\(\int (a+a \cos (c+d x))^2 (A+B \cos (c+d x)) \sec ^5(c+d x) \, dx\) [18]

Optimal result
Mathematica [A] (verified)
Rubi [A] (verified)
Maple [A] (verified)
Fricas [A] (verification not implemented)
Sympy [F(-1)]
Maxima [A] (verification not implemented)
Giac [A] (verification not implemented)
Mupad [B] (verification not implemented)
Reduce [B] (verification not implemented)

Optimal result

Integrand size = 31, antiderivative size = 144 \[ \int (a+a \cos (c+d x))^2 (A+B \cos (c+d x)) \sec ^5(c+d x) \, dx=\frac {a^2 (7 A+8 B) \text {arctanh}(\sin (c+d x))}{8 d}+\frac {a^2 (4 A+5 B) \tan (c+d x)}{3 d}+\frac {a^2 (7 A+8 B) \sec (c+d x) \tan (c+d x)}{8 d}+\frac {a^2 (5 A+4 B) \sec ^2(c+d x) \tan (c+d x)}{12 d}+\frac {A \left (a^2+a^2 \cos (c+d x)\right ) \sec ^3(c+d x) \tan (c+d x)}{4 d} \] Output:

1/8*a^2*(7*A+8*B)*arctanh(sin(d*x+c))/d+1/3*a^2*(4*A+5*B)*tan(d*x+c)/d+1/8 
*a^2*(7*A+8*B)*sec(d*x+c)*tan(d*x+c)/d+1/12*a^2*(5*A+4*B)*sec(d*x+c)^2*tan 
(d*x+c)/d+1/4*A*(a^2+a^2*cos(d*x+c))*sec(d*x+c)^3*tan(d*x+c)/d
 

Mathematica [A] (verified)

Time = 1.36 (sec) , antiderivative size = 81, normalized size of antiderivative = 0.56 \[ \int (a+a \cos (c+d x))^2 (A+B \cos (c+d x)) \sec ^5(c+d x) \, dx=\frac {a^2 \left (3 (7 A+8 B) \text {arctanh}(\sin (c+d x))+\tan (c+d x) \left (48 (A+B)+3 (7 A+8 B) \sec (c+d x)+6 A \sec ^3(c+d x)+8 (2 A+B) \tan ^2(c+d x)\right )\right )}{24 d} \] Input:

Integrate[(a + a*Cos[c + d*x])^2*(A + B*Cos[c + d*x])*Sec[c + d*x]^5,x]
 

Output:

(a^2*(3*(7*A + 8*B)*ArcTanh[Sin[c + d*x]] + Tan[c + d*x]*(48*(A + B) + 3*( 
7*A + 8*B)*Sec[c + d*x] + 6*A*Sec[c + d*x]^3 + 8*(2*A + B)*Tan[c + d*x]^2) 
))/(24*d)
 

Rubi [A] (verified)

Time = 0.99 (sec) , antiderivative size = 145, normalized size of antiderivative = 1.01, number of steps used = 15, number of rules used = 14, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.452, Rules used = {3042, 3454, 3042, 3447, 3042, 3500, 3042, 3227, 3042, 4254, 24, 4255, 3042, 4257}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \sec ^5(c+d x) (a \cos (c+d x)+a)^2 (A+B \cos (c+d x)) \, dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \frac {\left (a \sin \left (c+d x+\frac {\pi }{2}\right )+a\right )^2 \left (A+B \sin \left (c+d x+\frac {\pi }{2}\right )\right )}{\sin \left (c+d x+\frac {\pi }{2}\right )^5}dx\)

\(\Big \downarrow \) 3454

\(\displaystyle \frac {1}{4} \int (\cos (c+d x) a+a) (a (5 A+4 B)+2 a (A+2 B) \cos (c+d x)) \sec ^4(c+d x)dx+\frac {A \tan (c+d x) \sec ^3(c+d x) \left (a^2 \cos (c+d x)+a^2\right )}{4 d}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {1}{4} \int \frac {\left (\sin \left (c+d x+\frac {\pi }{2}\right ) a+a\right ) \left (a (5 A+4 B)+2 a (A+2 B) \sin \left (c+d x+\frac {\pi }{2}\right )\right )}{\sin \left (c+d x+\frac {\pi }{2}\right )^4}dx+\frac {A \tan (c+d x) \sec ^3(c+d x) \left (a^2 \cos (c+d x)+a^2\right )}{4 d}\)

\(\Big \downarrow \) 3447

\(\displaystyle \frac {1}{4} \int \left (2 (A+2 B) \cos ^2(c+d x) a^2+(5 A+4 B) a^2+\left (2 (A+2 B) a^2+(5 A+4 B) a^2\right ) \cos (c+d x)\right ) \sec ^4(c+d x)dx+\frac {A \tan (c+d x) \sec ^3(c+d x) \left (a^2 \cos (c+d x)+a^2\right )}{4 d}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {1}{4} \int \frac {2 (A+2 B) \sin \left (c+d x+\frac {\pi }{2}\right )^2 a^2+(5 A+4 B) a^2+\left (2 (A+2 B) a^2+(5 A+4 B) a^2\right ) \sin \left (c+d x+\frac {\pi }{2}\right )}{\sin \left (c+d x+\frac {\pi }{2}\right )^4}dx+\frac {A \tan (c+d x) \sec ^3(c+d x) \left (a^2 \cos (c+d x)+a^2\right )}{4 d}\)

\(\Big \downarrow \) 3500

\(\displaystyle \frac {1}{4} \left (\frac {1}{3} \int \left (3 (7 A+8 B) a^2+4 (4 A+5 B) \cos (c+d x) a^2\right ) \sec ^3(c+d x)dx+\frac {a^2 (5 A+4 B) \tan (c+d x) \sec ^2(c+d x)}{3 d}\right )+\frac {A \tan (c+d x) \sec ^3(c+d x) \left (a^2 \cos (c+d x)+a^2\right )}{4 d}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {1}{4} \left (\frac {1}{3} \int \frac {3 (7 A+8 B) a^2+4 (4 A+5 B) \sin \left (c+d x+\frac {\pi }{2}\right ) a^2}{\sin \left (c+d x+\frac {\pi }{2}\right )^3}dx+\frac {a^2 (5 A+4 B) \tan (c+d x) \sec ^2(c+d x)}{3 d}\right )+\frac {A \tan (c+d x) \sec ^3(c+d x) \left (a^2 \cos (c+d x)+a^2\right )}{4 d}\)

\(\Big \downarrow \) 3227

\(\displaystyle \frac {1}{4} \left (\frac {1}{3} \left (3 a^2 (7 A+8 B) \int \sec ^3(c+d x)dx+4 a^2 (4 A+5 B) \int \sec ^2(c+d x)dx\right )+\frac {a^2 (5 A+4 B) \tan (c+d x) \sec ^2(c+d x)}{3 d}\right )+\frac {A \tan (c+d x) \sec ^3(c+d x) \left (a^2 \cos (c+d x)+a^2\right )}{4 d}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {1}{4} \left (\frac {1}{3} \left (4 a^2 (4 A+5 B) \int \csc \left (c+d x+\frac {\pi }{2}\right )^2dx+3 a^2 (7 A+8 B) \int \csc \left (c+d x+\frac {\pi }{2}\right )^3dx\right )+\frac {a^2 (5 A+4 B) \tan (c+d x) \sec ^2(c+d x)}{3 d}\right )+\frac {A \tan (c+d x) \sec ^3(c+d x) \left (a^2 \cos (c+d x)+a^2\right )}{4 d}\)

\(\Big \downarrow \) 4254

\(\displaystyle \frac {1}{4} \left (\frac {1}{3} \left (3 a^2 (7 A+8 B) \int \csc \left (c+d x+\frac {\pi }{2}\right )^3dx-\frac {4 a^2 (4 A+5 B) \int 1d(-\tan (c+d x))}{d}\right )+\frac {a^2 (5 A+4 B) \tan (c+d x) \sec ^2(c+d x)}{3 d}\right )+\frac {A \tan (c+d x) \sec ^3(c+d x) \left (a^2 \cos (c+d x)+a^2\right )}{4 d}\)

\(\Big \downarrow \) 24

\(\displaystyle \frac {1}{4} \left (\frac {1}{3} \left (3 a^2 (7 A+8 B) \int \csc \left (c+d x+\frac {\pi }{2}\right )^3dx+\frac {4 a^2 (4 A+5 B) \tan (c+d x)}{d}\right )+\frac {a^2 (5 A+4 B) \tan (c+d x) \sec ^2(c+d x)}{3 d}\right )+\frac {A \tan (c+d x) \sec ^3(c+d x) \left (a^2 \cos (c+d x)+a^2\right )}{4 d}\)

\(\Big \downarrow \) 4255

\(\displaystyle \frac {1}{4} \left (\frac {1}{3} \left (3 a^2 (7 A+8 B) \left (\frac {1}{2} \int \sec (c+d x)dx+\frac {\tan (c+d x) \sec (c+d x)}{2 d}\right )+\frac {4 a^2 (4 A+5 B) \tan (c+d x)}{d}\right )+\frac {a^2 (5 A+4 B) \tan (c+d x) \sec ^2(c+d x)}{3 d}\right )+\frac {A \tan (c+d x) \sec ^3(c+d x) \left (a^2 \cos (c+d x)+a^2\right )}{4 d}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {1}{4} \left (\frac {1}{3} \left (3 a^2 (7 A+8 B) \left (\frac {1}{2} \int \csc \left (c+d x+\frac {\pi }{2}\right )dx+\frac {\tan (c+d x) \sec (c+d x)}{2 d}\right )+\frac {4 a^2 (4 A+5 B) \tan (c+d x)}{d}\right )+\frac {a^2 (5 A+4 B) \tan (c+d x) \sec ^2(c+d x)}{3 d}\right )+\frac {A \tan (c+d x) \sec ^3(c+d x) \left (a^2 \cos (c+d x)+a^2\right )}{4 d}\)

\(\Big \downarrow \) 4257

\(\displaystyle \frac {1}{4} \left (\frac {1}{3} \left (3 a^2 (7 A+8 B) \left (\frac {\text {arctanh}(\sin (c+d x))}{2 d}+\frac {\tan (c+d x) \sec (c+d x)}{2 d}\right )+\frac {4 a^2 (4 A+5 B) \tan (c+d x)}{d}\right )+\frac {a^2 (5 A+4 B) \tan (c+d x) \sec ^2(c+d x)}{3 d}\right )+\frac {A \tan (c+d x) \sec ^3(c+d x) \left (a^2 \cos (c+d x)+a^2\right )}{4 d}\)

Input:

Int[(a + a*Cos[c + d*x])^2*(A + B*Cos[c + d*x])*Sec[c + d*x]^5,x]
 

Output:

(A*(a^2 + a^2*Cos[c + d*x])*Sec[c + d*x]^3*Tan[c + d*x])/(4*d) + ((a^2*(5* 
A + 4*B)*Sec[c + d*x]^2*Tan[c + d*x])/(3*d) + ((4*a^2*(4*A + 5*B)*Tan[c + 
d*x])/d + 3*a^2*(7*A + 8*B)*(ArcTanh[Sin[c + d*x]]/(2*d) + (Sec[c + d*x]*T 
an[c + d*x])/(2*d)))/3)/4
 

Defintions of rubi rules used

rule 24
Int[a_, x_Symbol] :> Simp[a*x, x] /; FreeQ[a, x]
 

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 3227
Int[((b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((c_) + (d_.)*sin[(e_.) + (f_.)*(x 
_)]), x_Symbol] :> Simp[c   Int[(b*Sin[e + f*x])^m, x], x] + Simp[d/b   Int 
[(b*Sin[e + f*x])^(m + 1), x], x] /; FreeQ[{b, c, d, e, f, m}, x]
 

rule 3447
Int[((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_.)*((A_.) + (B_.)*sin[(e_.) 
+ (f_.)*(x_)])*((c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)]), x_Symbol] :> Int[(a 
 + b*Sin[e + f*x])^m*(A*c + (B*c + A*d)*Sin[e + f*x] + B*d*Sin[e + f*x]^2), 
 x] /; FreeQ[{a, b, c, d, e, f, A, B, m}, x] && NeQ[b*c - a*d, 0]
 

rule 3454
Int[((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((A_.) + (B_.)*sin[(e_.) + 
(f_.)*(x_)])*((c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)])^(n_), x_Symbol] :> Sim 
p[(-b^2)*(B*c - A*d)*Cos[e + f*x]*(a + b*Sin[e + f*x])^(m - 1)*((c + d*Sin[ 
e + f*x])^(n + 1)/(d*f*(n + 1)*(b*c + a*d))), x] - Simp[b/(d*(n + 1)*(b*c + 
 a*d))   Int[(a + b*Sin[e + f*x])^(m - 1)*(c + d*Sin[e + f*x])^(n + 1)*Simp 
[a*A*d*(m - n - 2) - B*(a*c*(m - 1) + b*d*(n + 1)) - (A*b*d*(m + n + 1) - B 
*(b*c*m - a*d*(n + 1)))*Sin[e + f*x], x], x], x] /; FreeQ[{a, b, c, d, e, f 
, A, B}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0] 
&& GtQ[m, 1/2] && LtQ[n, -1] && IntegerQ[2*m] && (IntegerQ[2*n] || EqQ[c, 0 
])
 

rule 3500
Int[((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((A_.) + (B_.)*sin[(e_.) + 
 (f_.)*(x_)] + (C_.)*sin[(e_.) + (f_.)*(x_)]^2), x_Symbol] :> Simp[(-(A*b^2 
 - a*b*B + a^2*C))*Cos[e + f*x]*((a + b*Sin[e + f*x])^(m + 1)/(b*f*(m + 1)* 
(a^2 - b^2))), x] + Simp[1/(b*(m + 1)*(a^2 - b^2))   Int[(a + b*Sin[e + f*x 
])^(m + 1)*Simp[b*(a*A - b*B + a*C)*(m + 1) - (A*b^2 - a*b*B + a^2*C + b*(A 
*b - a*B + b*C)*(m + 1))*Sin[e + f*x], x], x], x] /; FreeQ[{a, b, e, f, A, 
B, C}, x] && LtQ[m, -1] && NeQ[a^2 - b^2, 0]
 

rule 4254
Int[csc[(c_.) + (d_.)*(x_)]^(n_), x_Symbol] :> Simp[-d^(-1)   Subst[Int[Exp 
andIntegrand[(1 + x^2)^(n/2 - 1), x], x], x, Cot[c + d*x]], x] /; FreeQ[{c, 
 d}, x] && IGtQ[n/2, 0]
 

rule 4255
Int[(csc[(c_.) + (d_.)*(x_)]*(b_.))^(n_), x_Symbol] :> Simp[(-b)*Cos[c + d* 
x]*((b*Csc[c + d*x])^(n - 1)/(d*(n - 1))), x] + Simp[b^2*((n - 2)/(n - 1)) 
  Int[(b*Csc[c + d*x])^(n - 2), x], x] /; FreeQ[{b, c, d}, x] && GtQ[n, 1] 
&& IntegerQ[2*n]
 

rule 4257
Int[csc[(c_.) + (d_.)*(x_)], x_Symbol] :> Simp[-ArcTanh[Cos[c + d*x]]/d, x] 
 /; FreeQ[{c, d}, x]
 
Maple [A] (verified)

Time = 12.82 (sec) , antiderivative size = 150, normalized size of antiderivative = 1.04

method result size
parts \(\frac {a^{2} A \left (-\left (-\frac {\sec \left (d x +c \right )^{3}}{4}-\frac {3 \sec \left (d x +c \right )}{8}\right ) \tan \left (d x +c \right )+\frac {3 \ln \left (\sec \left (d x +c \right )+\tan \left (d x +c \right )\right )}{8}\right )}{d}+\frac {\left (a^{2} A +2 a^{2} B \right ) \left (\frac {\sec \left (d x +c \right ) \tan \left (d x +c \right )}{2}+\frac {\ln \left (\sec \left (d x +c \right )+\tan \left (d x +c \right )\right )}{2}\right )}{d}-\frac {\left (2 a^{2} A +a^{2} B \right ) \left (-\frac {2}{3}-\frac {\sec \left (d x +c \right )^{2}}{3}\right ) \tan \left (d x +c \right )}{d}+\frac {a^{2} B \tan \left (d x +c \right )}{d}\) \(150\)
parallelrisch \(\frac {16 \left (-\frac {21 \left (A +\frac {8 B}{7}\right ) \left (\frac {3}{4}+\frac {\cos \left (4 d x +4 c \right )}{4}+\cos \left (2 d x +2 c \right )\right ) \ln \left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )-1\right )}{32}+\frac {21 \left (A +\frac {8 B}{7}\right ) \left (\frac {3}{4}+\frac {\cos \left (4 d x +4 c \right )}{4}+\cos \left (2 d x +2 c \right )\right ) \ln \left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )+1\right )}{32}+\left (A +\frac {7 B}{8}\right ) \sin \left (2 d x +2 c \right )+\frac {3 \left (\frac {7 A}{8}+B \right ) \sin \left (3 d x +3 c \right )}{8}+\frac {\left (A +\frac {5 B}{4}\right ) \sin \left (4 d x +4 c \right )}{4}+\frac {45 \sin \left (d x +c \right ) \left (A +\frac {8 B}{15}\right )}{64}\right ) a^{2}}{3 d \left (\cos \left (4 d x +4 c \right )+4 \cos \left (2 d x +2 c \right )+3\right )}\) \(176\)
derivativedivides \(\frac {a^{2} A \left (\frac {\sec \left (d x +c \right ) \tan \left (d x +c \right )}{2}+\frac {\ln \left (\sec \left (d x +c \right )+\tan \left (d x +c \right )\right )}{2}\right )+a^{2} B \tan \left (d x +c \right )-2 a^{2} A \left (-\frac {2}{3}-\frac {\sec \left (d x +c \right )^{2}}{3}\right ) \tan \left (d x +c \right )+2 a^{2} B \left (\frac {\sec \left (d x +c \right ) \tan \left (d x +c \right )}{2}+\frac {\ln \left (\sec \left (d x +c \right )+\tan \left (d x +c \right )\right )}{2}\right )+a^{2} A \left (-\left (-\frac {\sec \left (d x +c \right )^{3}}{4}-\frac {3 \sec \left (d x +c \right )}{8}\right ) \tan \left (d x +c \right )+\frac {3 \ln \left (\sec \left (d x +c \right )+\tan \left (d x +c \right )\right )}{8}\right )-a^{2} B \left (-\frac {2}{3}-\frac {\sec \left (d x +c \right )^{2}}{3}\right ) \tan \left (d x +c \right )}{d}\) \(187\)
default \(\frac {a^{2} A \left (\frac {\sec \left (d x +c \right ) \tan \left (d x +c \right )}{2}+\frac {\ln \left (\sec \left (d x +c \right )+\tan \left (d x +c \right )\right )}{2}\right )+a^{2} B \tan \left (d x +c \right )-2 a^{2} A \left (-\frac {2}{3}-\frac {\sec \left (d x +c \right )^{2}}{3}\right ) \tan \left (d x +c \right )+2 a^{2} B \left (\frac {\sec \left (d x +c \right ) \tan \left (d x +c \right )}{2}+\frac {\ln \left (\sec \left (d x +c \right )+\tan \left (d x +c \right )\right )}{2}\right )+a^{2} A \left (-\left (-\frac {\sec \left (d x +c \right )^{3}}{4}-\frac {3 \sec \left (d x +c \right )}{8}\right ) \tan \left (d x +c \right )+\frac {3 \ln \left (\sec \left (d x +c \right )+\tan \left (d x +c \right )\right )}{8}\right )-a^{2} B \left (-\frac {2}{3}-\frac {\sec \left (d x +c \right )^{2}}{3}\right ) \tan \left (d x +c \right )}{d}\) \(187\)
norman \(\frac {\frac {a^{2} \left (3 A -8 B \right ) \tan \left (\frac {d x}{2}+\frac {c}{2}\right )^{7}}{d}+\frac {a^{2} \left (7 A +8 B \right ) \tan \left (\frac {d x}{2}+\frac {c}{2}\right )^{11}}{6 d}-\frac {a^{2} \left (7 A +8 B \right ) \tan \left (\frac {d x}{2}+\frac {c}{2}\right )^{13}}{4 d}+\frac {a^{2} \left (25 A +24 B \right ) \tan \left (\frac {d x}{2}+\frac {c}{2}\right )}{4 d}+\frac {a^{2} \left (53 A -104 B \right ) \tan \left (\frac {d x}{2}+\frac {c}{2}\right )^{5}}{12 d}+\frac {a^{2} \left (71 A +40 B \right ) \tan \left (\frac {d x}{2}+\frac {c}{2}\right )^{3}}{6 d}+\frac {a^{2} \left (85 A +56 B \right ) \tan \left (\frac {d x}{2}+\frac {c}{2}\right )^{9}}{12 d}}{\left (1+\tan \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}\right )^{3} \left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-1\right )^{4}}-\frac {a^{2} \left (7 A +8 B \right ) \ln \left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )-1\right )}{8 d}+\frac {a^{2} \left (7 A +8 B \right ) \ln \left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )+1\right )}{8 d}\) \(267\)
risch \(-\frac {i a^{2} \left (21 A \,{\mathrm e}^{7 i \left (d x +c \right )}+24 B \,{\mathrm e}^{7 i \left (d x +c \right )}-24 B \,{\mathrm e}^{6 i \left (d x +c \right )}+45 A \,{\mathrm e}^{5 i \left (d x +c \right )}+24 B \,{\mathrm e}^{5 i \left (d x +c \right )}-96 A \,{\mathrm e}^{4 i \left (d x +c \right )}-120 B \,{\mathrm e}^{4 i \left (d x +c \right )}-45 A \,{\mathrm e}^{3 i \left (d x +c \right )}-24 B \,{\mathrm e}^{3 i \left (d x +c \right )}-128 A \,{\mathrm e}^{2 i \left (d x +c \right )}-136 B \,{\mathrm e}^{2 i \left (d x +c \right )}-21 A \,{\mathrm e}^{i \left (d x +c \right )}-24 B \,{\mathrm e}^{i \left (d x +c \right )}-32 A -40 B \right )}{12 d \left ({\mathrm e}^{2 i \left (d x +c \right )}+1\right )^{4}}-\frac {7 a^{2} A \ln \left ({\mathrm e}^{i \left (d x +c \right )}-i\right )}{8 d}-\frac {a^{2} \ln \left ({\mathrm e}^{i \left (d x +c \right )}-i\right ) B}{d}+\frac {7 a^{2} A \ln \left ({\mathrm e}^{i \left (d x +c \right )}+i\right )}{8 d}+\frac {a^{2} \ln \left ({\mathrm e}^{i \left (d x +c \right )}+i\right ) B}{d}\) \(274\)

Input:

int((a+a*cos(d*x+c))^2*(A+B*cos(d*x+c))*sec(d*x+c)^5,x,method=_RETURNVERBO 
SE)
 

Output:

a^2*A/d*(-(-1/4*sec(d*x+c)^3-3/8*sec(d*x+c))*tan(d*x+c)+3/8*ln(sec(d*x+c)+ 
tan(d*x+c)))+(A*a^2+2*B*a^2)/d*(1/2*sec(d*x+c)*tan(d*x+c)+1/2*ln(sec(d*x+c 
)+tan(d*x+c)))-(2*A*a^2+B*a^2)/d*(-2/3-1/3*sec(d*x+c)^2)*tan(d*x+c)+a^2*B/ 
d*tan(d*x+c)
 

Fricas [A] (verification not implemented)

Time = 0.09 (sec) , antiderivative size = 145, normalized size of antiderivative = 1.01 \[ \int (a+a \cos (c+d x))^2 (A+B \cos (c+d x)) \sec ^5(c+d x) \, dx=\frac {3 \, {\left (7 \, A + 8 \, B\right )} a^{2} \cos \left (d x + c\right )^{4} \log \left (\sin \left (d x + c\right ) + 1\right ) - 3 \, {\left (7 \, A + 8 \, B\right )} a^{2} \cos \left (d x + c\right )^{4} \log \left (-\sin \left (d x + c\right ) + 1\right ) + 2 \, {\left (8 \, {\left (4 \, A + 5 \, B\right )} a^{2} \cos \left (d x + c\right )^{3} + 3 \, {\left (7 \, A + 8 \, B\right )} a^{2} \cos \left (d x + c\right )^{2} + 8 \, {\left (2 \, A + B\right )} a^{2} \cos \left (d x + c\right ) + 6 \, A a^{2}\right )} \sin \left (d x + c\right )}{48 \, d \cos \left (d x + c\right )^{4}} \] Input:

integrate((a+a*cos(d*x+c))^2*(A+B*cos(d*x+c))*sec(d*x+c)^5,x, algorithm="f 
ricas")
 

Output:

1/48*(3*(7*A + 8*B)*a^2*cos(d*x + c)^4*log(sin(d*x + c) + 1) - 3*(7*A + 8* 
B)*a^2*cos(d*x + c)^4*log(-sin(d*x + c) + 1) + 2*(8*(4*A + 5*B)*a^2*cos(d* 
x + c)^3 + 3*(7*A + 8*B)*a^2*cos(d*x + c)^2 + 8*(2*A + B)*a^2*cos(d*x + c) 
 + 6*A*a^2)*sin(d*x + c))/(d*cos(d*x + c)^4)
 

Sympy [F(-1)]

Timed out. \[ \int (a+a \cos (c+d x))^2 (A+B \cos (c+d x)) \sec ^5(c+d x) \, dx=\text {Timed out} \] Input:

integrate((a+a*cos(d*x+c))**2*(A+B*cos(d*x+c))*sec(d*x+c)**5,x)
 

Output:

Timed out
 

Maxima [A] (verification not implemented)

Time = 0.05 (sec) , antiderivative size = 230, normalized size of antiderivative = 1.60 \[ \int (a+a \cos (c+d x))^2 (A+B \cos (c+d x)) \sec ^5(c+d x) \, dx=\frac {32 \, {\left (\tan \left (d x + c\right )^{3} + 3 \, \tan \left (d x + c\right )\right )} A a^{2} + 16 \, {\left (\tan \left (d x + c\right )^{3} + 3 \, \tan \left (d x + c\right )\right )} B a^{2} - 3 \, A a^{2} {\left (\frac {2 \, {\left (3 \, \sin \left (d x + c\right )^{3} - 5 \, \sin \left (d x + c\right )\right )}}{\sin \left (d x + c\right )^{4} - 2 \, \sin \left (d x + c\right )^{2} + 1} - 3 \, \log \left (\sin \left (d x + c\right ) + 1\right ) + 3 \, \log \left (\sin \left (d x + c\right ) - 1\right )\right )} - 12 \, A a^{2} {\left (\frac {2 \, \sin \left (d x + c\right )}{\sin \left (d x + c\right )^{2} - 1} - \log \left (\sin \left (d x + c\right ) + 1\right ) + \log \left (\sin \left (d x + c\right ) - 1\right )\right )} - 24 \, B a^{2} {\left (\frac {2 \, \sin \left (d x + c\right )}{\sin \left (d x + c\right )^{2} - 1} - \log \left (\sin \left (d x + c\right ) + 1\right ) + \log \left (\sin \left (d x + c\right ) - 1\right )\right )} + 48 \, B a^{2} \tan \left (d x + c\right )}{48 \, d} \] Input:

integrate((a+a*cos(d*x+c))^2*(A+B*cos(d*x+c))*sec(d*x+c)^5,x, algorithm="m 
axima")
 

Output:

1/48*(32*(tan(d*x + c)^3 + 3*tan(d*x + c))*A*a^2 + 16*(tan(d*x + c)^3 + 3* 
tan(d*x + c))*B*a^2 - 3*A*a^2*(2*(3*sin(d*x + c)^3 - 5*sin(d*x + c))/(sin( 
d*x + c)^4 - 2*sin(d*x + c)^2 + 1) - 3*log(sin(d*x + c) + 1) + 3*log(sin(d 
*x + c) - 1)) - 12*A*a^2*(2*sin(d*x + c)/(sin(d*x + c)^2 - 1) - log(sin(d* 
x + c) + 1) + log(sin(d*x + c) - 1)) - 24*B*a^2*(2*sin(d*x + c)/(sin(d*x + 
 c)^2 - 1) - log(sin(d*x + c) + 1) + log(sin(d*x + c) - 1)) + 48*B*a^2*tan 
(d*x + c))/d
 

Giac [A] (verification not implemented)

Time = 0.35 (sec) , antiderivative size = 212, normalized size of antiderivative = 1.47 \[ \int (a+a \cos (c+d x))^2 (A+B \cos (c+d x)) \sec ^5(c+d x) \, dx=\frac {3 \, {\left (7 \, A a^{2} + 8 \, B a^{2}\right )} \log \left ({\left | \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) + 1 \right |}\right ) - 3 \, {\left (7 \, A a^{2} + 8 \, B a^{2}\right )} \log \left ({\left | \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) - 1 \right |}\right ) - \frac {2 \, {\left (21 \, A a^{2} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{7} + 24 \, B a^{2} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{7} - 77 \, A a^{2} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{5} - 88 \, B a^{2} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{5} + 83 \, A a^{2} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{3} + 136 \, B a^{2} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{3} - 75 \, A a^{2} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) - 72 \, B a^{2} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )\right )}}{{\left (\tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{2} - 1\right )}^{4}}}{24 \, d} \] Input:

integrate((a+a*cos(d*x+c))^2*(A+B*cos(d*x+c))*sec(d*x+c)^5,x, algorithm="g 
iac")
 

Output:

1/24*(3*(7*A*a^2 + 8*B*a^2)*log(abs(tan(1/2*d*x + 1/2*c) + 1)) - 3*(7*A*a^ 
2 + 8*B*a^2)*log(abs(tan(1/2*d*x + 1/2*c) - 1)) - 2*(21*A*a^2*tan(1/2*d*x 
+ 1/2*c)^7 + 24*B*a^2*tan(1/2*d*x + 1/2*c)^7 - 77*A*a^2*tan(1/2*d*x + 1/2* 
c)^5 - 88*B*a^2*tan(1/2*d*x + 1/2*c)^5 + 83*A*a^2*tan(1/2*d*x + 1/2*c)^3 + 
 136*B*a^2*tan(1/2*d*x + 1/2*c)^3 - 75*A*a^2*tan(1/2*d*x + 1/2*c) - 72*B*a 
^2*tan(1/2*d*x + 1/2*c))/(tan(1/2*d*x + 1/2*c)^2 - 1)^4)/d
 

Mupad [B] (verification not implemented)

Time = 44.52 (sec) , antiderivative size = 183, normalized size of antiderivative = 1.27 \[ \int (a+a \cos (c+d x))^2 (A+B \cos (c+d x)) \sec ^5(c+d x) \, dx=\frac {\left (-\frac {7\,A\,a^2}{4}-2\,B\,a^2\right )\,{\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}^7+\left (\frac {77\,A\,a^2}{12}+\frac {22\,B\,a^2}{3}\right )\,{\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}^5+\left (-\frac {83\,A\,a^2}{12}-\frac {34\,B\,a^2}{3}\right )\,{\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}^3+\left (\frac {25\,A\,a^2}{4}+6\,B\,a^2\right )\,\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}{d\,\left ({\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}^8-4\,{\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}^6+6\,{\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}^4-4\,{\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}^2+1\right )}+\frac {2\,a^2\,\mathrm {atanh}\left (\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )\right )\,\left (\frac {7\,A}{8}+B\right )}{d} \] Input:

int(((A + B*cos(c + d*x))*(a + a*cos(c + d*x))^2)/cos(c + d*x)^5,x)
 

Output:

(tan(c/2 + (d*x)/2)*((25*A*a^2)/4 + 6*B*a^2) - tan(c/2 + (d*x)/2)^7*((7*A* 
a^2)/4 + 2*B*a^2) + tan(c/2 + (d*x)/2)^5*((77*A*a^2)/12 + (22*B*a^2)/3) - 
tan(c/2 + (d*x)/2)^3*((83*A*a^2)/12 + (34*B*a^2)/3))/(d*(6*tan(c/2 + (d*x) 
/2)^4 - 4*tan(c/2 + (d*x)/2)^2 - 4*tan(c/2 + (d*x)/2)^6 + tan(c/2 + (d*x)/ 
2)^8 + 1)) + (2*a^2*atanh(tan(c/2 + (d*x)/2))*((7*A)/8 + B))/d
 

Reduce [B] (verification not implemented)

Time = 0.19 (sec) , antiderivative size = 481, normalized size of antiderivative = 3.34 \[ \int (a+a \cos (c+d x))^2 (A+B \cos (c+d x)) \sec ^5(c+d x) \, dx =\text {Too large to display} \] Input:

int((a+a*cos(d*x+c))^2*(A+B*cos(d*x+c))*sec(d*x+c)^5,x)
 

Output:

(a**2*( - 21*cos(c + d*x)*log(tan((c + d*x)/2) - 1)*sin(c + d*x)**4*a - 24 
*cos(c + d*x)*log(tan((c + d*x)/2) - 1)*sin(c + d*x)**4*b + 42*cos(c + d*x 
)*log(tan((c + d*x)/2) - 1)*sin(c + d*x)**2*a + 48*cos(c + d*x)*log(tan((c 
 + d*x)/2) - 1)*sin(c + d*x)**2*b - 21*cos(c + d*x)*log(tan((c + d*x)/2) - 
 1)*a - 24*cos(c + d*x)*log(tan((c + d*x)/2) - 1)*b + 21*cos(c + d*x)*log( 
tan((c + d*x)/2) + 1)*sin(c + d*x)**4*a + 24*cos(c + d*x)*log(tan((c + d*x 
)/2) + 1)*sin(c + d*x)**4*b - 42*cos(c + d*x)*log(tan((c + d*x)/2) + 1)*si 
n(c + d*x)**2*a - 48*cos(c + d*x)*log(tan((c + d*x)/2) + 1)*sin(c + d*x)** 
2*b + 21*cos(c + d*x)*log(tan((c + d*x)/2) + 1)*a + 24*cos(c + d*x)*log(ta 
n((c + d*x)/2) + 1)*b - 21*cos(c + d*x)*sin(c + d*x)**3*a - 24*cos(c + d*x 
)*sin(c + d*x)**3*b + 27*cos(c + d*x)*sin(c + d*x)*a + 24*cos(c + d*x)*sin 
(c + d*x)*b + 32*sin(c + d*x)**5*a + 40*sin(c + d*x)**5*b - 80*sin(c + d*x 
)**3*a - 88*sin(c + d*x)**3*b + 48*sin(c + d*x)*a + 48*sin(c + d*x)*b))/(2 
4*cos(c + d*x)*d*(sin(c + d*x)**4 - 2*sin(c + d*x)**2 + 1))