\(\int \frac {A+B \cos (c+d x)}{\cos ^{\frac {5}{2}}(c+d x) (a+b \cos (c+d x))} \, dx\) [370]

Optimal result
Mathematica [A] (warning: unable to verify)
Rubi [A] (verified)
Maple [B] (verified)
Fricas [F(-1)]
Sympy [F(-1)]
Maxima [F]
Giac [F]
Mupad [F(-1)]
Reduce [F]

Optimal result

Integrand size = 33, antiderivative size = 150 \[ \int \frac {A+B \cos (c+d x)}{\cos ^{\frac {5}{2}}(c+d x) (a+b \cos (c+d x))} \, dx=\frac {2 (A b-a B) E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{a^2 d}+\frac {2 A \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),2\right )}{3 a d}+\frac {2 b (A b-a B) \operatorname {EllipticPi}\left (\frac {2 b}{a+b},\frac {1}{2} (c+d x),2\right )}{a^2 (a+b) d}+\frac {2 A \sin (c+d x)}{3 a d \cos ^{\frac {3}{2}}(c+d x)}-\frac {2 (A b-a B) \sin (c+d x)}{a^2 d \sqrt {\cos (c+d x)}} \] Output:

2*(A*b-B*a)*EllipticE(sin(1/2*d*x+1/2*c),2^(1/2))/a^2/d+2/3*A*InverseJacob 
iAM(1/2*d*x+1/2*c,2^(1/2))/a/d+2*b*(A*b-B*a)*EllipticPi(sin(1/2*d*x+1/2*c) 
,2*b/(a+b),2^(1/2))/a^2/(a+b)/d+2/3*A*sin(d*x+c)/a/d/cos(d*x+c)^(3/2)-2*(A 
*b-B*a)*sin(d*x+c)/a^2/d/cos(d*x+c)^(1/2)
                                                                                    
                                                                                    
 

Mathematica [A] (warning: unable to verify)

Time = 2.69 (sec) , antiderivative size = 260, normalized size of antiderivative = 1.73 \[ \int \frac {A+B \cos (c+d x)}{\cos ^{\frac {5}{2}}(c+d x) (a+b \cos (c+d x))} \, dx=\frac {\frac {2 a \left (2 a^2 A+9 A b^2-9 a b B\right ) \operatorname {EllipticPi}\left (\frac {2 b}{a+b},\frac {1}{2} (c+d x),2\right )}{a+b}+\frac {a \left (8 a A b-6 a^2 B\right ) \left (2 \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),2\right )-\frac {2 a \operatorname {EllipticPi}\left (\frac {2 b}{a+b},\frac {1}{2} (c+d x),2\right )}{a+b}\right )}{b}+\frac {4 a^2 A \sin (c+d x)}{\cos ^{\frac {3}{2}}(c+d x)}+\frac {12 a (-A b+a B) \sin (c+d x)}{\sqrt {\cos (c+d x)}}+\frac {6 (A b-a B) \left (-2 a b E\left (\left .\arcsin \left (\sqrt {\cos (c+d x)}\right )\right |-1\right )+2 a (a+b) \operatorname {EllipticF}\left (\arcsin \left (\sqrt {\cos (c+d x)}\right ),-1\right )+\left (-2 a^2+b^2\right ) \operatorname {EllipticPi}\left (-\frac {b}{a},\arcsin \left (\sqrt {\cos (c+d x)}\right ),-1\right )\right ) \sin (c+d x)}{b \sqrt {\sin ^2(c+d x)}}}{6 a^3 d} \] Input:

Integrate[(A + B*Cos[c + d*x])/(Cos[c + d*x]^(5/2)*(a + b*Cos[c + d*x])),x 
]
 

Output:

((2*a*(2*a^2*A + 9*A*b^2 - 9*a*b*B)*EllipticPi[(2*b)/(a + b), (c + d*x)/2, 
 2])/(a + b) + (a*(8*a*A*b - 6*a^2*B)*(2*EllipticF[(c + d*x)/2, 2] - (2*a* 
EllipticPi[(2*b)/(a + b), (c + d*x)/2, 2])/(a + b)))/b + (4*a^2*A*Sin[c + 
d*x])/Cos[c + d*x]^(3/2) + (12*a*(-(A*b) + a*B)*Sin[c + d*x])/Sqrt[Cos[c + 
 d*x]] + (6*(A*b - a*B)*(-2*a*b*EllipticE[ArcSin[Sqrt[Cos[c + d*x]]], -1] 
+ 2*a*(a + b)*EllipticF[ArcSin[Sqrt[Cos[c + d*x]]], -1] + (-2*a^2 + b^2)*E 
llipticPi[-(b/a), ArcSin[Sqrt[Cos[c + d*x]]], -1])*Sin[c + d*x])/(b*Sqrt[S 
in[c + d*x]^2]))/(6*a^3*d)
 

Rubi [A] (verified)

Time = 1.46 (sec) , antiderivative size = 162, normalized size of antiderivative = 1.08, number of steps used = 15, number of rules used = 15, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.455, Rules used = {3042, 3479, 27, 3042, 3534, 27, 3042, 3538, 25, 3042, 3119, 3481, 3042, 3120, 3284}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {A+B \cos (c+d x)}{\cos ^{\frac {5}{2}}(c+d x) (a+b \cos (c+d x))} \, dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \frac {A+B \sin \left (c+d x+\frac {\pi }{2}\right )}{\sin \left (c+d x+\frac {\pi }{2}\right )^{5/2} \left (a+b \sin \left (c+d x+\frac {\pi }{2}\right )\right )}dx\)

\(\Big \downarrow \) 3479

\(\displaystyle \frac {2 \int -\frac {-A b \cos ^2(c+d x)-a A \cos (c+d x)+3 (A b-a B)}{2 \cos ^{\frac {3}{2}}(c+d x) (a+b \cos (c+d x))}dx}{3 a}+\frac {2 A \sin (c+d x)}{3 a d \cos ^{\frac {3}{2}}(c+d x)}\)

\(\Big \downarrow \) 27

\(\displaystyle \frac {2 A \sin (c+d x)}{3 a d \cos ^{\frac {3}{2}}(c+d x)}-\frac {\int \frac {-A b \cos ^2(c+d x)-a A \cos (c+d x)+3 (A b-a B)}{\cos ^{\frac {3}{2}}(c+d x) (a+b \cos (c+d x))}dx}{3 a}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {2 A \sin (c+d x)}{3 a d \cos ^{\frac {3}{2}}(c+d x)}-\frac {\int \frac {-A b \sin \left (c+d x+\frac {\pi }{2}\right )^2-a A \sin \left (c+d x+\frac {\pi }{2}\right )+3 (A b-a B)}{\sin \left (c+d x+\frac {\pi }{2}\right )^{3/2} \left (a+b \sin \left (c+d x+\frac {\pi }{2}\right )\right )}dx}{3 a}\)

\(\Big \downarrow \) 3534

\(\displaystyle \frac {2 A \sin (c+d x)}{3 a d \cos ^{\frac {3}{2}}(c+d x)}-\frac {\frac {2 \int -\frac {A a^2-3 b B a+(4 A b-3 a B) \cos (c+d x) a+3 A b^2+3 b (A b-a B) \cos ^2(c+d x)}{2 \sqrt {\cos (c+d x)} (a+b \cos (c+d x))}dx}{a}+\frac {6 (A b-a B) \sin (c+d x)}{a d \sqrt {\cos (c+d x)}}}{3 a}\)

\(\Big \downarrow \) 27

\(\displaystyle \frac {2 A \sin (c+d x)}{3 a d \cos ^{\frac {3}{2}}(c+d x)}-\frac {\frac {6 (A b-a B) \sin (c+d x)}{a d \sqrt {\cos (c+d x)}}-\frac {\int \frac {A a^2-3 b B a+(4 A b-3 a B) \cos (c+d x) a+3 A b^2+3 b (A b-a B) \cos ^2(c+d x)}{\sqrt {\cos (c+d x)} (a+b \cos (c+d x))}dx}{a}}{3 a}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {2 A \sin (c+d x)}{3 a d \cos ^{\frac {3}{2}}(c+d x)}-\frac {\frac {6 (A b-a B) \sin (c+d x)}{a d \sqrt {\cos (c+d x)}}-\frac {\int \frac {A a^2-3 b B a+(4 A b-3 a B) \sin \left (c+d x+\frac {\pi }{2}\right ) a+3 A b^2+3 b (A b-a B) \sin \left (c+d x+\frac {\pi }{2}\right )^2}{\sqrt {\sin \left (c+d x+\frac {\pi }{2}\right )} \left (a+b \sin \left (c+d x+\frac {\pi }{2}\right )\right )}dx}{a}}{3 a}\)

\(\Big \downarrow \) 3538

\(\displaystyle \frac {2 A \sin (c+d x)}{3 a d \cos ^{\frac {3}{2}}(c+d x)}-\frac {\frac {6 (A b-a B) \sin (c+d x)}{a d \sqrt {\cos (c+d x)}}-\frac {3 (A b-a B) \int \sqrt {\cos (c+d x)}dx-\frac {\int -\frac {a A \cos (c+d x) b^2+\left (A a^2-3 b B a+3 A b^2\right ) b}{\sqrt {\cos (c+d x)} (a+b \cos (c+d x))}dx}{b}}{a}}{3 a}\)

\(\Big \downarrow \) 25

\(\displaystyle \frac {2 A \sin (c+d x)}{3 a d \cos ^{\frac {3}{2}}(c+d x)}-\frac {\frac {6 (A b-a B) \sin (c+d x)}{a d \sqrt {\cos (c+d x)}}-\frac {\frac {\int \frac {a A \cos (c+d x) b^2+\left (A a^2-3 b B a+3 A b^2\right ) b}{\sqrt {\cos (c+d x)} (a+b \cos (c+d x))}dx}{b}+3 (A b-a B) \int \sqrt {\cos (c+d x)}dx}{a}}{3 a}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {2 A \sin (c+d x)}{3 a d \cos ^{\frac {3}{2}}(c+d x)}-\frac {\frac {6 (A b-a B) \sin (c+d x)}{a d \sqrt {\cos (c+d x)}}-\frac {\frac {\int \frac {a A \sin \left (c+d x+\frac {\pi }{2}\right ) b^2+\left (A a^2-3 b B a+3 A b^2\right ) b}{\sqrt {\sin \left (c+d x+\frac {\pi }{2}\right )} \left (a+b \sin \left (c+d x+\frac {\pi }{2}\right )\right )}dx}{b}+3 (A b-a B) \int \sqrt {\sin \left (c+d x+\frac {\pi }{2}\right )}dx}{a}}{3 a}\)

\(\Big \downarrow \) 3119

\(\displaystyle \frac {2 A \sin (c+d x)}{3 a d \cos ^{\frac {3}{2}}(c+d x)}-\frac {\frac {6 (A b-a B) \sin (c+d x)}{a d \sqrt {\cos (c+d x)}}-\frac {\frac {\int \frac {a A \sin \left (c+d x+\frac {\pi }{2}\right ) b^2+\left (A a^2-3 b B a+3 A b^2\right ) b}{\sqrt {\sin \left (c+d x+\frac {\pi }{2}\right )} \left (a+b \sin \left (c+d x+\frac {\pi }{2}\right )\right )}dx}{b}+\frac {6 (A b-a B) E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{d}}{a}}{3 a}\)

\(\Big \downarrow \) 3481

\(\displaystyle \frac {2 A \sin (c+d x)}{3 a d \cos ^{\frac {3}{2}}(c+d x)}-\frac {\frac {6 (A b-a B) \sin (c+d x)}{a d \sqrt {\cos (c+d x)}}-\frac {\frac {3 b^2 (A b-a B) \int \frac {1}{\sqrt {\cos (c+d x)} (a+b \cos (c+d x))}dx+a A b \int \frac {1}{\sqrt {\cos (c+d x)}}dx}{b}+\frac {6 (A b-a B) E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{d}}{a}}{3 a}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {2 A \sin (c+d x)}{3 a d \cos ^{\frac {3}{2}}(c+d x)}-\frac {\frac {6 (A b-a B) \sin (c+d x)}{a d \sqrt {\cos (c+d x)}}-\frac {\frac {3 b^2 (A b-a B) \int \frac {1}{\sqrt {\sin \left (c+d x+\frac {\pi }{2}\right )} \left (a+b \sin \left (c+d x+\frac {\pi }{2}\right )\right )}dx+a A b \int \frac {1}{\sqrt {\sin \left (c+d x+\frac {\pi }{2}\right )}}dx}{b}+\frac {6 (A b-a B) E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{d}}{a}}{3 a}\)

\(\Big \downarrow \) 3120

\(\displaystyle \frac {2 A \sin (c+d x)}{3 a d \cos ^{\frac {3}{2}}(c+d x)}-\frac {\frac {6 (A b-a B) \sin (c+d x)}{a d \sqrt {\cos (c+d x)}}-\frac {\frac {3 b^2 (A b-a B) \int \frac {1}{\sqrt {\sin \left (c+d x+\frac {\pi }{2}\right )} \left (a+b \sin \left (c+d x+\frac {\pi }{2}\right )\right )}dx+\frac {2 a A b \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),2\right )}{d}}{b}+\frac {6 (A b-a B) E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{d}}{a}}{3 a}\)

\(\Big \downarrow \) 3284

\(\displaystyle \frac {2 A \sin (c+d x)}{3 a d \cos ^{\frac {3}{2}}(c+d x)}-\frac {\frac {6 (A b-a B) \sin (c+d x)}{a d \sqrt {\cos (c+d x)}}-\frac {\frac {\frac {6 b^2 (A b-a B) \operatorname {EllipticPi}\left (\frac {2 b}{a+b},\frac {1}{2} (c+d x),2\right )}{d (a+b)}+\frac {2 a A b \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),2\right )}{d}}{b}+\frac {6 (A b-a B) E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{d}}{a}}{3 a}\)

Input:

Int[(A + B*Cos[c + d*x])/(Cos[c + d*x]^(5/2)*(a + b*Cos[c + d*x])),x]
 

Output:

(2*A*Sin[c + d*x])/(3*a*d*Cos[c + d*x]^(3/2)) - (-(((6*(A*b - a*B)*Ellipti 
cE[(c + d*x)/2, 2])/d + ((2*a*A*b*EllipticF[(c + d*x)/2, 2])/d + (6*b^2*(A 
*b - a*B)*EllipticPi[(2*b)/(a + b), (c + d*x)/2, 2])/((a + b)*d))/b)/a) + 
(6*(A*b - a*B)*Sin[c + d*x])/(a*d*Sqrt[Cos[c + d*x]]))/(3*a)
 

Defintions of rubi rules used

rule 25
Int[-(Fx_), x_Symbol] :> Simp[Identity[-1]   Int[Fx, x], x]
 

rule 27
Int[(a_)*(Fx_), x_Symbol] :> Simp[a   Int[Fx, x], x] /; FreeQ[a, x] &&  !Ma 
tchQ[Fx, (b_)*(Gx_) /; FreeQ[b, x]]
 

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 3119
Int[Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2/d)*EllipticE[(1/2)* 
(c - Pi/2 + d*x), 2], x] /; FreeQ[{c, d}, x]
 

rule 3120
Int[1/Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2/d)*EllipticF[(1/2 
)*(c - Pi/2 + d*x), 2], x] /; FreeQ[{c, d}, x]
 

rule 3284
Int[1/(((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])*Sqrt[(c_.) + (d_.)*sin[(e_.) 
 + (f_.)*(x_)]]), x_Symbol] :> Simp[(2/(f*(a + b)*Sqrt[c + d]))*EllipticPi[ 
2*(b/(a + b)), (1/2)*(e - Pi/2 + f*x), 2*(d/(c + d))], x] /; FreeQ[{a, b, c 
, d, e, f}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 
0] && GtQ[c + d, 0]
 

rule 3479
Int[((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((A_.) + (B_.)*sin[(e_.) + 
 (f_.)*(x_)])*((c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)])^(n_), x_Symbol] :> Si 
mp[(-(A*b^2 - a*b*B))*Cos[e + f*x]*(a + b*Sin[e + f*x])^(m + 1)*((c + d*Sin 
[e + f*x])^(1 + n)/(f*(m + 1)*(b*c - a*d)*(a^2 - b^2))), x] + Simp[1/((m + 
1)*(b*c - a*d)*(a^2 - b^2))   Int[(a + b*Sin[e + f*x])^(m + 1)*(c + d*Sin[e 
 + f*x])^n*Simp[(a*A - b*B)*(b*c - a*d)*(m + 1) + b*d*(A*b - a*B)*(m + n + 
2) + (A*b - a*B)*(a*d*(m + 1) - b*c*(m + 2))*Sin[e + f*x] - b*d*(A*b - a*B) 
*(m + n + 3)*Sin[e + f*x]^2, x], x], x] /; FreeQ[{a, b, c, d, e, f, A, B, n 
}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0] && Rat 
ionalQ[m] && m < -1 && ((EqQ[a, 0] && IntegerQ[m] &&  !IntegerQ[n]) ||  !(I 
ntegerQ[2*n] && LtQ[n, -1] && ((IntegerQ[n] &&  !IntegerQ[m]) || EqQ[a, 0]) 
))
 

rule 3481
Int[(((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((A_.) + (B_.)*sin[(e_.) 
+ (f_.)*(x_)]))/((c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)]), x_Symbol] :> Simp[ 
B/d   Int[(a + b*Sin[e + f*x])^m, x], x] - Simp[(B*c - A*d)/d   Int[(a + b* 
Sin[e + f*x])^m/(c + d*Sin[e + f*x]), x], x] /; FreeQ[{a, b, c, d, e, f, A, 
 B, m}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0]
 

rule 3534
Int[((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((c_.) + (d_.)*sin[(e_.) + 
 (f_.)*(x_)])^(n_)*((A_.) + (B_.)*sin[(e_.) + (f_.)*(x_)] + (C_.)*sin[(e_.) 
 + (f_.)*(x_)]^2), x_Symbol] :> Simp[(-(A*b^2 - a*b*B + a^2*C))*Cos[e + f*x 
]*(a + b*Sin[e + f*x])^(m + 1)*((c + d*Sin[e + f*x])^(n + 1)/(f*(m + 1)*(b* 
c - a*d)*(a^2 - b^2))), x] + Simp[1/((m + 1)*(b*c - a*d)*(a^2 - b^2))   Int 
[(a + b*Sin[e + f*x])^(m + 1)*(c + d*Sin[e + f*x])^n*Simp[(m + 1)*(b*c - a* 
d)*(a*A - b*B + a*C) + d*(A*b^2 - a*b*B + a^2*C)*(m + n + 2) - (c*(A*b^2 - 
a*b*B + a^2*C) + (m + 1)*(b*c - a*d)*(A*b - a*B + b*C))*Sin[e + f*x] - d*(A 
*b^2 - a*b*B + a^2*C)*(m + n + 3)*Sin[e + f*x]^2, x], x], x] /; FreeQ[{a, b 
, c, d, e, f, A, B, C, n}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 - b^2, 0] && 
NeQ[c^2 - d^2, 0] && LtQ[m, -1] && ((EqQ[a, 0] && IntegerQ[m] &&  !IntegerQ 
[n]) ||  !(IntegerQ[2*n] && LtQ[n, -1] && ((IntegerQ[n] &&  !IntegerQ[m]) | 
| EqQ[a, 0])))
 

rule 3538
Int[((A_.) + (B_.)*sin[(e_.) + (f_.)*(x_)] + (C_.)*sin[(e_.) + (f_.)*(x_)]^ 
2)/(Sqrt[(a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)]]*((c_.) + (d_.)*sin[(e_.) + 
(f_.)*(x_)])), x_Symbol] :> Simp[C/(b*d)   Int[Sqrt[a + b*Sin[e + f*x]], x] 
, x] - Simp[1/(b*d)   Int[Simp[a*c*C - A*b*d + (b*c*C - b*B*d + a*C*d)*Sin[ 
e + f*x], x]/(Sqrt[a + b*Sin[e + f*x]]*(c + d*Sin[e + f*x])), x], x] /; Fre 
eQ[{a, b, c, d, e, f, A, B, C}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 - b^2, 0 
] && NeQ[c^2 - d^2, 0]
 
Maple [B] (verified)

Leaf count of result is larger than twice the leaf count of optimal. \(440\) vs. \(2(147)=294\).

Time = 5.76 (sec) , antiderivative size = 441, normalized size of antiderivative = 2.94

method result size
default \(-\frac {\sqrt {-\left (-2 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}+1\right ) \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}}\, \left (\frac {2 A \left (-\frac {\cos \left (\frac {d x}{2}+\frac {c}{2}\right ) \sqrt {-2 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{4}+\sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}}}{6 \left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-\frac {1}{2}\right )^{2}}+\frac {\sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {-2 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}+1}\, \operatorname {EllipticF}\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right )}{3 \sqrt {-2 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{4}+\sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}}}\right )}{a}-\frac {2 \left (A b -B a \right ) \sqrt {-2 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{4}+\sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}}\, \left (2 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2} \cos \left (\frac {d x}{2}+\frac {c}{2}\right )-\sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {2 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-1}\, \operatorname {EllipticE}\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right )\right )}{a^{2} \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2} \left (2 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-1\right )}-\frac {4 b^{2} \left (A b -B a \right ) \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {-2 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}+1}\, \operatorname {EllipticPi}\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), -\frac {2 b}{a -b}, \sqrt {2}\right )}{a^{2} \left (-2 a b +2 b^{2}\right ) \sqrt {-2 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{4}+\sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}}}\right )}{\sin \left (\frac {d x}{2}+\frac {c}{2}\right ) \sqrt {2 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-1}\, d}\) \(441\)

Input:

int((A+B*cos(d*x+c))/cos(d*x+c)^(5/2)/(a+cos(d*x+c)*b),x,method=_RETURNVER 
BOSE)
                                                                                    
                                                                                    
 

Output:

-(-(-2*cos(1/2*d*x+1/2*c)^2+1)*sin(1/2*d*x+1/2*c)^2)^(1/2)*(2*A/a*(-1/6*co 
s(1/2*d*x+1/2*c)*(-2*sin(1/2*d*x+1/2*c)^4+sin(1/2*d*x+1/2*c)^2)^(1/2)/(cos 
(1/2*d*x+1/2*c)^2-1/2)^2+1/3*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(-2*cos(1/2*d*x+ 
1/2*c)^2+1)^(1/2)/(-2*sin(1/2*d*x+1/2*c)^4+sin(1/2*d*x+1/2*c)^2)^(1/2)*Ell 
ipticF(cos(1/2*d*x+1/2*c),2^(1/2)))-2*(A*b-B*a)/a^2/sin(1/2*d*x+1/2*c)^2/( 
2*sin(1/2*d*x+1/2*c)^2-1)*(-2*sin(1/2*d*x+1/2*c)^4+sin(1/2*d*x+1/2*c)^2)^( 
1/2)*(2*sin(1/2*d*x+1/2*c)^2*cos(1/2*d*x+1/2*c)-(sin(1/2*d*x+1/2*c)^2)^(1/ 
2)*(2*sin(1/2*d*x+1/2*c)^2-1)^(1/2)*EllipticE(cos(1/2*d*x+1/2*c),2^(1/2))) 
-4*b^2*(A*b-B*a)/a^2/(-2*a*b+2*b^2)*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(-2*cos(1 
/2*d*x+1/2*c)^2+1)^(1/2)/(-2*sin(1/2*d*x+1/2*c)^4+sin(1/2*d*x+1/2*c)^2)^(1 
/2)*EllipticPi(cos(1/2*d*x+1/2*c),-2*b/(a-b),2^(1/2)))/sin(1/2*d*x+1/2*c)/ 
(2*cos(1/2*d*x+1/2*c)^2-1)^(1/2)/d
 

Fricas [F(-1)]

Timed out. \[ \int \frac {A+B \cos (c+d x)}{\cos ^{\frac {5}{2}}(c+d x) (a+b \cos (c+d x))} \, dx=\text {Timed out} \] Input:

integrate((A+B*cos(d*x+c))/cos(d*x+c)^(5/2)/(a+b*cos(d*x+c)),x, algorithm= 
"fricas")
 

Output:

Timed out
 

Sympy [F(-1)]

Timed out. \[ \int \frac {A+B \cos (c+d x)}{\cos ^{\frac {5}{2}}(c+d x) (a+b \cos (c+d x))} \, dx=\text {Timed out} \] Input:

integrate((A+B*cos(d*x+c))/cos(d*x+c)**(5/2)/(a+b*cos(d*x+c)),x)
 

Output:

Timed out
 

Maxima [F]

\[ \int \frac {A+B \cos (c+d x)}{\cos ^{\frac {5}{2}}(c+d x) (a+b \cos (c+d x))} \, dx=\int { \frac {B \cos \left (d x + c\right ) + A}{{\left (b \cos \left (d x + c\right ) + a\right )} \cos \left (d x + c\right )^{\frac {5}{2}}} \,d x } \] Input:

integrate((A+B*cos(d*x+c))/cos(d*x+c)^(5/2)/(a+b*cos(d*x+c)),x, algorithm= 
"maxima")
 

Output:

integrate((B*cos(d*x + c) + A)/((b*cos(d*x + c) + a)*cos(d*x + c)^(5/2)), 
x)
 

Giac [F]

\[ \int \frac {A+B \cos (c+d x)}{\cos ^{\frac {5}{2}}(c+d x) (a+b \cos (c+d x))} \, dx=\int { \frac {B \cos \left (d x + c\right ) + A}{{\left (b \cos \left (d x + c\right ) + a\right )} \cos \left (d x + c\right )^{\frac {5}{2}}} \,d x } \] Input:

integrate((A+B*cos(d*x+c))/cos(d*x+c)^(5/2)/(a+b*cos(d*x+c)),x, algorithm= 
"giac")
 

Output:

integrate((B*cos(d*x + c) + A)/((b*cos(d*x + c) + a)*cos(d*x + c)^(5/2)), 
x)
 

Mupad [F(-1)]

Timed out. \[ \int \frac {A+B \cos (c+d x)}{\cos ^{\frac {5}{2}}(c+d x) (a+b \cos (c+d x))} \, dx=\int \frac {A+B\,\cos \left (c+d\,x\right )}{{\cos \left (c+d\,x\right )}^{5/2}\,\left (a+b\,\cos \left (c+d\,x\right )\right )} \,d x \] Input:

int((A + B*cos(c + d*x))/(cos(c + d*x)^(5/2)*(a + b*cos(c + d*x))),x)
 

Output:

int((A + B*cos(c + d*x))/(cos(c + d*x)^(5/2)*(a + b*cos(c + d*x))), x)
 

Reduce [F]

\[ \int \frac {A+B \cos (c+d x)}{\cos ^{\frac {5}{2}}(c+d x) (a+b \cos (c+d x))} \, dx=\int \frac {\sqrt {\cos \left (d x +c \right )}}{\cos \left (d x +c \right )^{3}}d x \] Input:

int((A+B*cos(d*x+c))/cos(d*x+c)^(5/2)/(a+b*cos(d*x+c)),x)
 

Output:

int(sqrt(cos(c + d*x))/cos(c + d*x)**3,x)