\(\int \frac {(a+b \cos (c+d x))^2 (A+B \cos (c+d x))}{\cos ^{\frac {7}{2}}(c+d x)} \, dx\) [358]

Optimal result
Mathematica [A] (verified)
Rubi [A] (verified)
Maple [B] (verified)
Fricas [C] (verification not implemented)
Sympy [F(-1)]
Maxima [F]
Giac [F]
Mupad [B] (verification not implemented)
Reduce [F]

Optimal result

Integrand size = 33, antiderivative size = 172 \[ \int \frac {(a+b \cos (c+d x))^2 (A+B \cos (c+d x))}{\cos ^{\frac {7}{2}}(c+d x)} \, dx=-\frac {2 \left (3 a^2 A+5 A b^2+10 a b B\right ) E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{5 d}+\frac {2 \left (2 a A b+a^2 B+3 b^2 B\right ) \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),2\right )}{3 d}+\frac {2 a^2 A \sin (c+d x)}{5 d \cos ^{\frac {5}{2}}(c+d x)}+\frac {2 a (2 A b+a B) \sin (c+d x)}{3 d \cos ^{\frac {3}{2}}(c+d x)}+\frac {2 \left (3 a^2 A+5 A b^2+10 a b B\right ) \sin (c+d x)}{5 d \sqrt {\cos (c+d x)}} \] Output:

-2/5*(3*A*a^2+5*A*b^2+10*B*a*b)*EllipticE(sin(1/2*d*x+1/2*c),2^(1/2))/d+2/ 
3*(2*A*a*b+B*a^2+3*B*b^2)*InverseJacobiAM(1/2*d*x+1/2*c,2^(1/2))/d+2/5*a^2 
*A*sin(d*x+c)/d/cos(d*x+c)^(5/2)+2/3*a*(2*A*b+B*a)*sin(d*x+c)/d/cos(d*x+c) 
^(3/2)+2/5*(3*A*a^2+5*A*b^2+10*B*a*b)*sin(d*x+c)/d/cos(d*x+c)^(1/2)
                                                                                    
                                                                                    
 

Mathematica [A] (verified)

Time = 2.27 (sec) , antiderivative size = 175, normalized size of antiderivative = 1.02 \[ \int \frac {(a+b \cos (c+d x))^2 (A+B \cos (c+d x))}{\cos ^{\frac {7}{2}}(c+d x)} \, dx=\frac {-6 \left (3 a^2 A+5 A b^2+10 a b B\right ) \cos ^{\frac {3}{2}}(c+d x) E\left (\left .\frac {1}{2} (c+d x)\right |2\right )+10 \left (2 a A b+a^2 B+3 b^2 B\right ) \cos ^{\frac {3}{2}}(c+d x) \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),2\right )+20 a A b \sin (c+d x)+10 a^2 B \sin (c+d x)+9 a^2 A \sin (2 (c+d x))+15 A b^2 \sin (2 (c+d x))+30 a b B \sin (2 (c+d x))+6 a^2 A \tan (c+d x)}{15 d \cos ^{\frac {3}{2}}(c+d x)} \] Input:

Integrate[((a + b*Cos[c + d*x])^2*(A + B*Cos[c + d*x]))/Cos[c + d*x]^(7/2) 
,x]
 

Output:

(-6*(3*a^2*A + 5*A*b^2 + 10*a*b*B)*Cos[c + d*x]^(3/2)*EllipticE[(c + d*x)/ 
2, 2] + 10*(2*a*A*b + a^2*B + 3*b^2*B)*Cos[c + d*x]^(3/2)*EllipticF[(c + d 
*x)/2, 2] + 20*a*A*b*Sin[c + d*x] + 10*a^2*B*Sin[c + d*x] + 9*a^2*A*Sin[2* 
(c + d*x)] + 15*A*b^2*Sin[2*(c + d*x)] + 30*a*b*B*Sin[2*(c + d*x)] + 6*a^2 
*A*Tan[c + d*x])/(15*d*Cos[c + d*x]^(3/2))
 

Rubi [A] (verified)

Time = 0.88 (sec) , antiderivative size = 161, normalized size of antiderivative = 0.94, number of steps used = 13, number of rules used = 13, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.394, Rules used = {3042, 3467, 27, 3042, 3500, 27, 3042, 3227, 3042, 3116, 3042, 3119, 3120}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {(a+b \cos (c+d x))^2 (A+B \cos (c+d x))}{\cos ^{\frac {7}{2}}(c+d x)} \, dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \frac {\left (a+b \sin \left (c+d x+\frac {\pi }{2}\right )\right )^2 \left (A+B \sin \left (c+d x+\frac {\pi }{2}\right )\right )}{\sin \left (c+d x+\frac {\pi }{2}\right )^{7/2}}dx\)

\(\Big \downarrow \) 3467

\(\displaystyle \frac {2 a^2 A \sin (c+d x)}{5 d \cos ^{\frac {5}{2}}(c+d x)}-\frac {2}{5} \int -\frac {5 b^2 B \cos ^2(c+d x)+\left (3 A a^2+10 b B a+5 A b^2\right ) \cos (c+d x)+5 a (2 A b+a B)}{2 \cos ^{\frac {5}{2}}(c+d x)}dx\)

\(\Big \downarrow \) 27

\(\displaystyle \frac {1}{5} \int \frac {5 b^2 B \cos ^2(c+d x)+\left (3 A a^2+10 b B a+5 A b^2\right ) \cos (c+d x)+5 a (2 A b+a B)}{\cos ^{\frac {5}{2}}(c+d x)}dx+\frac {2 a^2 A \sin (c+d x)}{5 d \cos ^{\frac {5}{2}}(c+d x)}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {1}{5} \int \frac {5 b^2 B \sin \left (c+d x+\frac {\pi }{2}\right )^2+\left (3 A a^2+10 b B a+5 A b^2\right ) \sin \left (c+d x+\frac {\pi }{2}\right )+5 a (2 A b+a B)}{\sin \left (c+d x+\frac {\pi }{2}\right )^{5/2}}dx+\frac {2 a^2 A \sin (c+d x)}{5 d \cos ^{\frac {5}{2}}(c+d x)}\)

\(\Big \downarrow \) 3500

\(\displaystyle \frac {1}{5} \left (\frac {2}{3} \int \frac {3 \left (3 A a^2+10 b B a+5 A b^2\right )+5 \left (B a^2+2 A b a+3 b^2 B\right ) \cos (c+d x)}{2 \cos ^{\frac {3}{2}}(c+d x)}dx+\frac {10 a (a B+2 A b) \sin (c+d x)}{3 d \cos ^{\frac {3}{2}}(c+d x)}\right )+\frac {2 a^2 A \sin (c+d x)}{5 d \cos ^{\frac {5}{2}}(c+d x)}\)

\(\Big \downarrow \) 27

\(\displaystyle \frac {1}{5} \left (\frac {1}{3} \int \frac {3 \left (3 A a^2+10 b B a+5 A b^2\right )+5 \left (B a^2+2 A b a+3 b^2 B\right ) \cos (c+d x)}{\cos ^{\frac {3}{2}}(c+d x)}dx+\frac {10 a (a B+2 A b) \sin (c+d x)}{3 d \cos ^{\frac {3}{2}}(c+d x)}\right )+\frac {2 a^2 A \sin (c+d x)}{5 d \cos ^{\frac {5}{2}}(c+d x)}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {1}{5} \left (\frac {1}{3} \int \frac {3 \left (3 A a^2+10 b B a+5 A b^2\right )+5 \left (B a^2+2 A b a+3 b^2 B\right ) \sin \left (c+d x+\frac {\pi }{2}\right )}{\sin \left (c+d x+\frac {\pi }{2}\right )^{3/2}}dx+\frac {10 a (a B+2 A b) \sin (c+d x)}{3 d \cos ^{\frac {3}{2}}(c+d x)}\right )+\frac {2 a^2 A \sin (c+d x)}{5 d \cos ^{\frac {5}{2}}(c+d x)}\)

\(\Big \downarrow \) 3227

\(\displaystyle \frac {1}{5} \left (\frac {1}{3} \left (3 \left (3 a^2 A+10 a b B+5 A b^2\right ) \int \frac {1}{\cos ^{\frac {3}{2}}(c+d x)}dx+5 \left (a^2 B+2 a A b+3 b^2 B\right ) \int \frac {1}{\sqrt {\cos (c+d x)}}dx\right )+\frac {10 a (a B+2 A b) \sin (c+d x)}{3 d \cos ^{\frac {3}{2}}(c+d x)}\right )+\frac {2 a^2 A \sin (c+d x)}{5 d \cos ^{\frac {5}{2}}(c+d x)}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {1}{5} \left (\frac {1}{3} \left (3 \left (3 a^2 A+10 a b B+5 A b^2\right ) \int \frac {1}{\sin \left (c+d x+\frac {\pi }{2}\right )^{3/2}}dx+5 \left (a^2 B+2 a A b+3 b^2 B\right ) \int \frac {1}{\sqrt {\sin \left (c+d x+\frac {\pi }{2}\right )}}dx\right )+\frac {10 a (a B+2 A b) \sin (c+d x)}{3 d \cos ^{\frac {3}{2}}(c+d x)}\right )+\frac {2 a^2 A \sin (c+d x)}{5 d \cos ^{\frac {5}{2}}(c+d x)}\)

\(\Big \downarrow \) 3116

\(\displaystyle \frac {1}{5} \left (\frac {1}{3} \left (5 \left (a^2 B+2 a A b+3 b^2 B\right ) \int \frac {1}{\sqrt {\sin \left (c+d x+\frac {\pi }{2}\right )}}dx+3 \left (3 a^2 A+10 a b B+5 A b^2\right ) \left (\frac {2 \sin (c+d x)}{d \sqrt {\cos (c+d x)}}-\int \sqrt {\cos (c+d x)}dx\right )\right )+\frac {10 a (a B+2 A b) \sin (c+d x)}{3 d \cos ^{\frac {3}{2}}(c+d x)}\right )+\frac {2 a^2 A \sin (c+d x)}{5 d \cos ^{\frac {5}{2}}(c+d x)}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {1}{5} \left (\frac {1}{3} \left (5 \left (a^2 B+2 a A b+3 b^2 B\right ) \int \frac {1}{\sqrt {\sin \left (c+d x+\frac {\pi }{2}\right )}}dx+3 \left (3 a^2 A+10 a b B+5 A b^2\right ) \left (\frac {2 \sin (c+d x)}{d \sqrt {\cos (c+d x)}}-\int \sqrt {\sin \left (c+d x+\frac {\pi }{2}\right )}dx\right )\right )+\frac {10 a (a B+2 A b) \sin (c+d x)}{3 d \cos ^{\frac {3}{2}}(c+d x)}\right )+\frac {2 a^2 A \sin (c+d x)}{5 d \cos ^{\frac {5}{2}}(c+d x)}\)

\(\Big \downarrow \) 3119

\(\displaystyle \frac {1}{5} \left (\frac {1}{3} \left (5 \left (a^2 B+2 a A b+3 b^2 B\right ) \int \frac {1}{\sqrt {\sin \left (c+d x+\frac {\pi }{2}\right )}}dx+3 \left (3 a^2 A+10 a b B+5 A b^2\right ) \left (\frac {2 \sin (c+d x)}{d \sqrt {\cos (c+d x)}}-\frac {2 E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{d}\right )\right )+\frac {10 a (a B+2 A b) \sin (c+d x)}{3 d \cos ^{\frac {3}{2}}(c+d x)}\right )+\frac {2 a^2 A \sin (c+d x)}{5 d \cos ^{\frac {5}{2}}(c+d x)}\)

\(\Big \downarrow \) 3120

\(\displaystyle \frac {1}{5} \left (\frac {1}{3} \left (\frac {10 \left (a^2 B+2 a A b+3 b^2 B\right ) \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),2\right )}{d}+3 \left (3 a^2 A+10 a b B+5 A b^2\right ) \left (\frac {2 \sin (c+d x)}{d \sqrt {\cos (c+d x)}}-\frac {2 E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{d}\right )\right )+\frac {10 a (a B+2 A b) \sin (c+d x)}{3 d \cos ^{\frac {3}{2}}(c+d x)}\right )+\frac {2 a^2 A \sin (c+d x)}{5 d \cos ^{\frac {5}{2}}(c+d x)}\)

Input:

Int[((a + b*Cos[c + d*x])^2*(A + B*Cos[c + d*x]))/Cos[c + d*x]^(7/2),x]
 

Output:

(2*a^2*A*Sin[c + d*x])/(5*d*Cos[c + d*x]^(5/2)) + ((10*a*(2*A*b + a*B)*Sin 
[c + d*x])/(3*d*Cos[c + d*x]^(3/2)) + ((10*(2*a*A*b + a^2*B + 3*b^2*B)*Ell 
ipticF[(c + d*x)/2, 2])/d + 3*(3*a^2*A + 5*A*b^2 + 10*a*b*B)*((-2*Elliptic 
E[(c + d*x)/2, 2])/d + (2*Sin[c + d*x])/(d*Sqrt[Cos[c + d*x]])))/3)/5
 

Defintions of rubi rules used

rule 27
Int[(a_)*(Fx_), x_Symbol] :> Simp[a   Int[Fx, x], x] /; FreeQ[a, x] &&  !Ma 
tchQ[Fx, (b_)*(Gx_) /; FreeQ[b, x]]
 

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 3116
Int[((b_.)*sin[(c_.) + (d_.)*(x_)])^(n_), x_Symbol] :> Simp[Cos[c + d*x]*(( 
b*Sin[c + d*x])^(n + 1)/(b*d*(n + 1))), x] + Simp[(n + 2)/(b^2*(n + 1))   I 
nt[(b*Sin[c + d*x])^(n + 2), x], x] /; FreeQ[{b, c, d}, x] && LtQ[n, -1] && 
 IntegerQ[2*n]
 

rule 3119
Int[Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2/d)*EllipticE[(1/2)* 
(c - Pi/2 + d*x), 2], x] /; FreeQ[{c, d}, x]
 

rule 3120
Int[1/Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2/d)*EllipticF[(1/2 
)*(c - Pi/2 + d*x), 2], x] /; FreeQ[{c, d}, x]
 

rule 3227
Int[((b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((c_) + (d_.)*sin[(e_.) + (f_.)*(x 
_)]), x_Symbol] :> Simp[c   Int[(b*Sin[e + f*x])^m, x], x] + Simp[d/b   Int 
[(b*Sin[e + f*x])^(m + 1), x], x] /; FreeQ[{b, c, d, e, f, m}, x]
 

rule 3467
Int[((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])^2*((A_.) + (B_.)*sin[(e_.) + (f 
_.)*(x_)])*((c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)])^(n_), x_Symbol] :> Simp[ 
(B*c - A*d)*(b*c - a*d)^2*Cos[e + f*x]*((c + d*Sin[e + f*x])^(n + 1)/(f*d^2 
*(n + 1)*(c^2 - d^2))), x] - Simp[1/(d^2*(n + 1)*(c^2 - d^2))   Int[(c + d* 
Sin[e + f*x])^(n + 1)*Simp[d*(n + 1)*(B*(b*c - a*d)^2 - A*d*(a^2*c + b^2*c 
- 2*a*b*d)) - ((B*c - A*d)*(a^2*d^2*(n + 2) + b^2*(c^2 + d^2*(n + 1))) + 2* 
a*b*d*(A*c*d*(n + 2) - B*(c^2 + d^2*(n + 1))))*Sin[e + f*x] - b^2*B*d*(n + 
1)*(c^2 - d^2)*Sin[e + f*x]^2, x], x], x] /; FreeQ[{a, b, c, d, e, f, A, B} 
, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0] && LtQ[ 
n, -1]
 

rule 3500
Int[((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((A_.) + (B_.)*sin[(e_.) + 
 (f_.)*(x_)] + (C_.)*sin[(e_.) + (f_.)*(x_)]^2), x_Symbol] :> Simp[(-(A*b^2 
 - a*b*B + a^2*C))*Cos[e + f*x]*((a + b*Sin[e + f*x])^(m + 1)/(b*f*(m + 1)* 
(a^2 - b^2))), x] + Simp[1/(b*(m + 1)*(a^2 - b^2))   Int[(a + b*Sin[e + f*x 
])^(m + 1)*Simp[b*(a*A - b*B + a*C)*(m + 1) - (A*b^2 - a*b*B + a^2*C + b*(A 
*b - a*B + b*C)*(m + 1))*Sin[e + f*x], x], x], x] /; FreeQ[{a, b, e, f, A, 
B, C}, x] && LtQ[m, -1] && NeQ[a^2 - b^2, 0]
 
Maple [B] (verified)

Leaf count of result is larger than twice the leaf count of optimal. \(722\) vs. \(2(159)=318\).

Time = 9.19 (sec) , antiderivative size = 723, normalized size of antiderivative = 4.20

method result size
default \(\text {Expression too large to display}\) \(723\)
parts \(\text {Expression too large to display}\) \(799\)

Input:

int((a+cos(d*x+c)*b)^2*(A+B*cos(d*x+c))/cos(d*x+c)^(7/2),x,method=_RETURNV 
ERBOSE)
 

Output:

-(-(-2*cos(1/2*d*x+1/2*c)^2+1)*sin(1/2*d*x+1/2*c)^2)^(1/2)*(2*B*b^2*(sin(1 
/2*d*x+1/2*c)^2)^(1/2)*(-2*cos(1/2*d*x+1/2*c)^2+1)^(1/2)/(-2*sin(1/2*d*x+1 
/2*c)^4+sin(1/2*d*x+1/2*c)^2)^(1/2)*EllipticF(cos(1/2*d*x+1/2*c),2^(1/2))+ 
2*a*(2*A*b+B*a)*(-1/6*cos(1/2*d*x+1/2*c)*(-2*sin(1/2*d*x+1/2*c)^4+sin(1/2* 
d*x+1/2*c)^2)^(1/2)/(cos(1/2*d*x+1/2*c)^2-1/2)^2+1/3*(sin(1/2*d*x+1/2*c)^2 
)^(1/2)*(-2*cos(1/2*d*x+1/2*c)^2+1)^(1/2)/(-2*sin(1/2*d*x+1/2*c)^4+sin(1/2 
*d*x+1/2*c)^2)^(1/2)*EllipticF(cos(1/2*d*x+1/2*c),2^(1/2)))+2/5*a^2*A/(8*s 
in(1/2*d*x+1/2*c)^6-12*sin(1/2*d*x+1/2*c)^4+6*sin(1/2*d*x+1/2*c)^2-1)/sin( 
1/2*d*x+1/2*c)^2*(24*cos(1/2*d*x+1/2*c)*sin(1/2*d*x+1/2*c)^6-12*EllipticE( 
cos(1/2*d*x+1/2*c),2^(1/2))*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(2*sin(1/2*d*x+1/ 
2*c)^2-1)^(1/2)*sin(1/2*d*x+1/2*c)^4-24*sin(1/2*d*x+1/2*c)^4*cos(1/2*d*x+1 
/2*c)+12*EllipticE(cos(1/2*d*x+1/2*c),2^(1/2))*(sin(1/2*d*x+1/2*c)^2)^(1/2 
)*(2*sin(1/2*d*x+1/2*c)^2-1)^(1/2)*sin(1/2*d*x+1/2*c)^2+8*sin(1/2*d*x+1/2* 
c)^2*cos(1/2*d*x+1/2*c)-3*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(2*sin(1/2*d*x+1/2* 
c)^2-1)^(1/2)*EllipticE(cos(1/2*d*x+1/2*c),2^(1/2)))*(-2*sin(1/2*d*x+1/2*c 
)^4+sin(1/2*d*x+1/2*c)^2)^(1/2)+2*b*(A*b+2*B*a)/sin(1/2*d*x+1/2*c)^2/(2*si 
n(1/2*d*x+1/2*c)^2-1)*(-2*sin(1/2*d*x+1/2*c)^4+sin(1/2*d*x+1/2*c)^2)^(1/2) 
*(2*sin(1/2*d*x+1/2*c)^2*cos(1/2*d*x+1/2*c)-(sin(1/2*d*x+1/2*c)^2)^(1/2)*( 
2*sin(1/2*d*x+1/2*c)^2-1)^(1/2)*EllipticE(cos(1/2*d*x+1/2*c),2^(1/2))))/si 
n(1/2*d*x+1/2*c)/(2*cos(1/2*d*x+1/2*c)^2-1)^(1/2)/d
 

Fricas [C] (verification not implemented)

Result contains complex when optimal does not.

Time = 0.10 (sec) , antiderivative size = 286, normalized size of antiderivative = 1.66 \[ \int \frac {(a+b \cos (c+d x))^2 (A+B \cos (c+d x))}{\cos ^{\frac {7}{2}}(c+d x)} \, dx=-\frac {5 \, \sqrt {2} {\left (i \, B a^{2} + 2 i \, A a b + 3 i \, B b^{2}\right )} \cos \left (d x + c\right )^{3} {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) + i \, \sin \left (d x + c\right )\right ) + 5 \, \sqrt {2} {\left (-i \, B a^{2} - 2 i \, A a b - 3 i \, B b^{2}\right )} \cos \left (d x + c\right )^{3} {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) - i \, \sin \left (d x + c\right )\right ) + 3 \, \sqrt {2} {\left (3 i \, A a^{2} + 10 i \, B a b + 5 i \, A b^{2}\right )} \cos \left (d x + c\right )^{3} {\rm weierstrassZeta}\left (-4, 0, {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) + i \, \sin \left (d x + c\right )\right )\right ) + 3 \, \sqrt {2} {\left (-3 i \, A a^{2} - 10 i \, B a b - 5 i \, A b^{2}\right )} \cos \left (d x + c\right )^{3} {\rm weierstrassZeta}\left (-4, 0, {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) - i \, \sin \left (d x + c\right )\right )\right ) - 2 \, {\left (3 \, A a^{2} + 3 \, {\left (3 \, A a^{2} + 10 \, B a b + 5 \, A b^{2}\right )} \cos \left (d x + c\right )^{2} + 5 \, {\left (B a^{2} + 2 \, A a b\right )} \cos \left (d x + c\right )\right )} \sqrt {\cos \left (d x + c\right )} \sin \left (d x + c\right )}{15 \, d \cos \left (d x + c\right )^{3}} \] Input:

integrate((a+b*cos(d*x+c))^2*(A+B*cos(d*x+c))/cos(d*x+c)^(7/2),x, algorith 
m="fricas")
 

Output:

-1/15*(5*sqrt(2)*(I*B*a^2 + 2*I*A*a*b + 3*I*B*b^2)*cos(d*x + c)^3*weierstr 
assPInverse(-4, 0, cos(d*x + c) + I*sin(d*x + c)) + 5*sqrt(2)*(-I*B*a^2 - 
2*I*A*a*b - 3*I*B*b^2)*cos(d*x + c)^3*weierstrassPInverse(-4, 0, cos(d*x + 
 c) - I*sin(d*x + c)) + 3*sqrt(2)*(3*I*A*a^2 + 10*I*B*a*b + 5*I*A*b^2)*cos 
(d*x + c)^3*weierstrassZeta(-4, 0, weierstrassPInverse(-4, 0, cos(d*x + c) 
 + I*sin(d*x + c))) + 3*sqrt(2)*(-3*I*A*a^2 - 10*I*B*a*b - 5*I*A*b^2)*cos( 
d*x + c)^3*weierstrassZeta(-4, 0, weierstrassPInverse(-4, 0, cos(d*x + c) 
- I*sin(d*x + c))) - 2*(3*A*a^2 + 3*(3*A*a^2 + 10*B*a*b + 5*A*b^2)*cos(d*x 
 + c)^2 + 5*(B*a^2 + 2*A*a*b)*cos(d*x + c))*sqrt(cos(d*x + c))*sin(d*x + c 
))/(d*cos(d*x + c)^3)
 

Sympy [F(-1)]

Timed out. \[ \int \frac {(a+b \cos (c+d x))^2 (A+B \cos (c+d x))}{\cos ^{\frac {7}{2}}(c+d x)} \, dx=\text {Timed out} \] Input:

integrate((a+b*cos(d*x+c))**2*(A+B*cos(d*x+c))/cos(d*x+c)**(7/2),x)
 

Output:

Timed out
 

Maxima [F]

\[ \int \frac {(a+b \cos (c+d x))^2 (A+B \cos (c+d x))}{\cos ^{\frac {7}{2}}(c+d x)} \, dx=\int { \frac {{\left (B \cos \left (d x + c\right ) + A\right )} {\left (b \cos \left (d x + c\right ) + a\right )}^{2}}{\cos \left (d x + c\right )^{\frac {7}{2}}} \,d x } \] Input:

integrate((a+b*cos(d*x+c))^2*(A+B*cos(d*x+c))/cos(d*x+c)^(7/2),x, algorith 
m="maxima")
 

Output:

integrate((B*cos(d*x + c) + A)*(b*cos(d*x + c) + a)^2/cos(d*x + c)^(7/2), 
x)
 

Giac [F]

\[ \int \frac {(a+b \cos (c+d x))^2 (A+B \cos (c+d x))}{\cos ^{\frac {7}{2}}(c+d x)} \, dx=\int { \frac {{\left (B \cos \left (d x + c\right ) + A\right )} {\left (b \cos \left (d x + c\right ) + a\right )}^{2}}{\cos \left (d x + c\right )^{\frac {7}{2}}} \,d x } \] Input:

integrate((a+b*cos(d*x+c))^2*(A+B*cos(d*x+c))/cos(d*x+c)^(7/2),x, algorith 
m="giac")
 

Output:

integrate((B*cos(d*x + c) + A)*(b*cos(d*x + c) + a)^2/cos(d*x + c)^(7/2), 
x)
 

Mupad [B] (verification not implemented)

Time = 25.78 (sec) , antiderivative size = 227, normalized size of antiderivative = 1.32 \[ \int \frac {(a+b \cos (c+d x))^2 (A+B \cos (c+d x))}{\cos ^{\frac {7}{2}}(c+d x)} \, dx=\frac {6\,A\,a^2\,\sin \left (c+d\,x\right )\,{{}}_2{\mathrm {F}}_1\left (-\frac {5}{4},\frac {1}{2};\ -\frac {1}{4};\ {\cos \left (c+d\,x\right )}^2\right )+30\,A\,b^2\,{\cos \left (c+d\,x\right )}^2\,\sin \left (c+d\,x\right )\,{{}}_2{\mathrm {F}}_1\left (-\frac {1}{4},\frac {1}{2};\ \frac {3}{4};\ {\cos \left (c+d\,x\right )}^2\right )+20\,A\,a\,b\,\cos \left (c+d\,x\right )\,\sin \left (c+d\,x\right )\,{{}}_2{\mathrm {F}}_1\left (-\frac {3}{4},\frac {1}{2};\ \frac {1}{4};\ {\cos \left (c+d\,x\right )}^2\right )}{15\,d\,{\cos \left (c+d\,x\right )}^{5/2}\,\sqrt {1-{\cos \left (c+d\,x\right )}^2}}+\frac {2\,B\,b^2\,\mathrm {F}\left (\frac {c}{2}+\frac {d\,x}{2}\middle |2\right )}{d}+\frac {2\,B\,a^2\,\sin \left (c+d\,x\right )\,{{}}_2{\mathrm {F}}_1\left (-\frac {3}{4},\frac {1}{2};\ \frac {1}{4};\ {\cos \left (c+d\,x\right )}^2\right )}{3\,d\,{\cos \left (c+d\,x\right )}^{3/2}\,\sqrt {{\sin \left (c+d\,x\right )}^2}}+\frac {4\,B\,a\,b\,\sin \left (c+d\,x\right )\,{{}}_2{\mathrm {F}}_1\left (-\frac {1}{4},\frac {1}{2};\ \frac {3}{4};\ {\cos \left (c+d\,x\right )}^2\right )}{d\,\sqrt {\cos \left (c+d\,x\right )}\,\sqrt {{\sin \left (c+d\,x\right )}^2}} \] Input:

int(((A + B*cos(c + d*x))*(a + b*cos(c + d*x))^2)/cos(c + d*x)^(7/2),x)
 

Output:

(6*A*a^2*sin(c + d*x)*hypergeom([-5/4, 1/2], -1/4, cos(c + d*x)^2) + 30*A* 
b^2*cos(c + d*x)^2*sin(c + d*x)*hypergeom([-1/4, 1/2], 3/4, cos(c + d*x)^2 
) + 20*A*a*b*cos(c + d*x)*sin(c + d*x)*hypergeom([-3/4, 1/2], 1/4, cos(c + 
 d*x)^2))/(15*d*cos(c + d*x)^(5/2)*(1 - cos(c + d*x)^2)^(1/2)) + (2*B*b^2* 
ellipticF(c/2 + (d*x)/2, 2))/d + (2*B*a^2*sin(c + d*x)*hypergeom([-3/4, 1/ 
2], 1/4, cos(c + d*x)^2))/(3*d*cos(c + d*x)^(3/2)*(sin(c + d*x)^2)^(1/2)) 
+ (4*B*a*b*sin(c + d*x)*hypergeom([-1/4, 1/2], 3/4, cos(c + d*x)^2))/(d*co 
s(c + d*x)^(1/2)*(sin(c + d*x)^2)^(1/2))
 

Reduce [F]

\[ \int \frac {(a+b \cos (c+d x))^2 (A+B \cos (c+d x))}{\cos ^{\frac {7}{2}}(c+d x)} \, dx=\left (\int \frac {\sqrt {\cos \left (d x +c \right )}}{\cos \left (d x +c \right )}d x \right ) b^{3}+\left (\int \frac {\sqrt {\cos \left (d x +c \right )}}{\cos \left (d x +c \right )^{4}}d x \right ) a^{3}+3 \left (\int \frac {\sqrt {\cos \left (d x +c \right )}}{\cos \left (d x +c \right )^{3}}d x \right ) a^{2} b +3 \left (\int \frac {\sqrt {\cos \left (d x +c \right )}}{\cos \left (d x +c \right )^{2}}d x \right ) a \,b^{2} \] Input:

int((a+b*cos(d*x+c))^2*(A+B*cos(d*x+c))/cos(d*x+c)^(7/2),x)
 

Output:

int(sqrt(cos(c + d*x))/cos(c + d*x),x)*b**3 + int(sqrt(cos(c + d*x))/cos(c 
 + d*x)**4,x)*a**3 + 3*int(sqrt(cos(c + d*x))/cos(c + d*x)**3,x)*a**2*b + 
3*int(sqrt(cos(c + d*x))/cos(c + d*x)**2,x)*a*b**2