\(\int \frac {a B+b B \cos (c+d x)}{(a+b \cos (c+d x))^{3/2}} \, dx\) [341]

Optimal result
Mathematica [A] (verified)
Rubi [A] (verified)
Maple [A] (verified)
Fricas [C] (verification not implemented)
Sympy [F]
Maxima [F]
Giac [F]
Mupad [F(-1)]
Reduce [F]

Optimal result

Integrand size = 28, antiderivative size = 58 \[ \int \frac {a B+b B \cos (c+d x)}{(a+b \cos (c+d x))^{3/2}} \, dx=\frac {2 B \sqrt {\frac {a+b \cos (c+d x)}{a+b}} \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),\frac {2 b}{a+b}\right )}{d \sqrt {a+b \cos (c+d x)}} \] Output:

2*B*((a+b*cos(d*x+c))/(a+b))^(1/2)*InverseJacobiAM(1/2*d*x+1/2*c,2^(1/2)*( 
b/(a+b))^(1/2))/d/(a+b*cos(d*x+c))^(1/2)
 

Mathematica [A] (verified)

Time = 0.13 (sec) , antiderivative size = 58, normalized size of antiderivative = 1.00 \[ \int \frac {a B+b B \cos (c+d x)}{(a+b \cos (c+d x))^{3/2}} \, dx=\frac {2 B \sqrt {\frac {a+b \cos (c+d x)}{a+b}} \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),\frac {2 b}{a+b}\right )}{d \sqrt {a+b \cos (c+d x)}} \] Input:

Integrate[(a*B + b*B*Cos[c + d*x])/(a + b*Cos[c + d*x])^(3/2),x]
 

Output:

(2*B*Sqrt[(a + b*Cos[c + d*x])/(a + b)]*EllipticF[(c + d*x)/2, (2*b)/(a + 
b)])/(d*Sqrt[a + b*Cos[c + d*x]])
 

Rubi [A] (verified)

Time = 0.29 (sec) , antiderivative size = 58, normalized size of antiderivative = 1.00, number of steps used = 5, number of rules used = 5, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.179, Rules used = {2011, 3042, 3142, 3042, 3140}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {a B+b B \cos (c+d x)}{(a+b \cos (c+d x))^{3/2}} \, dx\)

\(\Big \downarrow \) 2011

\(\displaystyle B \int \frac {1}{\sqrt {a+b \cos (c+d x)}}dx\)

\(\Big \downarrow \) 3042

\(\displaystyle B \int \frac {1}{\sqrt {a+b \sin \left (c+d x+\frac {\pi }{2}\right )}}dx\)

\(\Big \downarrow \) 3142

\(\displaystyle \frac {B \sqrt {\frac {a+b \cos (c+d x)}{a+b}} \int \frac {1}{\sqrt {\frac {a}{a+b}+\frac {b \cos (c+d x)}{a+b}}}dx}{\sqrt {a+b \cos (c+d x)}}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {B \sqrt {\frac {a+b \cos (c+d x)}{a+b}} \int \frac {1}{\sqrt {\frac {a}{a+b}+\frac {b \sin \left (c+d x+\frac {\pi }{2}\right )}{a+b}}}dx}{\sqrt {a+b \cos (c+d x)}}\)

\(\Big \downarrow \) 3140

\(\displaystyle \frac {2 B \sqrt {\frac {a+b \cos (c+d x)}{a+b}} \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),\frac {2 b}{a+b}\right )}{d \sqrt {a+b \cos (c+d x)}}\)

Input:

Int[(a*B + b*B*Cos[c + d*x])/(a + b*Cos[c + d*x])^(3/2),x]
 

Output:

(2*B*Sqrt[(a + b*Cos[c + d*x])/(a + b)]*EllipticF[(c + d*x)/2, (2*b)/(a + 
b)])/(d*Sqrt[a + b*Cos[c + d*x]])
 

Defintions of rubi rules used

rule 2011
Int[(u_.)*((a_) + (b_.)*(v_))^(m_.)*((c_) + (d_.)*(v_))^(n_.), x_Symbol] :> 
 Simp[(b/d)^m   Int[u*(c + d*v)^(m + n), x], x] /; FreeQ[{a, b, c, d, n}, x 
] && EqQ[b*c - a*d, 0] && IntegerQ[m] && ( !IntegerQ[n] || SimplerQ[c + d*x 
, a + b*x])
 

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 3140
Int[1/Sqrt[(a_) + (b_.)*sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2/(d*S 
qrt[a + b]))*EllipticF[(1/2)*(c - Pi/2 + d*x), 2*(b/(a + b))], x] /; FreeQ[ 
{a, b, c, d}, x] && NeQ[a^2 - b^2, 0] && GtQ[a + b, 0]
 

rule 3142
Int[1/Sqrt[(a_) + (b_.)*sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[Sqrt[(a 
 + b*Sin[c + d*x])/(a + b)]/Sqrt[a + b*Sin[c + d*x]]   Int[1/Sqrt[a/(a + b) 
 + (b/(a + b))*Sin[c + d*x]], x], x] /; FreeQ[{a, b, c, d}, x] && NeQ[a^2 - 
 b^2, 0] &&  !GtQ[a + b, 0]
 
Maple [A] (verified)

Time = 5.34 (sec) , antiderivative size = 58, normalized size of antiderivative = 1.00

method result size
default \(\frac {2 B \sqrt {\frac {a +\cos \left (d x +c \right ) b}{a +b}}\, \operatorname {InverseJacobiAM}\left (\frac {d x}{2}+\frac {c}{2}, \frac {\sqrt {2}\, \sqrt {b}}{\sqrt {a +b}}\right )}{d \sqrt {a +\cos \left (d x +c \right ) b}}\) \(58\)
parts \(-\frac {2 B a \left (2 \cos \left (\frac {d x}{2}+\frac {c}{2}\right ) \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2} b +\sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {-\frac {2 b \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}}{a -b}+\frac {a +b}{a -b}}\, \operatorname {EllipticE}\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {-\frac {2 b}{a -b}}\right ) a -\sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {-\frac {2 b \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}}{a -b}+\frac {a +b}{a -b}}\, b \operatorname {EllipticE}\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {-\frac {2 b}{a -b}}\right )\right )}{\left (a -b \right ) \left (a +b \right ) \sin \left (\frac {d x}{2}+\frac {c}{2}\right ) \sqrt {-2 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2} b +a +b}\, d}+\frac {2 B \left (2 \cos \left (\frac {d x}{2}+\frac {c}{2}\right ) \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2} a b -\sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {-\frac {2 b \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}}{a -b}+\frac {a +b}{a -b}}\, \operatorname {EllipticF}\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {-\frac {2 b}{a -b}}\right ) a^{2}+b^{2} \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {-\frac {2 b \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}}{a -b}+\frac {a +b}{a -b}}\, \operatorname {EllipticF}\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {-\frac {2 b}{a -b}}\right )+\sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {-\frac {2 b \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}}{a -b}+\frac {a +b}{a -b}}\, \operatorname {EllipticE}\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {-\frac {2 b}{a -b}}\right ) a^{2}-\sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {-\frac {2 b \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}}{a -b}+\frac {a +b}{a -b}}\, b \operatorname {EllipticE}\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {-\frac {2 b}{a -b}}\right ) a \right )}{\left (a -b \right ) \left (a +b \right ) \sin \left (\frac {d x}{2}+\frac {c}{2}\right ) \sqrt {-2 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2} b +a +b}\, d}\) \(590\)

Input:

int((B*a+b*B*cos(d*x+c))/(a+cos(d*x+c)*b)^(3/2),x,method=_RETURNVERBOSE)
 

Output:

2*B/d/(a+cos(d*x+c)*b)^(1/2)*((a+cos(d*x+c)*b)/(a+b))^(1/2)*InverseJacobiA 
M(1/2*d*x+1/2*c,2^(1/2)/(a+b)^(1/2)*b^(1/2))
 

Fricas [C] (verification not implemented)

Result contains complex when optimal does not.

Time = 0.09 (sec) , antiderivative size = 149, normalized size of antiderivative = 2.57 \[ \int \frac {a B+b B \cos (c+d x)}{(a+b \cos (c+d x))^{3/2}} \, dx=-\frac {2 \, {\left (i \, \sqrt {\frac {1}{2}} B \sqrt {b} {\rm weierstrassPInverse}\left (\frac {4 \, {\left (4 \, a^{2} - 3 \, b^{2}\right )}}{3 \, b^{2}}, -\frac {8 \, {\left (8 \, a^{3} - 9 \, a b^{2}\right )}}{27 \, b^{3}}, \frac {3 \, b \cos \left (d x + c\right ) + 3 i \, b \sin \left (d x + c\right ) + 2 \, a}{3 \, b}\right ) - i \, \sqrt {\frac {1}{2}} B \sqrt {b} {\rm weierstrassPInverse}\left (\frac {4 \, {\left (4 \, a^{2} - 3 \, b^{2}\right )}}{3 \, b^{2}}, -\frac {8 \, {\left (8 \, a^{3} - 9 \, a b^{2}\right )}}{27 \, b^{3}}, \frac {3 \, b \cos \left (d x + c\right ) - 3 i \, b \sin \left (d x + c\right ) + 2 \, a}{3 \, b}\right )\right )}}{b d} \] Input:

integrate((a*B+b*B*cos(d*x+c))/(a+b*cos(d*x+c))^(3/2),x, algorithm="fricas 
")
 

Output:

-2*(I*sqrt(1/2)*B*sqrt(b)*weierstrassPInverse(4/3*(4*a^2 - 3*b^2)/b^2, -8/ 
27*(8*a^3 - 9*a*b^2)/b^3, 1/3*(3*b*cos(d*x + c) + 3*I*b*sin(d*x + c) + 2*a 
)/b) - I*sqrt(1/2)*B*sqrt(b)*weierstrassPInverse(4/3*(4*a^2 - 3*b^2)/b^2, 
-8/27*(8*a^3 - 9*a*b^2)/b^3, 1/3*(3*b*cos(d*x + c) - 3*I*b*sin(d*x + c) + 
2*a)/b))/(b*d)
 

Sympy [F]

\[ \int \frac {a B+b B \cos (c+d x)}{(a+b \cos (c+d x))^{3/2}} \, dx=B \int \frac {1}{\sqrt {a + b \cos {\left (c + d x \right )}}}\, dx \] Input:

integrate((a*B+b*B*cos(d*x+c))/(a+b*cos(d*x+c))**(3/2),x)
 

Output:

B*Integral(1/sqrt(a + b*cos(c + d*x)), x)
 

Maxima [F]

\[ \int \frac {a B+b B \cos (c+d x)}{(a+b \cos (c+d x))^{3/2}} \, dx=\int { \frac {B b \cos \left (d x + c\right ) + B a}{{\left (b \cos \left (d x + c\right ) + a\right )}^{\frac {3}{2}}} \,d x } \] Input:

integrate((a*B+b*B*cos(d*x+c))/(a+b*cos(d*x+c))^(3/2),x, algorithm="maxima 
")
 

Output:

integrate((B*b*cos(d*x + c) + B*a)/(b*cos(d*x + c) + a)^(3/2), x)
 

Giac [F]

\[ \int \frac {a B+b B \cos (c+d x)}{(a+b \cos (c+d x))^{3/2}} \, dx=\int { \frac {B b \cos \left (d x + c\right ) + B a}{{\left (b \cos \left (d x + c\right ) + a\right )}^{\frac {3}{2}}} \,d x } \] Input:

integrate((a*B+b*B*cos(d*x+c))/(a+b*cos(d*x+c))^(3/2),x, algorithm="giac")
 

Output:

integrate((B*b*cos(d*x + c) + B*a)/(b*cos(d*x + c) + a)^(3/2), x)
 

Mupad [F(-1)]

Timed out. \[ \int \frac {a B+b B \cos (c+d x)}{(a+b \cos (c+d x))^{3/2}} \, dx=\int \frac {B\,a+B\,b\,\cos \left (c+d\,x\right )}{{\left (a+b\,\cos \left (c+d\,x\right )\right )}^{3/2}} \,d x \] Input:

int((B*a + B*b*cos(c + d*x))/(a + b*cos(c + d*x))^(3/2),x)
 

Output:

int((B*a + B*b*cos(c + d*x))/(a + b*cos(c + d*x))^(3/2), x)
 

Reduce [F]

\[ \int \frac {a B+b B \cos (c+d x)}{(a+b \cos (c+d x))^{3/2}} \, dx=\left (\int \frac {\sqrt {\cos \left (d x +c \right ) b +a}}{\cos \left (d x +c \right ) b +a}d x \right ) b \] Input:

int((a*B+b*B*cos(d*x+c))/(a+b*cos(d*x+c))^(3/2),x)
                                                                                    
                                                                                    
 

Output:

int(sqrt(cos(c + d*x)*b + a)/(cos(c + d*x)*b + a),x)*b