 \, a^{2} - 3 \, b^{2}\right )}}{3 \, b^{2}}, -\frac {8 \, {\left (8 \, a^{3} - 9 \, a b^{2}\right )}}{27 \, b^{3}}, \frac {3 \, b \cos \left (d x + c\right ) + 3 i \, b \sin \left (d x + c\right ) + 2 \, a}{3 \, b}\right ) + \sqrt {\frac {1}{2}} {\left (2 i \, B a - 3 i \, A b\right )} \sqrt {b} {\rm weierstrassPInverse}\left (\frac {4 \, {\left (4 \, a^{2} - 3 \, b^{2}\right )}}{3 \, b^{2}}, -\frac {8 \, {\left (8 \, a^{3} - 9 \, a b^{2}\right )}}{27 \, b^{3}}, \frac {3 \, b \cos \left (d x + c\right ) - 3 i \, b \sin \left (d x + c\right ) + 2 \, a}{3 \, b}\right )\right )}}{3 \, b^{2} d} \] Input:

integrate((A+B*cos(d*x+c))/(a+b*cos(d*x+c))^(1/2),x, algorithm="fricas")
 

Output:

-2/3*(-3*I*sqrt(1/2)*B*b^(3/2)*weierstrassZeta(4/3*(4*a^2 - 3*b^2)/b^2, -8 
/27*(8*a^3 - 9*a*b^2)/b^3, weierstrassPInverse(4/3*(4*a^2 - 3*b^2)/b^2, -8 
/27*(8*a^3 - 9*a*b^2)/b^3, 1/3*(3*b*cos(d*x + c) + 3*I*b*sin(d*x + c) + 2* 
a)/b)) + 3*I*sqrt(1/2)*B*b^(3/2)*weierstrassZeta(4/3*(4*a^2 - 3*b^2)/b^2, 
-8/27*(8*a^3 - 9*a*b^2)/b^3, weierstrassPInverse(4/3*(4*a^2 - 3*b^2)/b^2, 
-8/27*(8*a^3 - 9*a*b^2)/b^3, 1/3*(3*b*cos(d*x + c) - 3*I*b*sin(d*x + c) + 
2*a)/b)) + sqrt(1/2)*(-2*I*B*a + 3*I*A*b)*sqrt(b)*weierstrassPInverse(4/3* 
(4*a^2 - 3*b^2)/b^2, -8/27*(8*a^3 - 9*a*b^2)/b^3, 1/3*(3*b*cos(d*x + c) + 
3*I*b*sin(d*x + c) + 2*a)/b) + sqrt(1/2)*(2*I*B*a - 3*I*A*b)*sqrt(b)*weier 
strassPInverse(4/3*(4*a^2 - 3*b^2)/b^2, -8/27*(8*a^3 - 9*a*b^2)/b^3, 1/3*( 
3*b*cos(d*x + c) - 3*I*b*sin(d*x + c) + 2*a)/b))/(b^2*d)
 

Sympy [F]

\[ \int \frac {A+B \cos (c+d x)}{\sqrt {a+b \cos (c+d x)}} \, dx=\int \frac {A + B \cos {\left (c + d x \right )}}{\sqrt {a + b \cos {\left (c + d x \right )}}}\, dx \] Input:

integrate((A+B*cos(d*x+c))/(a+b*cos(d*x+c))**(1/2),x)
 

Output:

Integral((A + B*cos(c + d*x))/sqrt(a + b*cos(c + d*x)), x)
 

Maxima [F]

\[ \int \frac {A+B \cos (c+d x)}{\sqrt {a+b \cos (c+d x)}} \, dx=\int { \frac {B \cos \left (d x + c\right ) + A}{\sqrt {b \cos \left (d x + c\right ) + a}} \,d x } \] Input:

integrate((A+B*cos(d*x+c))/(a+b*cos(d*x+c))^(1/2),x, algorithm="maxima")
 

Output:

integrate((B*cos(d*x + c) + A)/sqrt(b*cos(d*x + c) + a), x)
 

Giac [F]

\[ \int \frac {A+B \cos (c+d x)}{\sqrt {a+b \cos (c+d x)}} \, dx=\int { \frac {B \cos \left (d x + c\right ) + A}{\sqrt {b \cos \left (d x + c\right ) + a}} \,d x } \] Input:

integrate((A+B*cos(d*x+c))/(a+b*cos(d*x+c))^(1/2),x, algorithm="giac")
 

Output:

integrate((B*cos(d*x + c) + A)/sqrt(b*cos(d*x + c) + a), x)
 

Mupad [B] (verification not implemented)

Time = 25.01 (sec) , antiderivative size = 135, normalized size of antiderivative = 1.04 \[ \int \frac {A+B \cos (c+d x)}{\sqrt {a+b \cos (c+d x)}} \, dx=\frac {2\,A\,\mathrm {F}\left (\frac {c}{2}+\frac {d\,x}{2}\middle |\frac {2\,b}{a+b}\right )\,\sqrt {\frac {a+b\,\cos \left (c+d\,x\right )}{a+b}}}{d\,\sqrt {a+b\,\cos \left (c+d\,x\right )}}+\frac {2\,B\,\left (\mathrm {E}\left (\frac {c}{2}+\frac {d\,x}{2}\middle |\frac {2\,b}{a+b}\right )\,\left (a+b\right )-a\,\mathrm {F}\left (\frac {c}{2}+\frac {d\,x}{2}\middle |\frac {2\,b}{a+b}\right )\right )\,\sqrt {\frac {a+b\,\cos \left (c+d\,x\right )}{a+b}}}{b\,d\,\sqrt {a+b\,\cos \left (c+d\,x\right )}} \] Input:

int((A + B*cos(c + d*x))/(a + b*cos(c + d*x))^(1/2),x)
 

Output:

(2*A*ellipticF(c/2 + (d*x)/2, (2*b)/(a + b))*((a + b*cos(c + d*x))/(a + b) 
)^(1/2))/(d*(a + b*cos(c + d*x))^(1/2)) + (2*B*(ellipticE(c/2 + (d*x)/2, ( 
2*b)/(a + b))*(a + b) - a*ellipticF(c/2 + (d*x)/2, (2*b)/(a + b)))*((a + b 
*cos(c + d*x))/(a + b))^(1/2))/(b*d*(a + b*cos(c + d*x))^(1/2))
 

Reduce [F]

\[ \int \frac {A+B \cos (c+d x)}{\sqrt {a+b \cos (c+d x)}} \, dx=\int \sqrt {\cos \left (d x +c \right ) b +a}d x \] Input:

int((A+B*cos(d*x+c))/(a+b*cos(d*x+c))^(1/2),x)
 

Output:

int(sqrt(cos(c + d*x)*b + a),x)