\(\int \frac {A+B \cos (c+d x)}{(a+b \cos (c+d x))^{5/2}} \, dx\) [337]

Optimal result
Mathematica [A] (verified)
Rubi [A] (verified)
Maple [B] (warning: unable to verify)
Fricas [C] (verification not implemented)
Sympy [F(-1)]
Maxima [F]
Giac [F]
Mupad [F(-1)]
Reduce [F]

Optimal result

Integrand size = 25, antiderivative size = 275 \[ \int \frac {A+B \cos (c+d x)}{(a+b \cos (c+d x))^{5/2}} \, dx=\frac {2 \left (4 a A b-a^2 B-3 b^2 B\right ) \sqrt {a+b \cos (c+d x)} E\left (\frac {1}{2} (c+d x)|\frac {2 b}{a+b}\right )}{3 b \left (a^2-b^2\right )^2 d \sqrt {\frac {a+b \cos (c+d x)}{a+b}}}-\frac {2 (A b-a B) \sqrt {\frac {a+b \cos (c+d x)}{a+b}} \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),\frac {2 b}{a+b}\right )}{3 b \left (a^2-b^2\right ) d \sqrt {a+b \cos (c+d x)}}-\frac {2 (A b-a B) \sin (c+d x)}{3 \left (a^2-b^2\right ) d (a+b \cos (c+d x))^{3/2}}-\frac {2 \left (4 a A b-a^2 B-3 b^2 B\right ) \sin (c+d x)}{3 \left (a^2-b^2\right )^2 d \sqrt {a+b \cos (c+d x)}} \] Output:

2/3*(4*A*a*b-B*a^2-3*B*b^2)*(a+b*cos(d*x+c))^(1/2)*EllipticE(sin(1/2*d*x+1 
/2*c),2^(1/2)*(b/(a+b))^(1/2))/b/(a^2-b^2)^2/d/((a+b*cos(d*x+c))/(a+b))^(1 
/2)-2/3*(A*b-B*a)*((a+b*cos(d*x+c))/(a+b))^(1/2)*InverseJacobiAM(1/2*d*x+1 
/2*c,2^(1/2)*(b/(a+b))^(1/2))/b/(a^2-b^2)/d/(a+b*cos(d*x+c))^(1/2)-2/3*(A* 
b-B*a)*sin(d*x+c)/(a^2-b^2)/d/(a+b*cos(d*x+c))^(3/2)-2/3*(4*A*a*b-B*a^2-3* 
B*b^2)*sin(d*x+c)/(a^2-b^2)^2/d/(a+b*cos(d*x+c))^(1/2)
 

Mathematica [A] (verified)

Time = 2.00 (sec) , antiderivative size = 193, normalized size of antiderivative = 0.70 \[ \int \frac {A+B \cos (c+d x)}{(a+b \cos (c+d x))^{5/2}} \, dx=\frac {2 \left (-\frac {\left (\frac {a+b \cos (c+d x)}{a+b}\right )^{3/2} \left (\left (-4 a A b+a^2 B+3 b^2 B\right ) E\left (\frac {1}{2} (c+d x)|\frac {2 b}{a+b}\right )-(a-b) (-A b+a B) \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),\frac {2 b}{a+b}\right )\right )}{(a-b)^2 b}+\frac {\left (-5 a^2 A b+A b^3+2 a^3 B+2 a b^2 B+b \left (-4 a A b+a^2 B+3 b^2 B\right ) \cos (c+d x)\right ) \sin (c+d x)}{\left (a^2-b^2\right )^2}\right )}{3 d (a+b \cos (c+d x))^{3/2}} \] Input:

Integrate[(A + B*Cos[c + d*x])/(a + b*Cos[c + d*x])^(5/2),x]
 

Output:

(2*(-((((a + b*Cos[c + d*x])/(a + b))^(3/2)*((-4*a*A*b + a^2*B + 3*b^2*B)* 
EllipticE[(c + d*x)/2, (2*b)/(a + b)] - (a - b)*(-(A*b) + a*B)*EllipticF[( 
c + d*x)/2, (2*b)/(a + b)]))/((a - b)^2*b)) + ((-5*a^2*A*b + A*b^3 + 2*a^3 
*B + 2*a*b^2*B + b*(-4*a*A*b + a^2*B + 3*b^2*B)*Cos[c + d*x])*Sin[c + d*x] 
)/(a^2 - b^2)^2))/(3*d*(a + b*Cos[c + d*x])^(3/2))
 

Rubi [A] (verified)

Time = 1.32 (sec) , antiderivative size = 285, normalized size of antiderivative = 1.04, number of steps used = 15, number of rules used = 15, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.600, Rules used = {3042, 3233, 27, 3042, 3233, 27, 3042, 3231, 3042, 3134, 3042, 3132, 3142, 3042, 3140}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {A+B \cos (c+d x)}{(a+b \cos (c+d x))^{5/2}} \, dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \frac {A+B \sin \left (c+d x+\frac {\pi }{2}\right )}{\left (a+b \sin \left (c+d x+\frac {\pi }{2}\right )\right )^{5/2}}dx\)

\(\Big \downarrow \) 3233

\(\displaystyle -\frac {2 \int -\frac {3 (a A-b B)-(A b-a B) \cos (c+d x)}{2 (a+b \cos (c+d x))^{3/2}}dx}{3 \left (a^2-b^2\right )}-\frac {2 (A b-a B) \sin (c+d x)}{3 d \left (a^2-b^2\right ) (a+b \cos (c+d x))^{3/2}}\)

\(\Big \downarrow \) 27

\(\displaystyle \frac {\int \frac {3 (a A-b B)-(A b-a B) \cos (c+d x)}{(a+b \cos (c+d x))^{3/2}}dx}{3 \left (a^2-b^2\right )}-\frac {2 (A b-a B) \sin (c+d x)}{3 d \left (a^2-b^2\right ) (a+b \cos (c+d x))^{3/2}}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {\int \frac {3 (a A-b B)+(a B-A b) \sin \left (c+d x+\frac {\pi }{2}\right )}{\left (a+b \sin \left (c+d x+\frac {\pi }{2}\right )\right )^{3/2}}dx}{3 \left (a^2-b^2\right )}-\frac {2 (A b-a B) \sin (c+d x)}{3 d \left (a^2-b^2\right ) (a+b \cos (c+d x))^{3/2}}\)

\(\Big \downarrow \) 3233

\(\displaystyle \frac {-\frac {2 \int -\frac {3 A a^2-4 b B a+A b^2+\left (-B a^2+4 A b a-3 b^2 B\right ) \cos (c+d x)}{2 \sqrt {a+b \cos (c+d x)}}dx}{a^2-b^2}-\frac {2 \left (a^2 (-B)+4 a A b-3 b^2 B\right ) \sin (c+d x)}{d \left (a^2-b^2\right ) \sqrt {a+b \cos (c+d x)}}}{3 \left (a^2-b^2\right )}-\frac {2 (A b-a B) \sin (c+d x)}{3 d \left (a^2-b^2\right ) (a+b \cos (c+d x))^{3/2}}\)

\(\Big \downarrow \) 27

\(\displaystyle \frac {\frac {\int \frac {3 A a^2-4 b B a+A b^2+\left (-B a^2+4 A b a-3 b^2 B\right ) \cos (c+d x)}{\sqrt {a+b \cos (c+d x)}}dx}{a^2-b^2}-\frac {2 \left (a^2 (-B)+4 a A b-3 b^2 B\right ) \sin (c+d x)}{d \left (a^2-b^2\right ) \sqrt {a+b \cos (c+d x)}}}{3 \left (a^2-b^2\right )}-\frac {2 (A b-a B) \sin (c+d x)}{3 d \left (a^2-b^2\right ) (a+b \cos (c+d x))^{3/2}}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {\frac {\int \frac {3 A a^2-4 b B a+A b^2+\left (-B a^2+4 A b a-3 b^2 B\right ) \sin \left (c+d x+\frac {\pi }{2}\right )}{\sqrt {a+b \sin \left (c+d x+\frac {\pi }{2}\right )}}dx}{a^2-b^2}-\frac {2 \left (a^2 (-B)+4 a A b-3 b^2 B\right ) \sin (c+d x)}{d \left (a^2-b^2\right ) \sqrt {a+b \cos (c+d x)}}}{3 \left (a^2-b^2\right )}-\frac {2 (A b-a B) \sin (c+d x)}{3 d \left (a^2-b^2\right ) (a+b \cos (c+d x))^{3/2}}\)

\(\Big \downarrow \) 3231

\(\displaystyle \frac {\frac {\frac {\left (a^2 (-B)+4 a A b-3 b^2 B\right ) \int \sqrt {a+b \cos (c+d x)}dx}{b}-\frac {\left (a^2-b^2\right ) (A b-a B) \int \frac {1}{\sqrt {a+b \cos (c+d x)}}dx}{b}}{a^2-b^2}-\frac {2 \left (a^2 (-B)+4 a A b-3 b^2 B\right ) \sin (c+d x)}{d \left (a^2-b^2\right ) \sqrt {a+b \cos (c+d x)}}}{3 \left (a^2-b^2\right )}-\frac {2 (A b-a B) \sin (c+d x)}{3 d \left (a^2-b^2\right ) (a+b \cos (c+d x))^{3/2}}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {\frac {\frac {\left (a^2 (-B)+4 a A b-3 b^2 B\right ) \int \sqrt {a+b \sin \left (c+d x+\frac {\pi }{2}\right )}dx}{b}-\frac {\left (a^2-b^2\right ) (A b-a B) \int \frac {1}{\sqrt {a+b \sin \left (c+d x+\frac {\pi }{2}\right )}}dx}{b}}{a^2-b^2}-\frac {2 \left (a^2 (-B)+4 a A b-3 b^2 B\right ) \sin (c+d x)}{d \left (a^2-b^2\right ) \sqrt {a+b \cos (c+d x)}}}{3 \left (a^2-b^2\right )}-\frac {2 (A b-a B) \sin (c+d x)}{3 d \left (a^2-b^2\right ) (a+b \cos (c+d x))^{3/2}}\)

\(\Big \downarrow \) 3134

\(\displaystyle \frac {\frac {\frac {\left (a^2 (-B)+4 a A b-3 b^2 B\right ) \sqrt {a+b \cos (c+d x)} \int \sqrt {\frac {a}{a+b}+\frac {b \cos (c+d x)}{a+b}}dx}{b \sqrt {\frac {a+b \cos (c+d x)}{a+b}}}-\frac {\left (a^2-b^2\right ) (A b-a B) \int \frac {1}{\sqrt {a+b \sin \left (c+d x+\frac {\pi }{2}\right )}}dx}{b}}{a^2-b^2}-\frac {2 \left (a^2 (-B)+4 a A b-3 b^2 B\right ) \sin (c+d x)}{d \left (a^2-b^2\right ) \sqrt {a+b \cos (c+d x)}}}{3 \left (a^2-b^2\right )}-\frac {2 (A b-a B) \sin (c+d x)}{3 d \left (a^2-b^2\right ) (a+b \cos (c+d x))^{3/2}}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {\frac {\frac {\left (a^2 (-B)+4 a A b-3 b^2 B\right ) \sqrt {a+b \cos (c+d x)} \int \sqrt {\frac {a}{a+b}+\frac {b \sin \left (c+d x+\frac {\pi }{2}\right )}{a+b}}dx}{b \sqrt {\frac {a+b \cos (c+d x)}{a+b}}}-\frac {\left (a^2-b^2\right ) (A b-a B) \int \frac {1}{\sqrt {a+b \sin \left (c+d x+\frac {\pi }{2}\right )}}dx}{b}}{a^2-b^2}-\frac {2 \left (a^2 (-B)+4 a A b-3 b^2 B\right ) \sin (c+d x)}{d \left (a^2-b^2\right ) \sqrt {a+b \cos (c+d x)}}}{3 \left (a^2-b^2\right )}-\frac {2 (A b-a B) \sin (c+d x)}{3 d \left (a^2-b^2\right ) (a+b \cos (c+d x))^{3/2}}\)

\(\Big \downarrow \) 3132

\(\displaystyle \frac {\frac {\frac {2 \left (a^2 (-B)+4 a A b-3 b^2 B\right ) \sqrt {a+b \cos (c+d x)} E\left (\frac {1}{2} (c+d x)|\frac {2 b}{a+b}\right )}{b d \sqrt {\frac {a+b \cos (c+d x)}{a+b}}}-\frac {\left (a^2-b^2\right ) (A b-a B) \int \frac {1}{\sqrt {a+b \sin \left (c+d x+\frac {\pi }{2}\right )}}dx}{b}}{a^2-b^2}-\frac {2 \left (a^2 (-B)+4 a A b-3 b^2 B\right ) \sin (c+d x)}{d \left (a^2-b^2\right ) \sqrt {a+b \cos (c+d x)}}}{3 \left (a^2-b^2\right )}-\frac {2 (A b-a B) \sin (c+d x)}{3 d \left (a^2-b^2\right ) (a+b \cos (c+d x))^{3/2}}\)

\(\Big \downarrow \) 3142

\(\displaystyle \frac {\frac {\frac {2 \left (a^2 (-B)+4 a A b-3 b^2 B\right ) \sqrt {a+b \cos (c+d x)} E\left (\frac {1}{2} (c+d x)|\frac {2 b}{a+b}\right )}{b d \sqrt {\frac {a+b \cos (c+d x)}{a+b}}}-\frac {\left (a^2-b^2\right ) (A b-a B) \sqrt {\frac {a+b \cos (c+d x)}{a+b}} \int \frac {1}{\sqrt {\frac {a}{a+b}+\frac {b \cos (c+d x)}{a+b}}}dx}{b \sqrt {a+b \cos (c+d x)}}}{a^2-b^2}-\frac {2 \left (a^2 (-B)+4 a A b-3 b^2 B\right ) \sin (c+d x)}{d \left (a^2-b^2\right ) \sqrt {a+b \cos (c+d x)}}}{3 \left (a^2-b^2\right )}-\frac {2 (A b-a B) \sin (c+d x)}{3 d \left (a^2-b^2\right ) (a+b \cos (c+d x))^{3/2}}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {\frac {\frac {2 \left (a^2 (-B)+4 a A b-3 b^2 B\right ) \sqrt {a+b \cos (c+d x)} E\left (\frac {1}{2} (c+d x)|\frac {2 b}{a+b}\right )}{b d \sqrt {\frac {a+b \cos (c+d x)}{a+b}}}-\frac {\left (a^2-b^2\right ) (A b-a B) \sqrt {\frac {a+b \cos (c+d x)}{a+b}} \int \frac {1}{\sqrt {\frac {a}{a+b}+\frac {b \sin \left (c+d x+\frac {\pi }{2}\right )}{a+b}}}dx}{b \sqrt {a+b \cos (c+d x)}}}{a^2-b^2}-\frac {2 \left (a^2 (-B)+4 a A b-3 b^2 B\right ) \sin (c+d x)}{d \left (a^2-b^2\right ) \sqrt {a+b \cos (c+d x)}}}{3 \left (a^2-b^2\right )}-\frac {2 (A b-a B) \sin (c+d x)}{3 d \left (a^2-b^2\right ) (a+b \cos (c+d x))^{3/2}}\)

\(\Big \downarrow \) 3140

\(\displaystyle \frac {\frac {\frac {2 \left (a^2 (-B)+4 a A b-3 b^2 B\right ) \sqrt {a+b \cos (c+d x)} E\left (\frac {1}{2} (c+d x)|\frac {2 b}{a+b}\right )}{b d \sqrt {\frac {a+b \cos (c+d x)}{a+b}}}-\frac {2 \left (a^2-b^2\right ) (A b-a B) \sqrt {\frac {a+b \cos (c+d x)}{a+b}} \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),\frac {2 b}{a+b}\right )}{b d \sqrt {a+b \cos (c+d x)}}}{a^2-b^2}-\frac {2 \left (a^2 (-B)+4 a A b-3 b^2 B\right ) \sin (c+d x)}{d \left (a^2-b^2\right ) \sqrt {a+b \cos (c+d x)}}}{3 \left (a^2-b^2\right )}-\frac {2 (A b-a B) \sin (c+d x)}{3 d \left (a^2-b^2\right ) (a+b \cos (c+d x))^{3/2}}\)

Input:

Int[(A + B*Cos[c + d*x])/(a + b*Cos[c + d*x])^(5/2),x]
 

Output:

(-2*(A*b - a*B)*Sin[c + d*x])/(3*(a^2 - b^2)*d*(a + b*Cos[c + d*x])^(3/2)) 
 + (((2*(4*a*A*b - a^2*B - 3*b^2*B)*Sqrt[a + b*Cos[c + d*x]]*EllipticE[(c 
+ d*x)/2, (2*b)/(a + b)])/(b*d*Sqrt[(a + b*Cos[c + d*x])/(a + b)]) - (2*(a 
^2 - b^2)*(A*b - a*B)*Sqrt[(a + b*Cos[c + d*x])/(a + b)]*EllipticF[(c + d* 
x)/2, (2*b)/(a + b)])/(b*d*Sqrt[a + b*Cos[c + d*x]]))/(a^2 - b^2) - (2*(4* 
a*A*b - a^2*B - 3*b^2*B)*Sin[c + d*x])/((a^2 - b^2)*d*Sqrt[a + b*Cos[c + d 
*x]]))/(3*(a^2 - b^2))
 

Defintions of rubi rules used

rule 27
Int[(a_)*(Fx_), x_Symbol] :> Simp[a   Int[Fx, x], x] /; FreeQ[a, x] &&  !Ma 
tchQ[Fx, (b_)*(Gx_) /; FreeQ[b, x]]
 

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 3132
Int[Sqrt[(a_) + (b_.)*sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[2*(Sqrt[a 
 + b]/d)*EllipticE[(1/2)*(c - Pi/2 + d*x), 2*(b/(a + b))], x] /; FreeQ[{a, 
b, c, d}, x] && NeQ[a^2 - b^2, 0] && GtQ[a + b, 0]
 

rule 3134
Int[Sqrt[(a_) + (b_.)*sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[Sqrt[a + 
b*Sin[c + d*x]]/Sqrt[(a + b*Sin[c + d*x])/(a + b)]   Int[Sqrt[a/(a + b) + ( 
b/(a + b))*Sin[c + d*x]], x], x] /; FreeQ[{a, b, c, d}, x] && NeQ[a^2 - b^2 
, 0] &&  !GtQ[a + b, 0]
 

rule 3140
Int[1/Sqrt[(a_) + (b_.)*sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2/(d*S 
qrt[a + b]))*EllipticF[(1/2)*(c - Pi/2 + d*x), 2*(b/(a + b))], x] /; FreeQ[ 
{a, b, c, d}, x] && NeQ[a^2 - b^2, 0] && GtQ[a + b, 0]
 

rule 3142
Int[1/Sqrt[(a_) + (b_.)*sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[Sqrt[(a 
 + b*Sin[c + d*x])/(a + b)]/Sqrt[a + b*Sin[c + d*x]]   Int[1/Sqrt[a/(a + b) 
 + (b/(a + b))*Sin[c + d*x]], x], x] /; FreeQ[{a, b, c, d}, x] && NeQ[a^2 - 
 b^2, 0] &&  !GtQ[a + b, 0]
 

rule 3231
Int[((c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)])/Sqrt[(a_) + (b_.)*sin[(e_.) + ( 
f_.)*(x_)]], x_Symbol] :> Simp[(b*c - a*d)/b   Int[1/Sqrt[a + b*Sin[e + f*x 
]], x], x] + Simp[d/b   Int[Sqrt[a + b*Sin[e + f*x]], x], x] /; FreeQ[{a, b 
, c, d, e, f}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 - b^2, 0]
 

rule 3233
Int[((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((c_.) + (d_.)*sin[(e_.) + 
(f_.)*(x_)]), x_Symbol] :> Simp[(-(b*c - a*d))*Cos[e + f*x]*((a + b*Sin[e + 
 f*x])^(m + 1)/(f*(m + 1)*(a^2 - b^2))), x] + Simp[1/((m + 1)*(a^2 - b^2)) 
  Int[(a + b*Sin[e + f*x])^(m + 1)*Simp[(a*c - b*d)*(m + 1) - (b*c - a*d)*( 
m + 2)*Sin[e + f*x], x], x], x] /; FreeQ[{a, b, c, d, e, f}, x] && NeQ[b*c 
- a*d, 0] && NeQ[a^2 - b^2, 0] && LtQ[m, -1] && IntegerQ[2*m]
 
Maple [B] (warning: unable to verify)

Leaf count of result is larger than twice the leaf count of optimal. \(753\) vs. \(2(264)=528\).

Time = 10.92 (sec) , antiderivative size = 754, normalized size of antiderivative = 2.74

method result size
default \(-\frac {\sqrt {-\left (-2 b \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-a +b \right ) \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}}\, \left (-\frac {2 B \sqrt {-2 b \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{4}+\left (a +b \right ) \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}}\, \left (2 \cos \left (\frac {d x}{2}+\frac {c}{2}\right ) \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2} b +\sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {-\frac {2 b \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}}{a -b}+\frac {a +b}{a -b}}\, \operatorname {EllipticE}\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {-\frac {2 b}{a -b}}\right ) a -\sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {-\frac {2 b \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}}{a -b}+\frac {a +b}{a -b}}\, b \operatorname {EllipticE}\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {-\frac {2 b}{a -b}}\right )\right )}{b \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2} \left (2 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2} b -a -b \right ) \left (a^{2}-b^{2}\right )}+\frac {2 \left (A b -B a \right ) \left (\frac {\cos \left (\frac {d x}{2}+\frac {c}{2}\right ) \sqrt {-2 b \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{4}+\left (a +b \right ) \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}}}{6 b \left (a -b \right ) \left (a +b \right ) \left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}+\frac {a -b}{2 b}\right )^{2}}+\frac {8 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2} b \cos \left (\frac {d x}{2}+\frac {c}{2}\right ) a}{3 \left (a -b \right )^{2} \left (a +b \right )^{2} \sqrt {-\left (-2 b \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-a +b \right ) \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}}}+\frac {\left (3 a -b \right ) \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {\frac {2 b \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}+a -b}{a -b}}\, \operatorname {EllipticF}\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {-\frac {2 b}{a -b}}\right )}{\left (3 a^{3}+3 a^{2} b -3 b^{2} a -3 b^{3}\right ) \sqrt {-2 b \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{4}+\left (a +b \right ) \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}}}-\frac {4 a \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {\frac {2 b \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}+a -b}{a -b}}\, \left (\operatorname {EllipticF}\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {-\frac {2 b}{a -b}}\right )-\operatorname {EllipticE}\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {-\frac {2 b}{a -b}}\right )\right )}{3 \left (a -b \right ) \left (a +b \right )^{2} \sqrt {-2 b \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{4}+\left (a +b \right ) \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}}}\right )}{b}\right )}{\sin \left (\frac {d x}{2}+\frac {c}{2}\right ) \sqrt {-2 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2} b +a +b}\, d}\) \(754\)
parts \(\text {Expression too large to display}\) \(1237\)

Input:

int((A+B*cos(d*x+c))/(a+cos(d*x+c)*b)^(5/2),x,method=_RETURNVERBOSE)
 

Output:

-(-(-2*b*cos(1/2*d*x+1/2*c)^2-a+b)*sin(1/2*d*x+1/2*c)^2)^(1/2)*(-2*B/b/sin 
(1/2*d*x+1/2*c)^2/(2*sin(1/2*d*x+1/2*c)^2*b-a-b)/(a^2-b^2)*(-2*b*sin(1/2*d 
*x+1/2*c)^4+(a+b)*sin(1/2*d*x+1/2*c)^2)^(1/2)*(2*cos(1/2*d*x+1/2*c)*sin(1/ 
2*d*x+1/2*c)^2*b+(sin(1/2*d*x+1/2*c)^2)^(1/2)*(-2*b/(a-b)*sin(1/2*d*x+1/2* 
c)^2+(a+b)/(a-b))^(1/2)*EllipticE(cos(1/2*d*x+1/2*c),(-2*b/(a-b))^(1/2))*a 
-(sin(1/2*d*x+1/2*c)^2)^(1/2)*(-2*b/(a-b)*sin(1/2*d*x+1/2*c)^2+(a+b)/(a-b) 
)^(1/2)*b*EllipticE(cos(1/2*d*x+1/2*c),(-2*b/(a-b))^(1/2)))+2*(A*b-B*a)/b* 
(1/6/b/(a-b)/(a+b)*cos(1/2*d*x+1/2*c)*(-2*b*sin(1/2*d*x+1/2*c)^4+(a+b)*sin 
(1/2*d*x+1/2*c)^2)^(1/2)/(cos(1/2*d*x+1/2*c)^2+1/2/b*(a-b))^2+8/3*sin(1/2* 
d*x+1/2*c)^2*b/(a-b)^2/(a+b)^2*cos(1/2*d*x+1/2*c)*a/(-(-2*b*cos(1/2*d*x+1/ 
2*c)^2-a+b)*sin(1/2*d*x+1/2*c)^2)^(1/2)+(3*a-b)/(3*a^3+3*a^2*b-3*a*b^2-3*b 
^3)*(sin(1/2*d*x+1/2*c)^2)^(1/2)*((2*b*cos(1/2*d*x+1/2*c)^2+a-b)/(a-b))^(1 
/2)/(-2*b*sin(1/2*d*x+1/2*c)^4+(a+b)*sin(1/2*d*x+1/2*c)^2)^(1/2)*EllipticF 
(cos(1/2*d*x+1/2*c),(-2*b/(a-b))^(1/2))-4/3*a/(a-b)/(a+b)^2*(sin(1/2*d*x+1 
/2*c)^2)^(1/2)*((2*b*cos(1/2*d*x+1/2*c)^2+a-b)/(a-b))^(1/2)/(-2*b*sin(1/2* 
d*x+1/2*c)^4+(a+b)*sin(1/2*d*x+1/2*c)^2)^(1/2)*(EllipticF(cos(1/2*d*x+1/2* 
c),(-2*b/(a-b))^(1/2))-EllipticE(cos(1/2*d*x+1/2*c),(-2*b/(a-b))^(1/2))))) 
/sin(1/2*d*x+1/2*c)/(-2*sin(1/2*d*x+1/2*c)^2*b+a+b)^(1/2)/d
 

Fricas [C] (verification not implemented)

Result contains complex when optimal does not.

Time = 0.13 (sec) , antiderivative size = 924, normalized size of antiderivative = 3.36 \[ \int \frac {A+B \cos (c+d x)}{(a+b \cos (c+d x))^{5/2}} \, dx=\text {Too large to display} \] Input:

integrate((A+B*cos(d*x+c))/(a+b*cos(d*x+c))^(5/2),x, algorithm="fricas")
 

Output:

-2/9*(sqrt(1/2)*(2*I*B*a^5 + I*A*a^4*b - 6*I*B*a^3*b^2 + 3*I*A*a^2*b^3 + ( 
2*I*B*a^3*b^2 + I*A*a^2*b^3 - 6*I*B*a*b^4 + 3*I*A*b^5)*cos(d*x + c)^2 + 2* 
(2*I*B*a^4*b + I*A*a^3*b^2 - 6*I*B*a^2*b^3 + 3*I*A*a*b^4)*cos(d*x + c))*sq 
rt(b)*weierstrassPInverse(4/3*(4*a^2 - 3*b^2)/b^2, -8/27*(8*a^3 - 9*a*b^2) 
/b^3, 1/3*(3*b*cos(d*x + c) + 3*I*b*sin(d*x + c) + 2*a)/b) + sqrt(1/2)*(-2 
*I*B*a^5 - I*A*a^4*b + 6*I*B*a^3*b^2 - 3*I*A*a^2*b^3 + (-2*I*B*a^3*b^2 - I 
*A*a^2*b^3 + 6*I*B*a*b^4 - 3*I*A*b^5)*cos(d*x + c)^2 + 2*(-2*I*B*a^4*b - I 
*A*a^3*b^2 + 6*I*B*a^2*b^3 - 3*I*A*a*b^4)*cos(d*x + c))*sqrt(b)*weierstras 
sPInverse(4/3*(4*a^2 - 3*b^2)/b^2, -8/27*(8*a^3 - 9*a*b^2)/b^3, 1/3*(3*b*c 
os(d*x + c) - 3*I*b*sin(d*x + c) + 2*a)/b) + 3*sqrt(1/2)*(I*B*a^4*b - 4*I* 
A*a^3*b^2 + 3*I*B*a^2*b^3 + (I*B*a^2*b^3 - 4*I*A*a*b^4 + 3*I*B*b^5)*cos(d* 
x + c)^2 + 2*(I*B*a^3*b^2 - 4*I*A*a^2*b^3 + 3*I*B*a*b^4)*cos(d*x + c))*sqr 
t(b)*weierstrassZeta(4/3*(4*a^2 - 3*b^2)/b^2, -8/27*(8*a^3 - 9*a*b^2)/b^3, 
 weierstrassPInverse(4/3*(4*a^2 - 3*b^2)/b^2, -8/27*(8*a^3 - 9*a*b^2)/b^3, 
 1/3*(3*b*cos(d*x + c) + 3*I*b*sin(d*x + c) + 2*a)/b)) + 3*sqrt(1/2)*(-I*B 
*a^4*b + 4*I*A*a^3*b^2 - 3*I*B*a^2*b^3 + (-I*B*a^2*b^3 + 4*I*A*a*b^4 - 3*I 
*B*b^5)*cos(d*x + c)^2 + 2*(-I*B*a^3*b^2 + 4*I*A*a^2*b^3 - 3*I*B*a*b^4)*co 
s(d*x + c))*sqrt(b)*weierstrassZeta(4/3*(4*a^2 - 3*b^2)/b^2, -8/27*(8*a^3 
- 9*a*b^2)/b^3, weierstrassPInverse(4/3*(4*a^2 - 3*b^2)/b^2, -8/27*(8*a^3 
- 9*a*b^2)/b^3, 1/3*(3*b*cos(d*x + c) - 3*I*b*sin(d*x + c) + 2*a)/b)) -...
 

Sympy [F(-1)]

Timed out. \[ \int \frac {A+B \cos (c+d x)}{(a+b \cos (c+d x))^{5/2}} \, dx=\text {Timed out} \] Input:

integrate((A+B*cos(d*x+c))/(a+b*cos(d*x+c))**(5/2),x)
 

Output:

Timed out
 

Maxima [F]

\[ \int \frac {A+B \cos (c+d x)}{(a+b \cos (c+d x))^{5/2}} \, dx=\int { \frac {B \cos \left (d x + c\right ) + A}{{\left (b \cos \left (d x + c\right ) + a\right )}^{\frac {5}{2}}} \,d x } \] Input:

integrate((A+B*cos(d*x+c))/(a+b*cos(d*x+c))^(5/2),x, algorithm="maxima")
 

Output:

integrate((B*cos(d*x + c) + A)/(b*cos(d*x + c) + a)^(5/2), x)
 

Giac [F]

\[ \int \frac {A+B \cos (c+d x)}{(a+b \cos (c+d x))^{5/2}} \, dx=\int { \frac {B \cos \left (d x + c\right ) + A}{{\left (b \cos \left (d x + c\right ) + a\right )}^{\frac {5}{2}}} \,d x } \] Input:

integrate((A+B*cos(d*x+c))/(a+b*cos(d*x+c))^(5/2),x, algorithm="giac")
 

Output:

integrate((B*cos(d*x + c) + A)/(b*cos(d*x + c) + a)^(5/2), x)
 

Mupad [F(-1)]

Timed out. \[ \int \frac {A+B \cos (c+d x)}{(a+b \cos (c+d x))^{5/2}} \, dx=\int \frac {A+B\,\cos \left (c+d\,x\right )}{{\left (a+b\,\cos \left (c+d\,x\right )\right )}^{5/2}} \,d x \] Input:

int((A + B*cos(c + d*x))/(a + b*cos(c + d*x))^(5/2),x)
 

Output:

int((A + B*cos(c + d*x))/(a + b*cos(c + d*x))^(5/2), x)
 

Reduce [F]

\[ \int \frac {A+B \cos (c+d x)}{(a+b \cos (c+d x))^{5/2}} \, dx=\int \frac {\sqrt {\cos \left (d x +c \right ) b +a}}{\cos \left (d x +c \right )^{2} b^{2}+2 \cos \left (d x +c \right ) a b +a^{2}}d x \] Input:

int((A+B*cos(d*x+c))/(a+b*cos(d*x+c))^(5/2),x)
 

Output:

int(sqrt(cos(c + d*x)*b + a)/(cos(c + d*x)**2*b**2 + 2*cos(c + d*x)*a*b + 
a**2),x)