\(\int \frac {(A+B \cos (c+d x)) \sec (c+d x)}{(a+b \cos (c+d x))^{3/2}} \, dx\) [330]

Optimal result
Mathematica [C] (verified)
Rubi [A] (verified)
Maple [B] (verified)
Fricas [F(-1)]
Sympy [F]
Maxima [F]
Giac [F]
Mupad [F(-1)]
Reduce [F]

Optimal result

Integrand size = 31, antiderivative size = 190 \[ \int \frac {(A+B \cos (c+d x)) \sec (c+d x)}{(a+b \cos (c+d x))^{3/2}} \, dx=-\frac {2 (A b-a B) \sqrt {a+b \cos (c+d x)} E\left (\frac {1}{2} (c+d x)|\frac {2 b}{a+b}\right )}{a \left (a^2-b^2\right ) d \sqrt {\frac {a+b \cos (c+d x)}{a+b}}}+\frac {2 A \sqrt {\frac {a+b \cos (c+d x)}{a+b}} \operatorname {EllipticPi}\left (2,\frac {1}{2} (c+d x),\frac {2 b}{a+b}\right )}{a d \sqrt {a+b \cos (c+d x)}}+\frac {2 b (A b-a B) \sin (c+d x)}{a \left (a^2-b^2\right ) d \sqrt {a+b \cos (c+d x)}} \] Output:

-2*(A*b-B*a)*(a+b*cos(d*x+c))^(1/2)*EllipticE(sin(1/2*d*x+1/2*c),2^(1/2)*( 
b/(a+b))^(1/2))/a/(a^2-b^2)/d/((a+b*cos(d*x+c))/(a+b))^(1/2)+2*A*((a+b*cos 
(d*x+c))/(a+b))^(1/2)*EllipticPi(sin(1/2*d*x+1/2*c),2,2^(1/2)*(b/(a+b))^(1 
/2))/a/d/(a+b*cos(d*x+c))^(1/2)+2*b*(A*b-B*a)*sin(d*x+c)/a/(a^2-b^2)/d/(a+ 
b*cos(d*x+c))^(1/2)
 

Mathematica [C] (verified)

Result contains complex when optimal does not.

Time = 4.83 (sec) , antiderivative size = 460, normalized size of antiderivative = 2.42 \[ \int \frac {(A+B \cos (c+d x)) \sec (c+d x)}{(a+b \cos (c+d x))^{3/2}} \, dx=\frac {\cos (c+d x) (B+A \sec (c+d x)) \left (-\frac {\frac {4 a (-A b+a B) \sqrt {\frac {a+b \cos (c+d x)}{a+b}} \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),\frac {2 b}{a+b}\right )}{\sqrt {a+b \cos (c+d x)}}+\frac {2 \left (2 a^2 A-3 A b^2+a b B\right ) \sqrt {\frac {a+b \cos (c+d x)}{a+b}} \operatorname {EllipticPi}\left (2,\frac {1}{2} (c+d x),\frac {2 b}{a+b}\right )}{\sqrt {a+b \cos (c+d x)}}-\frac {2 i (A b-a B) \sqrt {-\frac {b (-1+\cos (c+d x))}{a+b}} \sqrt {\frac {b (1+\cos (c+d x))}{-a+b}} \csc (c+d x) \left (-2 a (a-b) E\left (i \text {arcsinh}\left (\sqrt {-\frac {1}{a+b}} \sqrt {a+b \cos (c+d x)}\right )|\frac {a+b}{a-b}\right )+b \left (-2 a \operatorname {EllipticF}\left (i \text {arcsinh}\left (\sqrt {-\frac {1}{a+b}} \sqrt {a+b \cos (c+d x)}\right ),\frac {a+b}{a-b}\right )+b \operatorname {EllipticPi}\left (\frac {a+b}{a},i \text {arcsinh}\left (\sqrt {-\frac {1}{a+b}} \sqrt {a+b \cos (c+d x)}\right ),\frac {a+b}{a-b}\right )\right )\right )}{a b \sqrt {-\frac {1}{a+b}}}}{(-a+b) (a+b)}+\frac {4 b (A b-a B) \sin (c+d x)}{\left (a^2-b^2\right ) \sqrt {a+b \cos (c+d x)}}\right )}{2 a d (A+B \cos (c+d x))} \] Input:

Integrate[((A + B*Cos[c + d*x])*Sec[c + d*x])/(a + b*Cos[c + d*x])^(3/2),x 
]
 

Output:

(Cos[c + d*x]*(B + A*Sec[c + d*x])*(-(((4*a*(-(A*b) + a*B)*Sqrt[(a + b*Cos 
[c + d*x])/(a + b)]*EllipticF[(c + d*x)/2, (2*b)/(a + b)])/Sqrt[a + b*Cos[ 
c + d*x]] + (2*(2*a^2*A - 3*A*b^2 + a*b*B)*Sqrt[(a + b*Cos[c + d*x])/(a + 
b)]*EllipticPi[2, (c + d*x)/2, (2*b)/(a + b)])/Sqrt[a + b*Cos[c + d*x]] - 
((2*I)*(A*b - a*B)*Sqrt[-((b*(-1 + Cos[c + d*x]))/(a + b))]*Sqrt[(b*(1 + C 
os[c + d*x]))/(-a + b)]*Csc[c + d*x]*(-2*a*(a - b)*EllipticE[I*ArcSinh[Sqr 
t[-(a + b)^(-1)]*Sqrt[a + b*Cos[c + d*x]]], (a + b)/(a - b)] + b*(-2*a*Ell 
ipticF[I*ArcSinh[Sqrt[-(a + b)^(-1)]*Sqrt[a + b*Cos[c + d*x]]], (a + b)/(a 
 - b)] + b*EllipticPi[(a + b)/a, I*ArcSinh[Sqrt[-(a + b)^(-1)]*Sqrt[a + b* 
Cos[c + d*x]]], (a + b)/(a - b)])))/(a*b*Sqrt[-(a + b)^(-1)]))/((-a + b)*( 
a + b))) + (4*b*(A*b - a*B)*Sin[c + d*x])/((a^2 - b^2)*Sqrt[a + b*Cos[c + 
d*x]])))/(2*a*d*(A + B*Cos[c + d*x]))
 

Rubi [A] (verified)

Time = 1.28 (sec) , antiderivative size = 198, normalized size of antiderivative = 1.04, number of steps used = 14, number of rules used = 14, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.452, Rules used = {3042, 3479, 27, 3042, 3538, 25, 27, 3042, 3134, 3042, 3132, 3286, 3042, 3284}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {\sec (c+d x) (A+B \cos (c+d x))}{(a+b \cos (c+d x))^{3/2}} \, dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \frac {A+B \sin \left (c+d x+\frac {\pi }{2}\right )}{\sin \left (c+d x+\frac {\pi }{2}\right ) \left (a+b \sin \left (c+d x+\frac {\pi }{2}\right )\right )^{3/2}}dx\)

\(\Big \downarrow \) 3479

\(\displaystyle \frac {2 \int \frac {\left (-b (A b-a B) \cos ^2(c+d x)-a (A b-a B) \cos (c+d x)+A \left (a^2-b^2\right )\right ) \sec (c+d x)}{2 \sqrt {a+b \cos (c+d x)}}dx}{a \left (a^2-b^2\right )}+\frac {2 b (A b-a B) \sin (c+d x)}{a d \left (a^2-b^2\right ) \sqrt {a+b \cos (c+d x)}}\)

\(\Big \downarrow \) 27

\(\displaystyle \frac {\int \frac {\left (-b (A b-a B) \cos ^2(c+d x)-a (A b-a B) \cos (c+d x)+A \left (a^2-b^2\right )\right ) \sec (c+d x)}{\sqrt {a+b \cos (c+d x)}}dx}{a \left (a^2-b^2\right )}+\frac {2 b (A b-a B) \sin (c+d x)}{a d \left (a^2-b^2\right ) \sqrt {a+b \cos (c+d x)}}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {\int \frac {-b (A b-a B) \sin \left (c+d x+\frac {\pi }{2}\right )^2-a (A b-a B) \sin \left (c+d x+\frac {\pi }{2}\right )+A \left (a^2-b^2\right )}{\sin \left (c+d x+\frac {\pi }{2}\right ) \sqrt {a+b \sin \left (c+d x+\frac {\pi }{2}\right )}}dx}{a \left (a^2-b^2\right )}+\frac {2 b (A b-a B) \sin (c+d x)}{a d \left (a^2-b^2\right ) \sqrt {a+b \cos (c+d x)}}\)

\(\Big \downarrow \) 3538

\(\displaystyle \frac {-\frac {\int -\frac {A b \left (a^2-b^2\right ) \sec (c+d x)}{\sqrt {a+b \cos (c+d x)}}dx}{b}-\left ((A b-a B) \int \sqrt {a+b \cos (c+d x)}dx\right )}{a \left (a^2-b^2\right )}+\frac {2 b (A b-a B) \sin (c+d x)}{a d \left (a^2-b^2\right ) \sqrt {a+b \cos (c+d x)}}\)

\(\Big \downarrow \) 25

\(\displaystyle \frac {\frac {\int \frac {A b \left (a^2-b^2\right ) \sec (c+d x)}{\sqrt {a+b \cos (c+d x)}}dx}{b}-(A b-a B) \int \sqrt {a+b \cos (c+d x)}dx}{a \left (a^2-b^2\right )}+\frac {2 b (A b-a B) \sin (c+d x)}{a d \left (a^2-b^2\right ) \sqrt {a+b \cos (c+d x)}}\)

\(\Big \downarrow \) 27

\(\displaystyle \frac {A \left (a^2-b^2\right ) \int \frac {\sec (c+d x)}{\sqrt {a+b \cos (c+d x)}}dx-(A b-a B) \int \sqrt {a+b \cos (c+d x)}dx}{a \left (a^2-b^2\right )}+\frac {2 b (A b-a B) \sin (c+d x)}{a d \left (a^2-b^2\right ) \sqrt {a+b \cos (c+d x)}}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {A \left (a^2-b^2\right ) \int \frac {1}{\sin \left (c+d x+\frac {\pi }{2}\right ) \sqrt {a+b \sin \left (c+d x+\frac {\pi }{2}\right )}}dx-(A b-a B) \int \sqrt {a+b \sin \left (c+d x+\frac {\pi }{2}\right )}dx}{a \left (a^2-b^2\right )}+\frac {2 b (A b-a B) \sin (c+d x)}{a d \left (a^2-b^2\right ) \sqrt {a+b \cos (c+d x)}}\)

\(\Big \downarrow \) 3134

\(\displaystyle \frac {A \left (a^2-b^2\right ) \int \frac {1}{\sin \left (c+d x+\frac {\pi }{2}\right ) \sqrt {a+b \sin \left (c+d x+\frac {\pi }{2}\right )}}dx-\frac {(A b-a B) \sqrt {a+b \cos (c+d x)} \int \sqrt {\frac {a}{a+b}+\frac {b \cos (c+d x)}{a+b}}dx}{\sqrt {\frac {a+b \cos (c+d x)}{a+b}}}}{a \left (a^2-b^2\right )}+\frac {2 b (A b-a B) \sin (c+d x)}{a d \left (a^2-b^2\right ) \sqrt {a+b \cos (c+d x)}}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {A \left (a^2-b^2\right ) \int \frac {1}{\sin \left (c+d x+\frac {\pi }{2}\right ) \sqrt {a+b \sin \left (c+d x+\frac {\pi }{2}\right )}}dx-\frac {(A b-a B) \sqrt {a+b \cos (c+d x)} \int \sqrt {\frac {a}{a+b}+\frac {b \sin \left (c+d x+\frac {\pi }{2}\right )}{a+b}}dx}{\sqrt {\frac {a+b \cos (c+d x)}{a+b}}}}{a \left (a^2-b^2\right )}+\frac {2 b (A b-a B) \sin (c+d x)}{a d \left (a^2-b^2\right ) \sqrt {a+b \cos (c+d x)}}\)

\(\Big \downarrow \) 3132

\(\displaystyle \frac {A \left (a^2-b^2\right ) \int \frac {1}{\sin \left (c+d x+\frac {\pi }{2}\right ) \sqrt {a+b \sin \left (c+d x+\frac {\pi }{2}\right )}}dx-\frac {2 (A b-a B) \sqrt {a+b \cos (c+d x)} E\left (\frac {1}{2} (c+d x)|\frac {2 b}{a+b}\right )}{d \sqrt {\frac {a+b \cos (c+d x)}{a+b}}}}{a \left (a^2-b^2\right )}+\frac {2 b (A b-a B) \sin (c+d x)}{a d \left (a^2-b^2\right ) \sqrt {a+b \cos (c+d x)}}\)

\(\Big \downarrow \) 3286

\(\displaystyle \frac {\frac {A \left (a^2-b^2\right ) \sqrt {\frac {a+b \cos (c+d x)}{a+b}} \int \frac {\sec (c+d x)}{\sqrt {\frac {a}{a+b}+\frac {b \cos (c+d x)}{a+b}}}dx}{\sqrt {a+b \cos (c+d x)}}-\frac {2 (A b-a B) \sqrt {a+b \cos (c+d x)} E\left (\frac {1}{2} (c+d x)|\frac {2 b}{a+b}\right )}{d \sqrt {\frac {a+b \cos (c+d x)}{a+b}}}}{a \left (a^2-b^2\right )}+\frac {2 b (A b-a B) \sin (c+d x)}{a d \left (a^2-b^2\right ) \sqrt {a+b \cos (c+d x)}}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {\frac {A \left (a^2-b^2\right ) \sqrt {\frac {a+b \cos (c+d x)}{a+b}} \int \frac {1}{\sin \left (c+d x+\frac {\pi }{2}\right ) \sqrt {\frac {a}{a+b}+\frac {b \sin \left (c+d x+\frac {\pi }{2}\right )}{a+b}}}dx}{\sqrt {a+b \cos (c+d x)}}-\frac {2 (A b-a B) \sqrt {a+b \cos (c+d x)} E\left (\frac {1}{2} (c+d x)|\frac {2 b}{a+b}\right )}{d \sqrt {\frac {a+b \cos (c+d x)}{a+b}}}}{a \left (a^2-b^2\right )}+\frac {2 b (A b-a B) \sin (c+d x)}{a d \left (a^2-b^2\right ) \sqrt {a+b \cos (c+d x)}}\)

\(\Big \downarrow \) 3284

\(\displaystyle \frac {2 b (A b-a B) \sin (c+d x)}{a d \left (a^2-b^2\right ) \sqrt {a+b \cos (c+d x)}}+\frac {\frac {2 A \left (a^2-b^2\right ) \sqrt {\frac {a+b \cos (c+d x)}{a+b}} \operatorname {EllipticPi}\left (2,\frac {1}{2} (c+d x),\frac {2 b}{a+b}\right )}{d \sqrt {a+b \cos (c+d x)}}-\frac {2 (A b-a B) \sqrt {a+b \cos (c+d x)} E\left (\frac {1}{2} (c+d x)|\frac {2 b}{a+b}\right )}{d \sqrt {\frac {a+b \cos (c+d x)}{a+b}}}}{a \left (a^2-b^2\right )}\)

Input:

Int[((A + B*Cos[c + d*x])*Sec[c + d*x])/(a + b*Cos[c + d*x])^(3/2),x]
 

Output:

((-2*(A*b - a*B)*Sqrt[a + b*Cos[c + d*x]]*EllipticE[(c + d*x)/2, (2*b)/(a 
+ b)])/(d*Sqrt[(a + b*Cos[c + d*x])/(a + b)]) + (2*A*(a^2 - b^2)*Sqrt[(a + 
 b*Cos[c + d*x])/(a + b)]*EllipticPi[2, (c + d*x)/2, (2*b)/(a + b)])/(d*Sq 
rt[a + b*Cos[c + d*x]]))/(a*(a^2 - b^2)) + (2*b*(A*b - a*B)*Sin[c + d*x])/ 
(a*(a^2 - b^2)*d*Sqrt[a + b*Cos[c + d*x]])
 

Defintions of rubi rules used

rule 25
Int[-(Fx_), x_Symbol] :> Simp[Identity[-1]   Int[Fx, x], x]
 

rule 27
Int[(a_)*(Fx_), x_Symbol] :> Simp[a   Int[Fx, x], x] /; FreeQ[a, x] &&  !Ma 
tchQ[Fx, (b_)*(Gx_) /; FreeQ[b, x]]
 

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 3132
Int[Sqrt[(a_) + (b_.)*sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[2*(Sqrt[a 
 + b]/d)*EllipticE[(1/2)*(c - Pi/2 + d*x), 2*(b/(a + b))], x] /; FreeQ[{a, 
b, c, d}, x] && NeQ[a^2 - b^2, 0] && GtQ[a + b, 0]
 

rule 3134
Int[Sqrt[(a_) + (b_.)*sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[Sqrt[a + 
b*Sin[c + d*x]]/Sqrt[(a + b*Sin[c + d*x])/(a + b)]   Int[Sqrt[a/(a + b) + ( 
b/(a + b))*Sin[c + d*x]], x], x] /; FreeQ[{a, b, c, d}, x] && NeQ[a^2 - b^2 
, 0] &&  !GtQ[a + b, 0]
 

rule 3284
Int[1/(((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])*Sqrt[(c_.) + (d_.)*sin[(e_.) 
 + (f_.)*(x_)]]), x_Symbol] :> Simp[(2/(f*(a + b)*Sqrt[c + d]))*EllipticPi[ 
2*(b/(a + b)), (1/2)*(e - Pi/2 + f*x), 2*(d/(c + d))], x] /; FreeQ[{a, b, c 
, d, e, f}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 
0] && GtQ[c + d, 0]
 

rule 3286
Int[1/(((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])*Sqrt[(c_.) + (d_.)*sin[(e_.) 
 + (f_.)*(x_)]]), x_Symbol] :> Simp[Sqrt[(c + d*Sin[e + f*x])/(c + d)]/Sqrt 
[c + d*Sin[e + f*x]]   Int[1/((a + b*Sin[e + f*x])*Sqrt[c/(c + d) + (d/(c + 
 d))*Sin[e + f*x]]), x], x] /; FreeQ[{a, b, c, d, e, f}, x] && NeQ[b*c - a* 
d, 0] && NeQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0] &&  !GtQ[c + d, 0]
 

rule 3479
Int[((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((A_.) + (B_.)*sin[(e_.) + 
 (f_.)*(x_)])*((c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)])^(n_), x_Symbol] :> Si 
mp[(-(A*b^2 - a*b*B))*Cos[e + f*x]*(a + b*Sin[e + f*x])^(m + 1)*((c + d*Sin 
[e + f*x])^(1 + n)/(f*(m + 1)*(b*c - a*d)*(a^2 - b^2))), x] + Simp[1/((m + 
1)*(b*c - a*d)*(a^2 - b^2))   Int[(a + b*Sin[e + f*x])^(m + 1)*(c + d*Sin[e 
 + f*x])^n*Simp[(a*A - b*B)*(b*c - a*d)*(m + 1) + b*d*(A*b - a*B)*(m + n + 
2) + (A*b - a*B)*(a*d*(m + 1) - b*c*(m + 2))*Sin[e + f*x] - b*d*(A*b - a*B) 
*(m + n + 3)*Sin[e + f*x]^2, x], x], x] /; FreeQ[{a, b, c, d, e, f, A, B, n 
}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0] && Rat 
ionalQ[m] && m < -1 && ((EqQ[a, 0] && IntegerQ[m] &&  !IntegerQ[n]) ||  !(I 
ntegerQ[2*n] && LtQ[n, -1] && ((IntegerQ[n] &&  !IntegerQ[m]) || EqQ[a, 0]) 
))
 

rule 3538
Int[((A_.) + (B_.)*sin[(e_.) + (f_.)*(x_)] + (C_.)*sin[(e_.) + (f_.)*(x_)]^ 
2)/(Sqrt[(a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)]]*((c_.) + (d_.)*sin[(e_.) + 
(f_.)*(x_)])), x_Symbol] :> Simp[C/(b*d)   Int[Sqrt[a + b*Sin[e + f*x]], x] 
, x] - Simp[1/(b*d)   Int[Simp[a*c*C - A*b*d + (b*c*C - b*B*d + a*C*d)*Sin[ 
e + f*x], x]/(Sqrt[a + b*Sin[e + f*x]]*(c + d*Sin[e + f*x])), x], x] /; Fre 
eQ[{a, b, c, d, e, f, A, B, C}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 - b^2, 0 
] && NeQ[c^2 - d^2, 0]
 
Maple [B] (verified)

Leaf count of result is larger than twice the leaf count of optimal. \(432\) vs. \(2(190)=380\).

Time = 8.32 (sec) , antiderivative size = 433, normalized size of antiderivative = 2.28

method result size
default \(-\frac {\sqrt {-\left (-2 b \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-a +b \right ) \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}}\, \left (-\frac {2 A \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {\frac {2 b \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}+a -b}{a -b}}\, \operatorname {EllipticPi}\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), 2, \sqrt {-\frac {2 b}{a -b}}\right )}{a \sqrt {-2 b \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{4}+\left (a +b \right ) \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}}}+\frac {2 \left (A b -B a \right ) \sqrt {-2 b \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{4}+\left (a +b \right ) \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}}\, \left (2 \cos \left (\frac {d x}{2}+\frac {c}{2}\right ) \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2} b +\sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {-\frac {2 b \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}}{a -b}+\frac {a +b}{a -b}}\, \operatorname {EllipticE}\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {-\frac {2 b}{a -b}}\right ) a -\sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {-\frac {2 b \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}}{a -b}+\frac {a +b}{a -b}}\, b \operatorname {EllipticE}\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {-\frac {2 b}{a -b}}\right )\right )}{a \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2} \left (2 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2} b -a -b \right ) \left (a^{2}-b^{2}\right )}\right )}{\sin \left (\frac {d x}{2}+\frac {c}{2}\right ) \sqrt {-2 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2} b +a +b}\, d}\) \(433\)
parts \(\frac {2 A \left (2 \cos \left (\frac {d x}{2}+\frac {c}{2}\right ) \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2} b^{2}+\sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {-\frac {2 b \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}}{a -b}+\frac {a +b}{a -b}}\, \operatorname {EllipticPi}\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), 2, \sqrt {-\frac {2 b}{a -b}}\right ) a^{2}-\sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {-\frac {2 b \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}}{a -b}+\frac {a +b}{a -b}}\, \operatorname {EllipticPi}\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), 2, \sqrt {-\frac {2 b}{a -b}}\right ) b^{2}+\sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {-\frac {2 b \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}}{a -b}+\frac {a +b}{a -b}}\, b \operatorname {EllipticE}\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {-\frac {2 b}{a -b}}\right ) a -b^{2} \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {-\frac {2 b \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}}{a -b}+\frac {a +b}{a -b}}\, \operatorname {EllipticE}\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {-\frac {2 b}{a -b}}\right )\right )}{a \left (a -b \right ) \left (a +b \right ) \sin \left (\frac {d x}{2}+\frac {c}{2}\right ) \sqrt {-2 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2} b +a +b}\, d}-\frac {2 B \left (2 \cos \left (\frac {d x}{2}+\frac {c}{2}\right ) \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2} b +\sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {-\frac {2 b \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}}{a -b}+\frac {a +b}{a -b}}\, \operatorname {EllipticE}\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {-\frac {2 b}{a -b}}\right ) a -\sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {-\frac {2 b \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}}{a -b}+\frac {a +b}{a -b}}\, b \operatorname {EllipticE}\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {-\frac {2 b}{a -b}}\right )\right )}{\left (a -b \right ) \left (a +b \right ) \sin \left (\frac {d x}{2}+\frac {c}{2}\right ) \sqrt {-2 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2} b +a +b}\, d}\) \(595\)

Input:

int((A+B*cos(d*x+c))*sec(d*x+c)/(a+cos(d*x+c)*b)^(3/2),x,method=_RETURNVER 
BOSE)
 

Output:

-(-(-2*b*cos(1/2*d*x+1/2*c)^2-a+b)*sin(1/2*d*x+1/2*c)^2)^(1/2)*(-2*A/a*(si 
n(1/2*d*x+1/2*c)^2)^(1/2)*((2*b*cos(1/2*d*x+1/2*c)^2+a-b)/(a-b))^(1/2)/(-2 
*b*sin(1/2*d*x+1/2*c)^4+(a+b)*sin(1/2*d*x+1/2*c)^2)^(1/2)*EllipticPi(cos(1 
/2*d*x+1/2*c),2,(-2*b/(a-b))^(1/2))+2*(A*b-B*a)/a/sin(1/2*d*x+1/2*c)^2/(2* 
sin(1/2*d*x+1/2*c)^2*b-a-b)/(a^2-b^2)*(-2*b*sin(1/2*d*x+1/2*c)^4+(a+b)*sin 
(1/2*d*x+1/2*c)^2)^(1/2)*(2*cos(1/2*d*x+1/2*c)*sin(1/2*d*x+1/2*c)^2*b+(sin 
(1/2*d*x+1/2*c)^2)^(1/2)*(-2*b/(a-b)*sin(1/2*d*x+1/2*c)^2+(a+b)/(a-b))^(1/ 
2)*EllipticE(cos(1/2*d*x+1/2*c),(-2*b/(a-b))^(1/2))*a-(sin(1/2*d*x+1/2*c)^ 
2)^(1/2)*(-2*b/(a-b)*sin(1/2*d*x+1/2*c)^2+(a+b)/(a-b))^(1/2)*b*EllipticE(c 
os(1/2*d*x+1/2*c),(-2*b/(a-b))^(1/2))))/sin(1/2*d*x+1/2*c)/(-2*sin(1/2*d*x 
+1/2*c)^2*b+a+b)^(1/2)/d
 

Fricas [F(-1)]

Timed out. \[ \int \frac {(A+B \cos (c+d x)) \sec (c+d x)}{(a+b \cos (c+d x))^{3/2}} \, dx=\text {Timed out} \] Input:

integrate((A+B*cos(d*x+c))*sec(d*x+c)/(a+b*cos(d*x+c))^(3/2),x, algorithm= 
"fricas")
 

Output:

Timed out
 

Sympy [F]

\[ \int \frac {(A+B \cos (c+d x)) \sec (c+d x)}{(a+b \cos (c+d x))^{3/2}} \, dx=\int \frac {\left (A + B \cos {\left (c + d x \right )}\right ) \sec {\left (c + d x \right )}}{\left (a + b \cos {\left (c + d x \right )}\right )^{\frac {3}{2}}}\, dx \] Input:

integrate((A+B*cos(d*x+c))*sec(d*x+c)/(a+b*cos(d*x+c))**(3/2),x)
 

Output:

Integral((A + B*cos(c + d*x))*sec(c + d*x)/(a + b*cos(c + d*x))**(3/2), x)
 

Maxima [F]

\[ \int \frac {(A+B \cos (c+d x)) \sec (c+d x)}{(a+b \cos (c+d x))^{3/2}} \, dx=\int { \frac {{\left (B \cos \left (d x + c\right ) + A\right )} \sec \left (d x + c\right )}{{\left (b \cos \left (d x + c\right ) + a\right )}^{\frac {3}{2}}} \,d x } \] Input:

integrate((A+B*cos(d*x+c))*sec(d*x+c)/(a+b*cos(d*x+c))^(3/2),x, algorithm= 
"maxima")
 

Output:

integrate((B*cos(d*x + c) + A)*sec(d*x + c)/(b*cos(d*x + c) + a)^(3/2), x)
 

Giac [F]

\[ \int \frac {(A+B \cos (c+d x)) \sec (c+d x)}{(a+b \cos (c+d x))^{3/2}} \, dx=\int { \frac {{\left (B \cos \left (d x + c\right ) + A\right )} \sec \left (d x + c\right )}{{\left (b \cos \left (d x + c\right ) + a\right )}^{\frac {3}{2}}} \,d x } \] Input:

integrate((A+B*cos(d*x+c))*sec(d*x+c)/(a+b*cos(d*x+c))^(3/2),x, algorithm= 
"giac")
 

Output:

integrate((B*cos(d*x + c) + A)*sec(d*x + c)/(b*cos(d*x + c) + a)^(3/2), x)
 

Mupad [F(-1)]

Timed out. \[ \int \frac {(A+B \cos (c+d x)) \sec (c+d x)}{(a+b \cos (c+d x))^{3/2}} \, dx=\int \frac {A+B\,\cos \left (c+d\,x\right )}{\cos \left (c+d\,x\right )\,{\left (a+b\,\cos \left (c+d\,x\right )\right )}^{3/2}} \,d x \] Input:

int((A + B*cos(c + d*x))/(cos(c + d*x)*(a + b*cos(c + d*x))^(3/2)),x)
 

Output:

int((A + B*cos(c + d*x))/(cos(c + d*x)*(a + b*cos(c + d*x))^(3/2)), x)
 

Reduce [F]

\[ \int \frac {(A+B \cos (c+d x)) \sec (c+d x)}{(a+b \cos (c+d x))^{3/2}} \, dx=\int \frac {\sqrt {\cos \left (d x +c \right ) b +a}\, \sec \left (d x +c \right )}{\cos \left (d x +c \right ) b +a}d x \] Input:

int((A+B*cos(d*x+c))*sec(d*x+c)/(a+b*cos(d*x+c))^(3/2),x)
 

Output:

int((sqrt(cos(c + d*x)*b + a)*sec(c + d*x))/(cos(c + d*x)*b + a),x)