\(\int \frac {\cos ^3(c+d x) (A+B \cos (c+d x))}{(a+b \cos (c+d x))^{5/2}} \, dx\) [334]

Optimal result
Mathematica [A] (verified)
Rubi [A] (verified)
Maple [B] (warning: unable to verify)
Fricas [C] (verification not implemented)
Sympy [F(-1)]
Maxima [F]
Giac [F]
Mupad [F(-1)]
Reduce [F]

Optimal result

Integrand size = 33, antiderivative size = 413 \[ \int \frac {\cos ^3(c+d x) (A+B \cos (c+d x))}{(a+b \cos (c+d x))^{5/2}} \, dx=\frac {2 \left (8 a^4 A b-15 a^2 A b^3+3 A b^5-16 a^5 B+28 a^3 b^2 B-8 a b^4 B\right ) \sqrt {a+b \cos (c+d x)} E\left (\frac {1}{2} (c+d x)|\frac {2 b}{a+b}\right )}{3 b^4 \left (a^2-b^2\right )^2 d \sqrt {\frac {a+b \cos (c+d x)}{a+b}}}-\frac {2 \left (8 a^3 A b-9 a A b^3-16 a^4 B+16 a^2 b^2 B+b^4 B\right ) \sqrt {\frac {a+b \cos (c+d x)}{a+b}} \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),\frac {2 b}{a+b}\right )}{3 b^4 \left (a^2-b^2\right ) d \sqrt {a+b \cos (c+d x)}}+\frac {2 a (A b-a B) \cos ^2(c+d x) \sin (c+d x)}{3 b \left (a^2-b^2\right ) d (a+b \cos (c+d x))^{3/2}}-\frac {2 a^2 \left (3 a^2 A b-7 A b^3-6 a^3 B+10 a b^2 B\right ) \sin (c+d x)}{3 b^3 \left (a^2-b^2\right )^2 d \sqrt {a+b \cos (c+d x)}}-\frac {2 \left (a A b-2 a^2 B+b^2 B\right ) \sqrt {a+b \cos (c+d x)} \sin (c+d x)}{3 b^3 \left (a^2-b^2\right ) d} \] Output:

2/3*(8*A*a^4*b-15*A*a^2*b^3+3*A*b^5-16*B*a^5+28*B*a^3*b^2-8*B*a*b^4)*(a+b* 
cos(d*x+c))^(1/2)*EllipticE(sin(1/2*d*x+1/2*c),2^(1/2)*(b/(a+b))^(1/2))/b^ 
4/(a^2-b^2)^2/d/((a+b*cos(d*x+c))/(a+b))^(1/2)-2/3*(8*A*a^3*b-9*A*a*b^3-16 
*B*a^4+16*B*a^2*b^2+B*b^4)*((a+b*cos(d*x+c))/(a+b))^(1/2)*InverseJacobiAM( 
1/2*d*x+1/2*c,2^(1/2)*(b/(a+b))^(1/2))/b^4/(a^2-b^2)/d/(a+b*cos(d*x+c))^(1 
/2)+2/3*a*(A*b-B*a)*cos(d*x+c)^2*sin(d*x+c)/b/(a^2-b^2)/d/(a+b*cos(d*x+c)) 
^(3/2)-2/3*a^2*(3*A*a^2*b-7*A*b^3-6*B*a^3+10*B*a*b^2)*sin(d*x+c)/b^3/(a^2- 
b^2)^2/d/(a+b*cos(d*x+c))^(1/2)-2/3*(A*a*b-2*B*a^2+B*b^2)*(a+b*cos(d*x+c)) 
^(1/2)*sin(d*x+c)/b^3/(a^2-b^2)/d
 

Mathematica [A] (verified)

Time = 4.30 (sec) , antiderivative size = 334, normalized size of antiderivative = 0.81 \[ \int \frac {\cos ^3(c+d x) (A+B \cos (c+d x))}{(a+b \cos (c+d x))^{5/2}} \, dx=\frac {2 \left (\frac {\left (\frac {a+b \cos (c+d x)}{a+b}\right )^{3/2} \left (b^2 \left (2 a^3 A b-6 a A b^3-4 a^4 B+7 a^2 b^2 B+b^4 B\right ) \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),\frac {2 b}{a+b}\right )-\left (-8 a^4 A b+15 a^2 A b^3-3 A b^5+16 a^5 B-28 a^3 b^2 B+8 a b^4 B\right ) \left ((a+b) E\left (\frac {1}{2} (c+d x)|\frac {2 b}{a+b}\right )-a \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),\frac {2 b}{a+b}\right )\right )\right )}{(a-b)^2 (a+b)}+\frac {b \left (-8 a^5 A b+16 a^3 A b^3+16 a^6 B-25 a^4 b^2 B+b^6 B+2 a b \left (-5 a^3 A b+9 a A b^3+10 a^4 B-16 a^2 b^2 B+2 b^4 B\right ) \cos (c+d x)+\left (-a^2 b+b^3\right )^2 B \cos (2 (c+d x))\right ) \sin (c+d x)}{2 \left (a^2-b^2\right )^2}\right )}{3 b^4 d (a+b \cos (c+d x))^{3/2}} \] Input:

Integrate[(Cos[c + d*x]^3*(A + B*Cos[c + d*x]))/(a + b*Cos[c + d*x])^(5/2) 
,x]
 

Output:

(2*((((a + b*Cos[c + d*x])/(a + b))^(3/2)*(b^2*(2*a^3*A*b - 6*a*A*b^3 - 4* 
a^4*B + 7*a^2*b^2*B + b^4*B)*EllipticF[(c + d*x)/2, (2*b)/(a + b)] - (-8*a 
^4*A*b + 15*a^2*A*b^3 - 3*A*b^5 + 16*a^5*B - 28*a^3*b^2*B + 8*a*b^4*B)*((a 
 + b)*EllipticE[(c + d*x)/2, (2*b)/(a + b)] - a*EllipticF[(c + d*x)/2, (2* 
b)/(a + b)])))/((a - b)^2*(a + b)) + (b*(-8*a^5*A*b + 16*a^3*A*b^3 + 16*a^ 
6*B - 25*a^4*b^2*B + b^6*B + 2*a*b*(-5*a^3*A*b + 9*a*A*b^3 + 10*a^4*B - 16 
*a^2*b^2*B + 2*b^4*B)*Cos[c + d*x] + (-(a^2*b) + b^3)^2*B*Cos[2*(c + d*x)] 
)*Sin[c + d*x])/(2*(a^2 - b^2)^2)))/(3*b^4*d*(a + b*Cos[c + d*x])^(3/2))
 

Rubi [A] (verified)

Time = 2.24 (sec) , antiderivative size = 421, normalized size of antiderivative = 1.02, number of steps used = 18, number of rules used = 18, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.545, Rules used = {3042, 3468, 27, 3042, 3510, 27, 3042, 3502, 27, 3042, 3231, 3042, 3134, 3042, 3132, 3142, 3042, 3140}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {\cos ^3(c+d x) (A+B \cos (c+d x))}{(a+b \cos (c+d x))^{5/2}} \, dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \frac {\sin \left (c+d x+\frac {\pi }{2}\right )^3 \left (A+B \sin \left (c+d x+\frac {\pi }{2}\right )\right )}{\left (a+b \sin \left (c+d x+\frac {\pi }{2}\right )\right )^{5/2}}dx\)

\(\Big \downarrow \) 3468

\(\displaystyle \frac {2 a (A b-a B) \sin (c+d x) \cos ^2(c+d x)}{3 b d \left (a^2-b^2\right ) (a+b \cos (c+d x))^{3/2}}-\frac {2 \int -\frac {\cos (c+d x) \left (-3 \left (-2 B a^2+A b a+b^2 B\right ) \cos ^2(c+d x)-3 b (A b-a B) \cos (c+d x)+4 a (A b-a B)\right )}{2 (a+b \cos (c+d x))^{3/2}}dx}{3 b \left (a^2-b^2\right )}\)

\(\Big \downarrow \) 27

\(\displaystyle \frac {\int \frac {\cos (c+d x) \left (-3 \left (-2 B a^2+A b a+b^2 B\right ) \cos ^2(c+d x)-3 b (A b-a B) \cos (c+d x)+4 a (A b-a B)\right )}{(a+b \cos (c+d x))^{3/2}}dx}{3 b \left (a^2-b^2\right )}+\frac {2 a (A b-a B) \sin (c+d x) \cos ^2(c+d x)}{3 b d \left (a^2-b^2\right ) (a+b \cos (c+d x))^{3/2}}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {\int \frac {\sin \left (c+d x+\frac {\pi }{2}\right ) \left (-3 \left (-2 B a^2+A b a+b^2 B\right ) \sin \left (c+d x+\frac {\pi }{2}\right )^2-3 b (A b-a B) \sin \left (c+d x+\frac {\pi }{2}\right )+4 a (A b-a B)\right )}{\left (a+b \sin \left (c+d x+\frac {\pi }{2}\right )\right )^{3/2}}dx}{3 b \left (a^2-b^2\right )}+\frac {2 a (A b-a B) \sin (c+d x) \cos ^2(c+d x)}{3 b d \left (a^2-b^2\right ) (a+b \cos (c+d x))^{3/2}}\)

\(\Big \downarrow \) 3510

\(\displaystyle \frac {\frac {2 \int \frac {-3 b \left (a^2-b^2\right ) \left (-2 B a^2+A b a+b^2 B\right ) \cos ^2(c+d x)+\left (-12 B a^5+6 A b a^4+22 b^2 B a^3-13 A b^3 a^2-6 b^4 B a+3 A b^5\right ) \cos (c+d x)+a b \left (-6 B a^3+3 A b a^2+10 b^2 B a-7 A b^3\right )}{2 \sqrt {a+b \cos (c+d x)}}dx}{b^2 \left (a^2-b^2\right )}-\frac {2 a^2 \left (-6 a^3 B+3 a^2 A b+10 a b^2 B-7 A b^3\right ) \sin (c+d x)}{b^2 d \left (a^2-b^2\right ) \sqrt {a+b \cos (c+d x)}}}{3 b \left (a^2-b^2\right )}+\frac {2 a (A b-a B) \sin (c+d x) \cos ^2(c+d x)}{3 b d \left (a^2-b^2\right ) (a+b \cos (c+d x))^{3/2}}\)

\(\Big \downarrow \) 27

\(\displaystyle \frac {\frac {\int \frac {-3 b \left (a^2-b^2\right ) \left (-2 B a^2+A b a+b^2 B\right ) \cos ^2(c+d x)+\left (-12 B a^5+6 A b a^4+22 b^2 B a^3-13 A b^3 a^2-6 b^4 B a+3 A b^5\right ) \cos (c+d x)+a b \left (-6 B a^3+3 A b a^2+10 b^2 B a-7 A b^3\right )}{\sqrt {a+b \cos (c+d x)}}dx}{b^2 \left (a^2-b^2\right )}-\frac {2 a^2 \left (-6 a^3 B+3 a^2 A b+10 a b^2 B-7 A b^3\right ) \sin (c+d x)}{b^2 d \left (a^2-b^2\right ) \sqrt {a+b \cos (c+d x)}}}{3 b \left (a^2-b^2\right )}+\frac {2 a (A b-a B) \sin (c+d x) \cos ^2(c+d x)}{3 b d \left (a^2-b^2\right ) (a+b \cos (c+d x))^{3/2}}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {\frac {\int \frac {-3 b \left (a^2-b^2\right ) \left (-2 B a^2+A b a+b^2 B\right ) \sin \left (c+d x+\frac {\pi }{2}\right )^2+\left (-12 B a^5+6 A b a^4+22 b^2 B a^3-13 A b^3 a^2-6 b^4 B a+3 A b^5\right ) \sin \left (c+d x+\frac {\pi }{2}\right )+a b \left (-6 B a^3+3 A b a^2+10 b^2 B a-7 A b^3\right )}{\sqrt {a+b \sin \left (c+d x+\frac {\pi }{2}\right )}}dx}{b^2 \left (a^2-b^2\right )}-\frac {2 a^2 \left (-6 a^3 B+3 a^2 A b+10 a b^2 B-7 A b^3\right ) \sin (c+d x)}{b^2 d \left (a^2-b^2\right ) \sqrt {a+b \cos (c+d x)}}}{3 b \left (a^2-b^2\right )}+\frac {2 a (A b-a B) \sin (c+d x) \cos ^2(c+d x)}{3 b d \left (a^2-b^2\right ) (a+b \cos (c+d x))^{3/2}}\)

\(\Big \downarrow \) 3502

\(\displaystyle \frac {\frac {\frac {2 \int \frac {3 \left (\left (-4 B a^4+2 A b a^3+7 b^2 B a^2-6 A b^3 a+b^4 B\right ) b^2+\left (-16 B a^5+8 A b a^4+28 b^2 B a^3-15 A b^3 a^2-8 b^4 B a+3 A b^5\right ) \cos (c+d x) b\right )}{2 \sqrt {a+b \cos (c+d x)}}dx}{3 b}-\frac {2 \left (a^2-b^2\right ) \left (-2 a^2 B+a A b+b^2 B\right ) \sin (c+d x) \sqrt {a+b \cos (c+d x)}}{d}}{b^2 \left (a^2-b^2\right )}-\frac {2 a^2 \left (-6 a^3 B+3 a^2 A b+10 a b^2 B-7 A b^3\right ) \sin (c+d x)}{b^2 d \left (a^2-b^2\right ) \sqrt {a+b \cos (c+d x)}}}{3 b \left (a^2-b^2\right )}+\frac {2 a (A b-a B) \sin (c+d x) \cos ^2(c+d x)}{3 b d \left (a^2-b^2\right ) (a+b \cos (c+d x))^{3/2}}\)

\(\Big \downarrow \) 27

\(\displaystyle \frac {\frac {\frac {\int \frac {\left (-4 B a^4+2 A b a^3+7 b^2 B a^2-6 A b^3 a+b^4 B\right ) b^2+\left (-16 B a^5+8 A b a^4+28 b^2 B a^3-15 A b^3 a^2-8 b^4 B a+3 A b^5\right ) \cos (c+d x) b}{\sqrt {a+b \cos (c+d x)}}dx}{b}-\frac {2 \left (a^2-b^2\right ) \left (-2 a^2 B+a A b+b^2 B\right ) \sin (c+d x) \sqrt {a+b \cos (c+d x)}}{d}}{b^2 \left (a^2-b^2\right )}-\frac {2 a^2 \left (-6 a^3 B+3 a^2 A b+10 a b^2 B-7 A b^3\right ) \sin (c+d x)}{b^2 d \left (a^2-b^2\right ) \sqrt {a+b \cos (c+d x)}}}{3 b \left (a^2-b^2\right )}+\frac {2 a (A b-a B) \sin (c+d x) \cos ^2(c+d x)}{3 b d \left (a^2-b^2\right ) (a+b \cos (c+d x))^{3/2}}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {\frac {\frac {\int \frac {\left (-4 B a^4+2 A b a^3+7 b^2 B a^2-6 A b^3 a+b^4 B\right ) b^2+\left (-16 B a^5+8 A b a^4+28 b^2 B a^3-15 A b^3 a^2-8 b^4 B a+3 A b^5\right ) \sin \left (c+d x+\frac {\pi }{2}\right ) b}{\sqrt {a+b \sin \left (c+d x+\frac {\pi }{2}\right )}}dx}{b}-\frac {2 \left (a^2-b^2\right ) \left (-2 a^2 B+a A b+b^2 B\right ) \sin (c+d x) \sqrt {a+b \cos (c+d x)}}{d}}{b^2 \left (a^2-b^2\right )}-\frac {2 a^2 \left (-6 a^3 B+3 a^2 A b+10 a b^2 B-7 A b^3\right ) \sin (c+d x)}{b^2 d \left (a^2-b^2\right ) \sqrt {a+b \cos (c+d x)}}}{3 b \left (a^2-b^2\right )}+\frac {2 a (A b-a B) \sin (c+d x) \cos ^2(c+d x)}{3 b d \left (a^2-b^2\right ) (a+b \cos (c+d x))^{3/2}}\)

\(\Big \downarrow \) 3231

\(\displaystyle \frac {\frac {\frac {\left (-16 a^5 B+8 a^4 A b+28 a^3 b^2 B-15 a^2 A b^3-8 a b^4 B+3 A b^5\right ) \int \sqrt {a+b \cos (c+d x)}dx-\left (a^2-b^2\right ) \left (-16 a^4 B+8 a^3 A b+16 a^2 b^2 B-9 a A b^3+b^4 B\right ) \int \frac {1}{\sqrt {a+b \cos (c+d x)}}dx}{b}-\frac {2 \left (a^2-b^2\right ) \left (-2 a^2 B+a A b+b^2 B\right ) \sin (c+d x) \sqrt {a+b \cos (c+d x)}}{d}}{b^2 \left (a^2-b^2\right )}-\frac {2 a^2 \left (-6 a^3 B+3 a^2 A b+10 a b^2 B-7 A b^3\right ) \sin (c+d x)}{b^2 d \left (a^2-b^2\right ) \sqrt {a+b \cos (c+d x)}}}{3 b \left (a^2-b^2\right )}+\frac {2 a (A b-a B) \sin (c+d x) \cos ^2(c+d x)}{3 b d \left (a^2-b^2\right ) (a+b \cos (c+d x))^{3/2}}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {\frac {\frac {\left (-16 a^5 B+8 a^4 A b+28 a^3 b^2 B-15 a^2 A b^3-8 a b^4 B+3 A b^5\right ) \int \sqrt {a+b \sin \left (c+d x+\frac {\pi }{2}\right )}dx-\left (a^2-b^2\right ) \left (-16 a^4 B+8 a^3 A b+16 a^2 b^2 B-9 a A b^3+b^4 B\right ) \int \frac {1}{\sqrt {a+b \sin \left (c+d x+\frac {\pi }{2}\right )}}dx}{b}-\frac {2 \left (a^2-b^2\right ) \left (-2 a^2 B+a A b+b^2 B\right ) \sin (c+d x) \sqrt {a+b \cos (c+d x)}}{d}}{b^2 \left (a^2-b^2\right )}-\frac {2 a^2 \left (-6 a^3 B+3 a^2 A b+10 a b^2 B-7 A b^3\right ) \sin (c+d x)}{b^2 d \left (a^2-b^2\right ) \sqrt {a+b \cos (c+d x)}}}{3 b \left (a^2-b^2\right )}+\frac {2 a (A b-a B) \sin (c+d x) \cos ^2(c+d x)}{3 b d \left (a^2-b^2\right ) (a+b \cos (c+d x))^{3/2}}\)

\(\Big \downarrow \) 3134

\(\displaystyle \frac {\frac {\frac {\frac {\left (-16 a^5 B+8 a^4 A b+28 a^3 b^2 B-15 a^2 A b^3-8 a b^4 B+3 A b^5\right ) \sqrt {a+b \cos (c+d x)} \int \sqrt {\frac {a}{a+b}+\frac {b \cos (c+d x)}{a+b}}dx}{\sqrt {\frac {a+b \cos (c+d x)}{a+b}}}-\left (a^2-b^2\right ) \left (-16 a^4 B+8 a^3 A b+16 a^2 b^2 B-9 a A b^3+b^4 B\right ) \int \frac {1}{\sqrt {a+b \sin \left (c+d x+\frac {\pi }{2}\right )}}dx}{b}-\frac {2 \left (a^2-b^2\right ) \left (-2 a^2 B+a A b+b^2 B\right ) \sin (c+d x) \sqrt {a+b \cos (c+d x)}}{d}}{b^2 \left (a^2-b^2\right )}-\frac {2 a^2 \left (-6 a^3 B+3 a^2 A b+10 a b^2 B-7 A b^3\right ) \sin (c+d x)}{b^2 d \left (a^2-b^2\right ) \sqrt {a+b \cos (c+d x)}}}{3 b \left (a^2-b^2\right )}+\frac {2 a (A b-a B) \sin (c+d x) \cos ^2(c+d x)}{3 b d \left (a^2-b^2\right ) (a+b \cos (c+d x))^{3/2}}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {\frac {\frac {\frac {\left (-16 a^5 B+8 a^4 A b+28 a^3 b^2 B-15 a^2 A b^3-8 a b^4 B+3 A b^5\right ) \sqrt {a+b \cos (c+d x)} \int \sqrt {\frac {a}{a+b}+\frac {b \sin \left (c+d x+\frac {\pi }{2}\right )}{a+b}}dx}{\sqrt {\frac {a+b \cos (c+d x)}{a+b}}}-\left (a^2-b^2\right ) \left (-16 a^4 B+8 a^3 A b+16 a^2 b^2 B-9 a A b^3+b^4 B\right ) \int \frac {1}{\sqrt {a+b \sin \left (c+d x+\frac {\pi }{2}\right )}}dx}{b}-\frac {2 \left (a^2-b^2\right ) \left (-2 a^2 B+a A b+b^2 B\right ) \sin (c+d x) \sqrt {a+b \cos (c+d x)}}{d}}{b^2 \left (a^2-b^2\right )}-\frac {2 a^2 \left (-6 a^3 B+3 a^2 A b+10 a b^2 B-7 A b^3\right ) \sin (c+d x)}{b^2 d \left (a^2-b^2\right ) \sqrt {a+b \cos (c+d x)}}}{3 b \left (a^2-b^2\right )}+\frac {2 a (A b-a B) \sin (c+d x) \cos ^2(c+d x)}{3 b d \left (a^2-b^2\right ) (a+b \cos (c+d x))^{3/2}}\)

\(\Big \downarrow \) 3132

\(\displaystyle \frac {\frac {\frac {\frac {2 \left (-16 a^5 B+8 a^4 A b+28 a^3 b^2 B-15 a^2 A b^3-8 a b^4 B+3 A b^5\right ) \sqrt {a+b \cos (c+d x)} E\left (\frac {1}{2} (c+d x)|\frac {2 b}{a+b}\right )}{d \sqrt {\frac {a+b \cos (c+d x)}{a+b}}}-\left (a^2-b^2\right ) \left (-16 a^4 B+8 a^3 A b+16 a^2 b^2 B-9 a A b^3+b^4 B\right ) \int \frac {1}{\sqrt {a+b \sin \left (c+d x+\frac {\pi }{2}\right )}}dx}{b}-\frac {2 \left (a^2-b^2\right ) \left (-2 a^2 B+a A b+b^2 B\right ) \sin (c+d x) \sqrt {a+b \cos (c+d x)}}{d}}{b^2 \left (a^2-b^2\right )}-\frac {2 a^2 \left (-6 a^3 B+3 a^2 A b+10 a b^2 B-7 A b^3\right ) \sin (c+d x)}{b^2 d \left (a^2-b^2\right ) \sqrt {a+b \cos (c+d x)}}}{3 b \left (a^2-b^2\right )}+\frac {2 a (A b-a B) \sin (c+d x) \cos ^2(c+d x)}{3 b d \left (a^2-b^2\right ) (a+b \cos (c+d x))^{3/2}}\)

\(\Big \downarrow \) 3142

\(\displaystyle \frac {\frac {\frac {\frac {2 \left (-16 a^5 B+8 a^4 A b+28 a^3 b^2 B-15 a^2 A b^3-8 a b^4 B+3 A b^5\right ) \sqrt {a+b \cos (c+d x)} E\left (\frac {1}{2} (c+d x)|\frac {2 b}{a+b}\right )}{d \sqrt {\frac {a+b \cos (c+d x)}{a+b}}}-\frac {\left (a^2-b^2\right ) \left (-16 a^4 B+8 a^3 A b+16 a^2 b^2 B-9 a A b^3+b^4 B\right ) \sqrt {\frac {a+b \cos (c+d x)}{a+b}} \int \frac {1}{\sqrt {\frac {a}{a+b}+\frac {b \cos (c+d x)}{a+b}}}dx}{\sqrt {a+b \cos (c+d x)}}}{b}-\frac {2 \left (a^2-b^2\right ) \left (-2 a^2 B+a A b+b^2 B\right ) \sin (c+d x) \sqrt {a+b \cos (c+d x)}}{d}}{b^2 \left (a^2-b^2\right )}-\frac {2 a^2 \left (-6 a^3 B+3 a^2 A b+10 a b^2 B-7 A b^3\right ) \sin (c+d x)}{b^2 d \left (a^2-b^2\right ) \sqrt {a+b \cos (c+d x)}}}{3 b \left (a^2-b^2\right )}+\frac {2 a (A b-a B) \sin (c+d x) \cos ^2(c+d x)}{3 b d \left (a^2-b^2\right ) (a+b \cos (c+d x))^{3/2}}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {\frac {\frac {\frac {2 \left (-16 a^5 B+8 a^4 A b+28 a^3 b^2 B-15 a^2 A b^3-8 a b^4 B+3 A b^5\right ) \sqrt {a+b \cos (c+d x)} E\left (\frac {1}{2} (c+d x)|\frac {2 b}{a+b}\right )}{d \sqrt {\frac {a+b \cos (c+d x)}{a+b}}}-\frac {\left (a^2-b^2\right ) \left (-16 a^4 B+8 a^3 A b+16 a^2 b^2 B-9 a A b^3+b^4 B\right ) \sqrt {\frac {a+b \cos (c+d x)}{a+b}} \int \frac {1}{\sqrt {\frac {a}{a+b}+\frac {b \sin \left (c+d x+\frac {\pi }{2}\right )}{a+b}}}dx}{\sqrt {a+b \cos (c+d x)}}}{b}-\frac {2 \left (a^2-b^2\right ) \left (-2 a^2 B+a A b+b^2 B\right ) \sin (c+d x) \sqrt {a+b \cos (c+d x)}}{d}}{b^2 \left (a^2-b^2\right )}-\frac {2 a^2 \left (-6 a^3 B+3 a^2 A b+10 a b^2 B-7 A b^3\right ) \sin (c+d x)}{b^2 d \left (a^2-b^2\right ) \sqrt {a+b \cos (c+d x)}}}{3 b \left (a^2-b^2\right )}+\frac {2 a (A b-a B) \sin (c+d x) \cos ^2(c+d x)}{3 b d \left (a^2-b^2\right ) (a+b \cos (c+d x))^{3/2}}\)

\(\Big \downarrow \) 3140

\(\displaystyle \frac {2 a (A b-a B) \sin (c+d x) \cos ^2(c+d x)}{3 b d \left (a^2-b^2\right ) (a+b \cos (c+d x))^{3/2}}+\frac {\frac {\frac {\frac {2 \left (-16 a^5 B+8 a^4 A b+28 a^3 b^2 B-15 a^2 A b^3-8 a b^4 B+3 A b^5\right ) \sqrt {a+b \cos (c+d x)} E\left (\frac {1}{2} (c+d x)|\frac {2 b}{a+b}\right )}{d \sqrt {\frac {a+b \cos (c+d x)}{a+b}}}-\frac {2 \left (a^2-b^2\right ) \left (-16 a^4 B+8 a^3 A b+16 a^2 b^2 B-9 a A b^3+b^4 B\right ) \sqrt {\frac {a+b \cos (c+d x)}{a+b}} \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),\frac {2 b}{a+b}\right )}{d \sqrt {a+b \cos (c+d x)}}}{b}-\frac {2 \left (a^2-b^2\right ) \left (-2 a^2 B+a A b+b^2 B\right ) \sin (c+d x) \sqrt {a+b \cos (c+d x)}}{d}}{b^2 \left (a^2-b^2\right )}-\frac {2 a^2 \left (-6 a^3 B+3 a^2 A b+10 a b^2 B-7 A b^3\right ) \sin (c+d x)}{b^2 d \left (a^2-b^2\right ) \sqrt {a+b \cos (c+d x)}}}{3 b \left (a^2-b^2\right )}\)

Input:

Int[(Cos[c + d*x]^3*(A + B*Cos[c + d*x]))/(a + b*Cos[c + d*x])^(5/2),x]
 

Output:

(2*a*(A*b - a*B)*Cos[c + d*x]^2*Sin[c + d*x])/(3*b*(a^2 - b^2)*d*(a + b*Co 
s[c + d*x])^(3/2)) + ((-2*a^2*(3*a^2*A*b - 7*A*b^3 - 6*a^3*B + 10*a*b^2*B) 
*Sin[c + d*x])/(b^2*(a^2 - b^2)*d*Sqrt[a + b*Cos[c + d*x]]) + (((2*(8*a^4* 
A*b - 15*a^2*A*b^3 + 3*A*b^5 - 16*a^5*B + 28*a^3*b^2*B - 8*a*b^4*B)*Sqrt[a 
 + b*Cos[c + d*x]]*EllipticE[(c + d*x)/2, (2*b)/(a + b)])/(d*Sqrt[(a + b*C 
os[c + d*x])/(a + b)]) - (2*(a^2 - b^2)*(8*a^3*A*b - 9*a*A*b^3 - 16*a^4*B 
+ 16*a^2*b^2*B + b^4*B)*Sqrt[(a + b*Cos[c + d*x])/(a + b)]*EllipticF[(c + 
d*x)/2, (2*b)/(a + b)])/(d*Sqrt[a + b*Cos[c + d*x]]))/b - (2*(a^2 - b^2)*( 
a*A*b - 2*a^2*B + b^2*B)*Sqrt[a + b*Cos[c + d*x]]*Sin[c + d*x])/d)/(b^2*(a 
^2 - b^2)))/(3*b*(a^2 - b^2))
 

Defintions of rubi rules used

rule 27
Int[(a_)*(Fx_), x_Symbol] :> Simp[a   Int[Fx, x], x] /; FreeQ[a, x] &&  !Ma 
tchQ[Fx, (b_)*(Gx_) /; FreeQ[b, x]]
 

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 3132
Int[Sqrt[(a_) + (b_.)*sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[2*(Sqrt[a 
 + b]/d)*EllipticE[(1/2)*(c - Pi/2 + d*x), 2*(b/(a + b))], x] /; FreeQ[{a, 
b, c, d}, x] && NeQ[a^2 - b^2, 0] && GtQ[a + b, 0]
 

rule 3134
Int[Sqrt[(a_) + (b_.)*sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[Sqrt[a + 
b*Sin[c + d*x]]/Sqrt[(a + b*Sin[c + d*x])/(a + b)]   Int[Sqrt[a/(a + b) + ( 
b/(a + b))*Sin[c + d*x]], x], x] /; FreeQ[{a, b, c, d}, x] && NeQ[a^2 - b^2 
, 0] &&  !GtQ[a + b, 0]
 

rule 3140
Int[1/Sqrt[(a_) + (b_.)*sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2/(d*S 
qrt[a + b]))*EllipticF[(1/2)*(c - Pi/2 + d*x), 2*(b/(a + b))], x] /; FreeQ[ 
{a, b, c, d}, x] && NeQ[a^2 - b^2, 0] && GtQ[a + b, 0]
 

rule 3142
Int[1/Sqrt[(a_) + (b_.)*sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[Sqrt[(a 
 + b*Sin[c + d*x])/(a + b)]/Sqrt[a + b*Sin[c + d*x]]   Int[1/Sqrt[a/(a + b) 
 + (b/(a + b))*Sin[c + d*x]], x], x] /; FreeQ[{a, b, c, d}, x] && NeQ[a^2 - 
 b^2, 0] &&  !GtQ[a + b, 0]
 

rule 3231
Int[((c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)])/Sqrt[(a_) + (b_.)*sin[(e_.) + ( 
f_.)*(x_)]], x_Symbol] :> Simp[(b*c - a*d)/b   Int[1/Sqrt[a + b*Sin[e + f*x 
]], x], x] + Simp[d/b   Int[Sqrt[a + b*Sin[e + f*x]], x], x] /; FreeQ[{a, b 
, c, d, e, f}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 - b^2, 0]
 

rule 3468
Int[((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((A_.) + (B_.)*sin[(e_.) + 
 (f_.)*(x_)])*((c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)])^(n_), x_Symbol] :> Si 
mp[(-(b*c - a*d))*(B*c - A*d)*Cos[e + f*x]*(a + b*Sin[e + f*x])^(m - 1)*((c 
 + d*Sin[e + f*x])^(n + 1)/(d*f*(n + 1)*(c^2 - d^2))), x] + Simp[1/(d*(n + 
1)*(c^2 - d^2))   Int[(a + b*Sin[e + f*x])^(m - 2)*(c + d*Sin[e + f*x])^(n 
+ 1)*Simp[b*(b*c - a*d)*(B*c - A*d)*(m - 1) + a*d*(a*A*c + b*B*c - (A*b + a 
*B)*d)*(n + 1) + (b*(b*d*(B*c - A*d) + a*(A*c*d + B*(c^2 - 2*d^2)))*(n + 1) 
 - a*(b*c - a*d)*(B*c - A*d)*(n + 2))*Sin[e + f*x] + b*(d*(A*b*c + a*B*c - 
a*A*d)*(m + n + 1) - b*B*(c^2*m + d^2*(n + 1)))*Sin[e + f*x]^2, x], x], x] 
/; FreeQ[{a, b, c, d, e, f, A, B}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 - b^2 
, 0] && NeQ[c^2 - d^2, 0] && GtQ[m, 1] && LtQ[n, -1]
 

rule 3502
Int[((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_.)*((A_.) + (B_.)*sin[(e_.) 
+ (f_.)*(x_)] + (C_.)*sin[(e_.) + (f_.)*(x_)]^2), x_Symbol] :> Simp[(-C)*Co 
s[e + f*x]*((a + b*Sin[e + f*x])^(m + 1)/(b*f*(m + 2))), x] + Simp[1/(b*(m 
+ 2))   Int[(a + b*Sin[e + f*x])^m*Simp[A*b*(m + 2) + b*C*(m + 1) + (b*B*(m 
 + 2) - a*C)*Sin[e + f*x], x], x], x] /; FreeQ[{a, b, e, f, A, B, C, m}, x] 
 &&  !LtQ[m, -1]
 

rule 3510
Int[((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((c_.) + (d_.)*sin[(e_.) + 
 (f_.)*(x_)])*((A_.) + (B_.)*sin[(e_.) + (f_.)*(x_)] + (C_.)*sin[(e_.) + (f 
_.)*(x_)]^2), x_Symbol] :> Simp[(-(b*c - a*d))*(A*b^2 - a*b*B + a^2*C)*Cos[ 
e + f*x]*((a + b*Sin[e + f*x])^(m + 1)/(b^2*f*(m + 1)*(a^2 - b^2))), x] - S 
imp[1/(b^2*(m + 1)*(a^2 - b^2))   Int[(a + b*Sin[e + f*x])^(m + 1)*Simp[b*( 
m + 1)*((b*B - a*C)*(b*c - a*d) - A*b*(a*c - b*d)) + (b*B*(a^2*d + b^2*d*(m 
 + 1) - a*b*c*(m + 2)) + (b*c - a*d)*(A*b^2*(m + 2) + C*(a^2 + b^2*(m + 1)) 
))*Sin[e + f*x] - b*C*d*(m + 1)*(a^2 - b^2)*Sin[e + f*x]^2, x], x], x] /; F 
reeQ[{a, b, c, d, e, f, A, B, C}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 - b^2, 
 0] && LtQ[m, -1]
 
Maple [B] (warning: unable to verify)

Leaf count of result is larger than twice the leaf count of optimal. \(1411\) vs. \(2(398)=796\).

Time = 20.77 (sec) , antiderivative size = 1412, normalized size of antiderivative = 3.42

method result size
default \(\text {Expression too large to display}\) \(1412\)
parts \(\text {Expression too large to display}\) \(2208\)

Input:

int(cos(d*x+c)^3*(A+B*cos(d*x+c))/(a+cos(d*x+c)*b)^(5/2),x,method=_RETURNV 
ERBOSE)
 

Output:

-(-(-2*b*cos(1/2*d*x+1/2*c)^2-a+b)*sin(1/2*d*x+1/2*c)^2)^(1/2)*(-2/3/b^4/( 
-2*b*sin(1/2*d*x+1/2*c)^4+(a+b)*sin(1/2*d*x+1/2*c)^2)^(1/2)*(-4*B*cos(1/2* 
d*x+1/2*c)*sin(1/2*d*x+1/2*c)^4*b^2+9*A*a*b*(sin(1/2*d*x+1/2*c)^2)^(1/2)*( 
-2*b/(a-b)*sin(1/2*d*x+1/2*c)^2+(a+b)/(a-b))^(1/2)*EllipticF(cos(1/2*d*x+1 
/2*c),(-2*b/(a-b))^(1/2))-3*A*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(-2*b/(a-b)*sin 
(1/2*d*x+1/2*c)^2+(a+b)/(a-b))^(1/2)*EllipticE(cos(1/2*d*x+1/2*c),(-2*b/(a 
-b))^(1/2))*a*b+3*A*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(-2*b/(a-b)*sin(1/2*d*x+1 
/2*c)^2+(a+b)/(a-b))^(1/2)*EllipticE(cos(1/2*d*x+1/2*c),(-2*b/(a-b))^(1/2) 
)*b^2+2*B*cos(1/2*d*x+1/2*c)*sin(1/2*d*x+1/2*c)^2*a*b+2*B*cos(1/2*d*x+1/2* 
c)*sin(1/2*d*x+1/2*c)^2*b^2-17*a^2*B*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(-2*b/(a 
-b)*sin(1/2*d*x+1/2*c)^2+(a+b)/(a-b))^(1/2)*EllipticF(cos(1/2*d*x+1/2*c),( 
-2*b/(a-b))^(1/2))-B*b^2*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(-2*b/(a-b)*sin(1/2* 
d*x+1/2*c)^2+(a+b)/(a-b))^(1/2)*EllipticF(cos(1/2*d*x+1/2*c),(-2*b/(a-b))^ 
(1/2))+8*B*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(-2*b/(a-b)*sin(1/2*d*x+1/2*c)^2+( 
a+b)/(a-b))^(1/2)*EllipticE(cos(1/2*d*x+1/2*c),(-2*b/(a-b))^(1/2))*a^2-8*B 
*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(-2*b/(a-b)*sin(1/2*d*x+1/2*c)^2+(a+b)/(a-b) 
)^(1/2)*EllipticE(cos(1/2*d*x+1/2*c),(-2*b/(a-b))^(1/2))*a*b)-2*a^2/b^4*(3 
*A*b-4*B*a)/sin(1/2*d*x+1/2*c)^2/(2*sin(1/2*d*x+1/2*c)^2*b-a-b)/(a^2-b^2)* 
(-2*b*sin(1/2*d*x+1/2*c)^4+(a+b)*sin(1/2*d*x+1/2*c)^2)^(1/2)*(2*cos(1/2*d* 
x+1/2*c)*sin(1/2*d*x+1/2*c)^2*b+(sin(1/2*d*x+1/2*c)^2)^(1/2)*(-2*b/(a-b...
 

Fricas [C] (verification not implemented)

Result contains complex when optimal does not.

Time = 0.21 (sec) , antiderivative size = 1316, normalized size of antiderivative = 3.19 \[ \int \frac {\cos ^3(c+d x) (A+B \cos (c+d x))}{(a+b \cos (c+d x))^{5/2}} \, dx=\text {Too large to display} \] Input:

integrate(cos(d*x+c)^3*(A+B*cos(d*x+c))/(a+b*cos(d*x+c))^(5/2),x, algorith 
m="fricas")
 

Output:

-2/9*(sqrt(1/2)*(32*I*B*a^8 - 16*I*A*a^7*b - 68*I*B*a^6*b^2 + 36*I*A*a^5*b 
^3 + 37*I*B*a^4*b^4 - 24*I*A*a^3*b^5 + 3*I*B*a^2*b^6 + (32*I*B*a^6*b^2 - 1 
6*I*A*a^5*b^3 - 68*I*B*a^4*b^4 + 36*I*A*a^3*b^5 + 37*I*B*a^2*b^6 - 24*I*A* 
a*b^7 + 3*I*B*b^8)*cos(d*x + c)^2 + 2*(32*I*B*a^7*b - 16*I*A*a^6*b^2 - 68* 
I*B*a^5*b^3 + 36*I*A*a^4*b^4 + 37*I*B*a^3*b^5 - 24*I*A*a^2*b^6 + 3*I*B*a*b 
^7)*cos(d*x + c))*sqrt(b)*weierstrassPInverse(4/3*(4*a^2 - 3*b^2)/b^2, -8/ 
27*(8*a^3 - 9*a*b^2)/b^3, 1/3*(3*b*cos(d*x + c) + 3*I*b*sin(d*x + c) + 2*a 
)/b) + sqrt(1/2)*(-32*I*B*a^8 + 16*I*A*a^7*b + 68*I*B*a^6*b^2 - 36*I*A*a^5 
*b^3 - 37*I*B*a^4*b^4 + 24*I*A*a^3*b^5 - 3*I*B*a^2*b^6 + (-32*I*B*a^6*b^2 
+ 16*I*A*a^5*b^3 + 68*I*B*a^4*b^4 - 36*I*A*a^3*b^5 - 37*I*B*a^2*b^6 + 24*I 
*A*a*b^7 - 3*I*B*b^8)*cos(d*x + c)^2 + 2*(-32*I*B*a^7*b + 16*I*A*a^6*b^2 + 
 68*I*B*a^5*b^3 - 36*I*A*a^4*b^4 - 37*I*B*a^3*b^5 + 24*I*A*a^2*b^6 - 3*I*B 
*a*b^7)*cos(d*x + c))*sqrt(b)*weierstrassPInverse(4/3*(4*a^2 - 3*b^2)/b^2, 
 -8/27*(8*a^3 - 9*a*b^2)/b^3, 1/3*(3*b*cos(d*x + c) - 3*I*b*sin(d*x + c) + 
 2*a)/b) + 3*sqrt(1/2)*(16*I*B*a^7*b - 8*I*A*a^6*b^2 - 28*I*B*a^5*b^3 + 15 
*I*A*a^4*b^4 + 8*I*B*a^3*b^5 - 3*I*A*a^2*b^6 + (16*I*B*a^5*b^3 - 8*I*A*a^4 
*b^4 - 28*I*B*a^3*b^5 + 15*I*A*a^2*b^6 + 8*I*B*a*b^7 - 3*I*A*b^8)*cos(d*x 
+ c)^2 + 2*(16*I*B*a^6*b^2 - 8*I*A*a^5*b^3 - 28*I*B*a^4*b^4 + 15*I*A*a^3*b 
^5 + 8*I*B*a^2*b^6 - 3*I*A*a*b^7)*cos(d*x + c))*sqrt(b)*weierstrassZeta(4/ 
3*(4*a^2 - 3*b^2)/b^2, -8/27*(8*a^3 - 9*a*b^2)/b^3, weierstrassPInverse...
 

Sympy [F(-1)]

Timed out. \[ \int \frac {\cos ^3(c+d x) (A+B \cos (c+d x))}{(a+b \cos (c+d x))^{5/2}} \, dx=\text {Timed out} \] Input:

integrate(cos(d*x+c)**3*(A+B*cos(d*x+c))/(a+b*cos(d*x+c))**(5/2),x)
 

Output:

Timed out
 

Maxima [F]

\[ \int \frac {\cos ^3(c+d x) (A+B \cos (c+d x))}{(a+b \cos (c+d x))^{5/2}} \, dx=\int { \frac {{\left (B \cos \left (d x + c\right ) + A\right )} \cos \left (d x + c\right )^{3}}{{\left (b \cos \left (d x + c\right ) + a\right )}^{\frac {5}{2}}} \,d x } \] Input:

integrate(cos(d*x+c)^3*(A+B*cos(d*x+c))/(a+b*cos(d*x+c))^(5/2),x, algorith 
m="maxima")
 

Output:

integrate((B*cos(d*x + c) + A)*cos(d*x + c)^3/(b*cos(d*x + c) + a)^(5/2), 
x)
 

Giac [F]

\[ \int \frac {\cos ^3(c+d x) (A+B \cos (c+d x))}{(a+b \cos (c+d x))^{5/2}} \, dx=\int { \frac {{\left (B \cos \left (d x + c\right ) + A\right )} \cos \left (d x + c\right )^{3}}{{\left (b \cos \left (d x + c\right ) + a\right )}^{\frac {5}{2}}} \,d x } \] Input:

integrate(cos(d*x+c)^3*(A+B*cos(d*x+c))/(a+b*cos(d*x+c))^(5/2),x, algorith 
m="giac")
 

Output:

integrate((B*cos(d*x + c) + A)*cos(d*x + c)^3/(b*cos(d*x + c) + a)^(5/2), 
x)
                                                                                    
                                                                                    
 

Mupad [F(-1)]

Timed out. \[ \int \frac {\cos ^3(c+d x) (A+B \cos (c+d x))}{(a+b \cos (c+d x))^{5/2}} \, dx=\int \frac {{\cos \left (c+d\,x\right )}^3\,\left (A+B\,\cos \left (c+d\,x\right )\right )}{{\left (a+b\,\cos \left (c+d\,x\right )\right )}^{5/2}} \,d x \] Input:

int((cos(c + d*x)^3*(A + B*cos(c + d*x)))/(a + b*cos(c + d*x))^(5/2),x)
 

Output:

int((cos(c + d*x)^3*(A + B*cos(c + d*x)))/(a + b*cos(c + d*x))^(5/2), x)
 

Reduce [F]

\[ \int \frac {\cos ^3(c+d x) (A+B \cos (c+d x))}{(a+b \cos (c+d x))^{5/2}} \, dx=\int \frac {\sqrt {\cos \left (d x +c \right ) b +a}\, \cos \left (d x +c \right )^{3}}{\cos \left (d x +c \right )^{2} b^{2}+2 \cos \left (d x +c \right ) a b +a^{2}}d x \] Input:

int(cos(d*x+c)^3*(A+B*cos(d*x+c))/(a+b*cos(d*x+c))^(5/2),x)
 

Output:

int((sqrt(cos(c + d*x)*b + a)*cos(c + d*x)**3)/(cos(c + d*x)**2*b**2 + 2*c 
os(c + d*x)*a*b + a**2),x)