\(\int \frac {\sqrt {\cos (c+d x)} (a B+b B \cos (c+d x))}{(a+b \cos (c+d x))^2} \, dx\) [391]

Optimal result
Mathematica [A] (verified)
Rubi [A] (verified)
Maple [B] (verified)
Fricas [F(-1)]
Sympy [F(-1)]
Maxima [F]
Giac [F]
Mupad [F(-1)]
Reduce [F]

Optimal result

Integrand size = 36, antiderivative size = 55 \[ \int \frac {\sqrt {\cos (c+d x)} (a B+b B \cos (c+d x))}{(a+b \cos (c+d x))^2} \, dx=\frac {2 B \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),2\right )}{b d}-\frac {2 a B \operatorname {EllipticPi}\left (\frac {2 b}{a+b},\frac {1}{2} (c+d x),2\right )}{b (a+b) d} \] Output:

2*B*InverseJacobiAM(1/2*d*x+1/2*c,2^(1/2))/b/d-2*a*B*EllipticPi(sin(1/2*d* 
x+1/2*c),2*b/(a+b),2^(1/2))/b/(a+b)/d
 

Mathematica [A] (verified)

Time = 0.25 (sec) , antiderivative size = 49, normalized size of antiderivative = 0.89 \[ \int \frac {\sqrt {\cos (c+d x)} (a B+b B \cos (c+d x))}{(a+b \cos (c+d x))^2} \, dx=\frac {B \left (2 \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),2\right )-\frac {2 a \operatorname {EllipticPi}\left (\frac {2 b}{a+b},\frac {1}{2} (c+d x),2\right )}{a+b}\right )}{b d} \] Input:

Integrate[(Sqrt[Cos[c + d*x]]*(a*B + b*B*Cos[c + d*x]))/(a + b*Cos[c + d*x 
])^2,x]
 

Output:

(B*(2*EllipticF[(c + d*x)/2, 2] - (2*a*EllipticPi[(2*b)/(a + b), (c + d*x) 
/2, 2])/(a + b)))/(b*d)
 

Rubi [A] (verified)

Time = 0.40 (sec) , antiderivative size = 55, normalized size of antiderivative = 1.00, number of steps used = 6, number of rules used = 6, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.167, Rules used = {2011, 3042, 3282, 3042, 3120, 3284}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {\sqrt {\cos (c+d x)} (a B+b B \cos (c+d x))}{(a+b \cos (c+d x))^2} \, dx\)

\(\Big \downarrow \) 2011

\(\displaystyle B \int \frac {\sqrt {\cos (c+d x)}}{a+b \cos (c+d x)}dx\)

\(\Big \downarrow \) 3042

\(\displaystyle B \int \frac {\sqrt {\sin \left (c+d x+\frac {\pi }{2}\right )}}{a+b \sin \left (c+d x+\frac {\pi }{2}\right )}dx\)

\(\Big \downarrow \) 3282

\(\displaystyle B \left (\frac {\int \frac {1}{\sqrt {\cos (c+d x)}}dx}{b}-\frac {a \int \frac {1}{\sqrt {\cos (c+d x)} (a+b \cos (c+d x))}dx}{b}\right )\)

\(\Big \downarrow \) 3042

\(\displaystyle B \left (\frac {\int \frac {1}{\sqrt {\sin \left (c+d x+\frac {\pi }{2}\right )}}dx}{b}-\frac {a \int \frac {1}{\sqrt {\sin \left (c+d x+\frac {\pi }{2}\right )} \left (a+b \sin \left (c+d x+\frac {\pi }{2}\right )\right )}dx}{b}\right )\)

\(\Big \downarrow \) 3120

\(\displaystyle B \left (\frac {2 \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),2\right )}{b d}-\frac {a \int \frac {1}{\sqrt {\sin \left (c+d x+\frac {\pi }{2}\right )} \left (a+b \sin \left (c+d x+\frac {\pi }{2}\right )\right )}dx}{b}\right )\)

\(\Big \downarrow \) 3284

\(\displaystyle B \left (\frac {2 \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),2\right )}{b d}-\frac {2 a \operatorname {EllipticPi}\left (\frac {2 b}{a+b},\frac {1}{2} (c+d x),2\right )}{b d (a+b)}\right )\)

Input:

Int[(Sqrt[Cos[c + d*x]]*(a*B + b*B*Cos[c + d*x]))/(a + b*Cos[c + d*x])^2,x 
]
 

Output:

B*((2*EllipticF[(c + d*x)/2, 2])/(b*d) - (2*a*EllipticPi[(2*b)/(a + b), (c 
 + d*x)/2, 2])/(b*(a + b)*d))
 

Defintions of rubi rules used

rule 2011
Int[(u_.)*((a_) + (b_.)*(v_))^(m_.)*((c_) + (d_.)*(v_))^(n_.), x_Symbol] :> 
 Simp[(b/d)^m   Int[u*(c + d*v)^(m + n), x], x] /; FreeQ[{a, b, c, d, n}, x 
] && EqQ[b*c - a*d, 0] && IntegerQ[m] && ( !IntegerQ[n] || SimplerQ[c + d*x 
, a + b*x])
 

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 3120
Int[1/Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2/d)*EllipticF[(1/2 
)*(c - Pi/2 + d*x), 2], x] /; FreeQ[{c, d}, x]
 

rule 3282
Int[Sqrt[(c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)]]/((a_.) + (b_.)*sin[(e_.) + 
(f_.)*(x_)]), x_Symbol] :> Simp[d/b   Int[1/Sqrt[c + d*Sin[e + f*x]], x], x 
] + Simp[(b*c - a*d)/b   Int[1/((a + b*Sin[e + f*x])*Sqrt[c + d*Sin[e + f*x 
]]), x], x] /; FreeQ[{a, b, c, d, e, f}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 
 - b^2, 0] && NeQ[c^2 - d^2, 0]
 

rule 3284
Int[1/(((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])*Sqrt[(c_.) + (d_.)*sin[(e_.) 
 + (f_.)*(x_)]]), x_Symbol] :> Simp[(2/(f*(a + b)*Sqrt[c + d]))*EllipticPi[ 
2*(b/(a + b)), (1/2)*(e - Pi/2 + f*x), 2*(d/(c + d))], x] /; FreeQ[{a, b, c 
, d, e, f}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 
0] && GtQ[c + d, 0]
 
Maple [B] (verified)

Leaf count of result is larger than twice the leaf count of optimal. \(188\) vs. \(2(58)=116\).

Time = 3.26 (sec) , antiderivative size = 189, normalized size of antiderivative = 3.44

method result size
default \(-\frac {2 \sqrt {\left (2 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-1\right ) \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}}\, B \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {-2 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}+1}\, \left (\operatorname {EllipticF}\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right ) a -\operatorname {EllipticF}\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right ) b -a \operatorname {EllipticPi}\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), -\frac {2 b}{a -b}, \sqrt {2}\right )\right )}{\left (a -b \right ) b \sqrt {-2 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{4}+\sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}}\, \sin \left (\frac {d x}{2}+\frac {c}{2}\right ) \sqrt {2 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-1}\, d}\) \(189\)

Input:

int(cos(d*x+c)^(1/2)*(B*a+b*B*cos(d*x+c))/(a+cos(d*x+c)*b)^2,x,method=_RET 
URNVERBOSE)
 

Output:

-2*((2*cos(1/2*d*x+1/2*c)^2-1)*sin(1/2*d*x+1/2*c)^2)^(1/2)*B*(sin(1/2*d*x+ 
1/2*c)^2)^(1/2)*(-2*cos(1/2*d*x+1/2*c)^2+1)^(1/2)*(EllipticF(cos(1/2*d*x+1 
/2*c),2^(1/2))*a-EllipticF(cos(1/2*d*x+1/2*c),2^(1/2))*b-a*EllipticPi(cos( 
1/2*d*x+1/2*c),-2*b/(a-b),2^(1/2)))/(a-b)/b/(-2*sin(1/2*d*x+1/2*c)^4+sin(1 
/2*d*x+1/2*c)^2)^(1/2)/sin(1/2*d*x+1/2*c)/(2*cos(1/2*d*x+1/2*c)^2-1)^(1/2) 
/d
 

Fricas [F(-1)]

Timed out. \[ \int \frac {\sqrt {\cos (c+d x)} (a B+b B \cos (c+d x))}{(a+b \cos (c+d x))^2} \, dx=\text {Timed out} \] Input:

integrate(cos(d*x+c)^(1/2)*(a*B+b*B*cos(d*x+c))/(a+b*cos(d*x+c))^2,x, algo 
rithm="fricas")
 

Output:

Timed out
 

Sympy [F(-1)]

Timed out. \[ \int \frac {\sqrt {\cos (c+d x)} (a B+b B \cos (c+d x))}{(a+b \cos (c+d x))^2} \, dx=\text {Timed out} \] Input:

integrate(cos(d*x+c)**(1/2)*(a*B+b*B*cos(d*x+c))/(a+b*cos(d*x+c))**2,x)
 

Output:

Timed out
 

Maxima [F]

\[ \int \frac {\sqrt {\cos (c+d x)} (a B+b B \cos (c+d x))}{(a+b \cos (c+d x))^2} \, dx=\int { \frac {{\left (B b \cos \left (d x + c\right ) + B a\right )} \sqrt {\cos \left (d x + c\right )}}{{\left (b \cos \left (d x + c\right ) + a\right )}^{2}} \,d x } \] Input:

integrate(cos(d*x+c)^(1/2)*(a*B+b*B*cos(d*x+c))/(a+b*cos(d*x+c))^2,x, algo 
rithm="maxima")
 

Output:

integrate((B*b*cos(d*x + c) + B*a)*sqrt(cos(d*x + c))/(b*cos(d*x + c) + a) 
^2, x)
 

Giac [F]

\[ \int \frac {\sqrt {\cos (c+d x)} (a B+b B \cos (c+d x))}{(a+b \cos (c+d x))^2} \, dx=\int { \frac {{\left (B b \cos \left (d x + c\right ) + B a\right )} \sqrt {\cos \left (d x + c\right )}}{{\left (b \cos \left (d x + c\right ) + a\right )}^{2}} \,d x } \] Input:

integrate(cos(d*x+c)^(1/2)*(a*B+b*B*cos(d*x+c))/(a+b*cos(d*x+c))^2,x, algo 
rithm="giac")
 

Output:

integrate((B*b*cos(d*x + c) + B*a)*sqrt(cos(d*x + c))/(b*cos(d*x + c) + a) 
^2, x)
 

Mupad [F(-1)]

Timed out. \[ \int \frac {\sqrt {\cos (c+d x)} (a B+b B \cos (c+d x))}{(a+b \cos (c+d x))^2} \, dx=\int \frac {\sqrt {\cos \left (c+d\,x\right )}\,\left (B\,a+B\,b\,\cos \left (c+d\,x\right )\right )}{{\left (a+b\,\cos \left (c+d\,x\right )\right )}^2} \,d x \] Input:

int((cos(c + d*x)^(1/2)*(B*a + B*b*cos(c + d*x)))/(a + b*cos(c + d*x))^2,x 
)
 

Output:

int((cos(c + d*x)^(1/2)*(B*a + B*b*cos(c + d*x)))/(a + b*cos(c + d*x))^2, 
x)
 

Reduce [F]

\[ \int \frac {\sqrt {\cos (c+d x)} (a B+b B \cos (c+d x))}{(a+b \cos (c+d x))^2} \, dx=\left (\int \frac {\sqrt {\cos \left (d x +c \right )}}{\cos \left (d x +c \right ) b +a}d x \right ) b \] Input:

int(cos(d*x+c)^(1/2)*(a*B+b*B*cos(d*x+c))/(a+b*cos(d*x+c))^2,x)
 

Output:

int(sqrt(cos(c + d*x))/(cos(c + d*x)*b + a),x)*b