\(\int (a+a \cos (c+d x)) (A+B \cos (c+d x)) \sec ^{\frac {7}{2}}(c+d x) \, dx\) [459]

Optimal result
Mathematica [C] (verified)
Rubi [A] (verified)
Maple [B] (verified)
Fricas [C] (verification not implemented)
Sympy [F(-1)]
Maxima [F]
Giac [F]
Mupad [F(-1)]
Reduce [F]

Optimal result

Integrand size = 31, antiderivative size = 172 \[ \int (a+a \cos (c+d x)) (A+B \cos (c+d x)) \sec ^{\frac {7}{2}}(c+d x) \, dx=-\frac {2 a (3 A+5 B) \sqrt {\cos (c+d x)} E\left (\left .\frac {1}{2} (c+d x)\right |2\right ) \sqrt {\sec (c+d x)}}{5 d}+\frac {2 a (A+B) \sqrt {\cos (c+d x)} \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),2\right ) \sqrt {\sec (c+d x)}}{3 d}+\frac {2 a (3 A+5 B) \sqrt {\sec (c+d x)} \sin (c+d x)}{5 d}+\frac {2 a (A+B) \sec ^{\frac {3}{2}}(c+d x) \sin (c+d x)}{3 d}+\frac {2 a A \sec ^{\frac {5}{2}}(c+d x) \sin (c+d x)}{5 d} \] Output:

-2/5*a*(3*A+5*B)*cos(d*x+c)^(1/2)*EllipticE(sin(1/2*d*x+1/2*c),2^(1/2))*se 
c(d*x+c)^(1/2)/d+2/3*a*(A+B)*cos(d*x+c)^(1/2)*InverseJacobiAM(1/2*d*x+1/2* 
c,2^(1/2))*sec(d*x+c)^(1/2)/d+2/5*a*(3*A+5*B)*sec(d*x+c)^(1/2)*sin(d*x+c)/ 
d+2/3*a*(A+B)*sec(d*x+c)^(3/2)*sin(d*x+c)/d+2/5*a*A*sec(d*x+c)^(5/2)*sin(d 
*x+c)/d
 

Mathematica [C] (verified)

Result contains higher order function than in optimal. Order 5 vs. order 4 in optimal.

Time = 3.36 (sec) , antiderivative size = 292, normalized size of antiderivative = 1.70 \[ \int (a+a \cos (c+d x)) (A+B \cos (c+d x)) \sec ^{\frac {7}{2}}(c+d x) \, dx=\frac {a e^{-i c} \left (-1+e^{2 i c}\right ) (1+\cos (c+d x)) \csc (c) \left (5 A+5 B-3 A e^{i (c+d x)}-15 B e^{i (c+d x)}-24 A e^{3 i (c+d x)}-30 B e^{3 i (c+d x)}-5 A e^{4 i (c+d x)}-5 B e^{4 i (c+d x)}-9 A e^{5 i (c+d x)}-15 B e^{5 i (c+d x)}-5 i (A+B) \left (1+e^{2 i (c+d x)}\right )^2 \sqrt {\cos (c+d x)} \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),2\right )+(3 A+5 B) e^{i (c+d x)} \left (1+e^{2 i (c+d x)}\right )^{5/2} \operatorname {Hypergeometric2F1}\left (\frac {1}{2},\frac {3}{4},\frac {7}{4},-e^{2 i (c+d x)}\right )\right ) \sec ^2\left (\frac {1}{2} (c+d x)\right ) \sqrt {\sec (c+d x)}}{30 d \left (1+e^{2 i (c+d x)}\right )^2} \] Input:

Integrate[(a + a*Cos[c + d*x])*(A + B*Cos[c + d*x])*Sec[c + d*x]^(7/2),x]
 

Output:

(a*(-1 + E^((2*I)*c))*(1 + Cos[c + d*x])*Csc[c]*(5*A + 5*B - 3*A*E^(I*(c + 
 d*x)) - 15*B*E^(I*(c + d*x)) - 24*A*E^((3*I)*(c + d*x)) - 30*B*E^((3*I)*( 
c + d*x)) - 5*A*E^((4*I)*(c + d*x)) - 5*B*E^((4*I)*(c + d*x)) - 9*A*E^((5* 
I)*(c + d*x)) - 15*B*E^((5*I)*(c + d*x)) - (5*I)*(A + B)*(1 + E^((2*I)*(c 
+ d*x)))^2*Sqrt[Cos[c + d*x]]*EllipticF[(c + d*x)/2, 2] + (3*A + 5*B)*E^(I 
*(c + d*x))*(1 + E^((2*I)*(c + d*x)))^(5/2)*Hypergeometric2F1[1/2, 3/4, 7/ 
4, -E^((2*I)*(c + d*x))])*Sec[(c + d*x)/2]^2*Sqrt[Sec[c + d*x]])/(30*d*E^( 
I*c)*(1 + E^((2*I)*(c + d*x)))^2)
 

Rubi [A] (verified)

Time = 0.87 (sec) , antiderivative size = 166, normalized size of antiderivative = 0.97, number of steps used = 14, number of rules used = 14, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.452, Rules used = {3042, 3439, 3042, 4485, 27, 3042, 4274, 3042, 4255, 3042, 4258, 3042, 3119, 3120}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \sec ^{\frac {7}{2}}(c+d x) (a \cos (c+d x)+a) (A+B \cos (c+d x)) \, dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \csc \left (c+d x+\frac {\pi }{2}\right )^{7/2} \left (a \sin \left (c+d x+\frac {\pi }{2}\right )+a\right ) \left (A+B \sin \left (c+d x+\frac {\pi }{2}\right )\right )dx\)

\(\Big \downarrow \) 3439

\(\displaystyle \int \sec ^{\frac {3}{2}}(c+d x) (a \sec (c+d x)+a) (A \sec (c+d x)+B)dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \csc \left (c+d x+\frac {\pi }{2}\right )^{3/2} \left (a \csc \left (c+d x+\frac {\pi }{2}\right )+a\right ) \left (A \csc \left (c+d x+\frac {\pi }{2}\right )+B\right )dx\)

\(\Big \downarrow \) 4485

\(\displaystyle \frac {2}{5} \int \frac {1}{2} \sec ^{\frac {3}{2}}(c+d x) (a (3 A+5 B)+5 a (A+B) \sec (c+d x))dx+\frac {2 a A \sin (c+d x) \sec ^{\frac {5}{2}}(c+d x)}{5 d}\)

\(\Big \downarrow \) 27

\(\displaystyle \frac {1}{5} \int \sec ^{\frac {3}{2}}(c+d x) (a (3 A+5 B)+5 a (A+B) \sec (c+d x))dx+\frac {2 a A \sin (c+d x) \sec ^{\frac {5}{2}}(c+d x)}{5 d}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {1}{5} \int \csc \left (c+d x+\frac {\pi }{2}\right )^{3/2} \left (a (3 A+5 B)+5 a (A+B) \csc \left (c+d x+\frac {\pi }{2}\right )\right )dx+\frac {2 a A \sin (c+d x) \sec ^{\frac {5}{2}}(c+d x)}{5 d}\)

\(\Big \downarrow \) 4274

\(\displaystyle \frac {1}{5} \left (a (3 A+5 B) \int \sec ^{\frac {3}{2}}(c+d x)dx+5 a (A+B) \int \sec ^{\frac {5}{2}}(c+d x)dx\right )+\frac {2 a A \sin (c+d x) \sec ^{\frac {5}{2}}(c+d x)}{5 d}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {1}{5} \left (a (3 A+5 B) \int \csc \left (c+d x+\frac {\pi }{2}\right )^{3/2}dx+5 a (A+B) \int \csc \left (c+d x+\frac {\pi }{2}\right )^{5/2}dx\right )+\frac {2 a A \sin (c+d x) \sec ^{\frac {5}{2}}(c+d x)}{5 d}\)

\(\Big \downarrow \) 4255

\(\displaystyle \frac {1}{5} \left (5 a (A+B) \left (\frac {1}{3} \int \sqrt {\sec (c+d x)}dx+\frac {2 \sin (c+d x) \sec ^{\frac {3}{2}}(c+d x)}{3 d}\right )+a (3 A+5 B) \left (\frac {2 \sin (c+d x) \sqrt {\sec (c+d x)}}{d}-\int \frac {1}{\sqrt {\sec (c+d x)}}dx\right )\right )+\frac {2 a A \sin (c+d x) \sec ^{\frac {5}{2}}(c+d x)}{5 d}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {1}{5} \left (5 a (A+B) \left (\frac {1}{3} \int \sqrt {\csc \left (c+d x+\frac {\pi }{2}\right )}dx+\frac {2 \sin (c+d x) \sec ^{\frac {3}{2}}(c+d x)}{3 d}\right )+a (3 A+5 B) \left (\frac {2 \sin (c+d x) \sqrt {\sec (c+d x)}}{d}-\int \frac {1}{\sqrt {\csc \left (c+d x+\frac {\pi }{2}\right )}}dx\right )\right )+\frac {2 a A \sin (c+d x) \sec ^{\frac {5}{2}}(c+d x)}{5 d}\)

\(\Big \downarrow \) 4258

\(\displaystyle \frac {1}{5} \left (5 a (A+B) \left (\frac {1}{3} \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \int \frac {1}{\sqrt {\cos (c+d x)}}dx+\frac {2 \sin (c+d x) \sec ^{\frac {3}{2}}(c+d x)}{3 d}\right )+a (3 A+5 B) \left (\frac {2 \sin (c+d x) \sqrt {\sec (c+d x)}}{d}-\sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \int \sqrt {\cos (c+d x)}dx\right )\right )+\frac {2 a A \sin (c+d x) \sec ^{\frac {5}{2}}(c+d x)}{5 d}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {1}{5} \left (5 a (A+B) \left (\frac {1}{3} \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \int \frac {1}{\sqrt {\sin \left (c+d x+\frac {\pi }{2}\right )}}dx+\frac {2 \sin (c+d x) \sec ^{\frac {3}{2}}(c+d x)}{3 d}\right )+a (3 A+5 B) \left (\frac {2 \sin (c+d x) \sqrt {\sec (c+d x)}}{d}-\sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \int \sqrt {\sin \left (c+d x+\frac {\pi }{2}\right )}dx\right )\right )+\frac {2 a A \sin (c+d x) \sec ^{\frac {5}{2}}(c+d x)}{5 d}\)

\(\Big \downarrow \) 3119

\(\displaystyle \frac {1}{5} \left (5 a (A+B) \left (\frac {1}{3} \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \int \frac {1}{\sqrt {\sin \left (c+d x+\frac {\pi }{2}\right )}}dx+\frac {2 \sin (c+d x) \sec ^{\frac {3}{2}}(c+d x)}{3 d}\right )+a (3 A+5 B) \left (\frac {2 \sin (c+d x) \sqrt {\sec (c+d x)}}{d}-\frac {2 \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{d}\right )\right )+\frac {2 a A \sin (c+d x) \sec ^{\frac {5}{2}}(c+d x)}{5 d}\)

\(\Big \downarrow \) 3120

\(\displaystyle \frac {1}{5} \left (5 a (A+B) \left (\frac {2 \sin (c+d x) \sec ^{\frac {3}{2}}(c+d x)}{3 d}+\frac {2 \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),2\right )}{3 d}\right )+a (3 A+5 B) \left (\frac {2 \sin (c+d x) \sqrt {\sec (c+d x)}}{d}-\frac {2 \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{d}\right )\right )+\frac {2 a A \sin (c+d x) \sec ^{\frac {5}{2}}(c+d x)}{5 d}\)

Input:

Int[(a + a*Cos[c + d*x])*(A + B*Cos[c + d*x])*Sec[c + d*x]^(7/2),x]
 

Output:

(2*a*A*Sec[c + d*x]^(5/2)*Sin[c + d*x])/(5*d) + (a*(3*A + 5*B)*((-2*Sqrt[C 
os[c + d*x]]*EllipticE[(c + d*x)/2, 2]*Sqrt[Sec[c + d*x]])/d + (2*Sqrt[Sec 
[c + d*x]]*Sin[c + d*x])/d) + 5*a*(A + B)*((2*Sqrt[Cos[c + d*x]]*EllipticF 
[(c + d*x)/2, 2]*Sqrt[Sec[c + d*x]])/(3*d) + (2*Sec[c + d*x]^(3/2)*Sin[c + 
 d*x])/(3*d)))/5
 

Defintions of rubi rules used

rule 27
Int[(a_)*(Fx_), x_Symbol] :> Simp[a   Int[Fx, x], x] /; FreeQ[a, x] &&  !Ma 
tchQ[Fx, (b_)*(Gx_) /; FreeQ[b, x]]
 

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 3119
Int[Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2/d)*EllipticE[(1/2)* 
(c - Pi/2 + d*x), 2], x] /; FreeQ[{c, d}, x]
 

rule 3120
Int[1/Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2/d)*EllipticF[(1/2 
)*(c - Pi/2 + d*x), 2], x] /; FreeQ[{c, d}, x]
 

rule 3439
Int[(csc[(e_.) + (f_.)*(x_)]*(g_.))^(p_.)*((a_.) + (b_.)*sin[(e_.) + (f_.)* 
(x_)])^(m_.)*((c_) + (d_.)*sin[(e_.) + (f_.)*(x_)])^(n_.), x_Symbol] :> Sim 
p[g^(m + n)   Int[(g*Csc[e + f*x])^(p - m - n)*(b + a*Csc[e + f*x])^m*(d + 
c*Csc[e + f*x])^n, x], x] /; FreeQ[{a, b, c, d, e, f, g, p}, x] && NeQ[b*c 
- a*d, 0] &&  !IntegerQ[p] && IntegerQ[m] && IntegerQ[n]
 

rule 4255
Int[(csc[(c_.) + (d_.)*(x_)]*(b_.))^(n_), x_Symbol] :> Simp[(-b)*Cos[c + d* 
x]*((b*Csc[c + d*x])^(n - 1)/(d*(n - 1))), x] + Simp[b^2*((n - 2)/(n - 1)) 
  Int[(b*Csc[c + d*x])^(n - 2), x], x] /; FreeQ[{b, c, d}, x] && GtQ[n, 1] 
&& IntegerQ[2*n]
 

rule 4258
Int[(csc[(c_.) + (d_.)*(x_)]*(b_.))^(n_), x_Symbol] :> Simp[(b*Csc[c + d*x] 
)^n*Sin[c + d*x]^n   Int[1/Sin[c + d*x]^n, x], x] /; FreeQ[{b, c, d}, x] && 
 EqQ[n^2, 1/4]
 

rule 4274
Int[(csc[(e_.) + (f_.)*(x_)]*(d_.))^(n_.)*(csc[(e_.) + (f_.)*(x_)]*(b_.) + 
(a_)), x_Symbol] :> Simp[a   Int[(d*Csc[e + f*x])^n, x], x] + Simp[b/d   In 
t[(d*Csc[e + f*x])^(n + 1), x], x] /; FreeQ[{a, b, d, e, f, n}, x]
 

rule 4485
Int[(csc[(e_.) + (f_.)*(x_)]*(d_.))^(n_.)*(csc[(e_.) + (f_.)*(x_)]*(b_.) + 
(a_))*(csc[(e_.) + (f_.)*(x_)]*(B_.) + (A_)), x_Symbol] :> Simp[(-b)*B*Cot[ 
e + f*x]*((d*Csc[e + f*x])^n/(f*(n + 1))), x] + Simp[1/(n + 1)   Int[(d*Csc 
[e + f*x])^n*Simp[A*a*(n + 1) + B*b*n + (A*b + B*a)*(n + 1)*Csc[e + f*x], x 
], x], x] /; FreeQ[{a, b, d, e, f, A, B}, x] && NeQ[A*b - a*B, 0] &&  !LeQ[ 
n, -1]
 
Maple [B] (verified)

Leaf count of result is larger than twice the leaf count of optimal. \(633\) vs. \(2(151)=302\).

Time = 35.45 (sec) , antiderivative size = 634, normalized size of antiderivative = 3.69

method result size
default \(-\frac {4 \sqrt {-\left (-2 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}+1\right ) \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}}\, a \left (\frac {A \left (24 \cos \left (\frac {d x}{2}+\frac {c}{2}\right ) \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{6}-12 \operatorname {EllipticE}\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right ) \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {2 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-1}\, \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{4}-24 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{4} \cos \left (\frac {d x}{2}+\frac {c}{2}\right )+12 \operatorname {EllipticE}\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right ) \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {2 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-1}\, \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}+8 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2} \cos \left (\frac {d x}{2}+\frac {c}{2}\right )-3 \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {2 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-1}\, \operatorname {EllipticE}\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right )\right ) \sqrt {-2 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{4}+\sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}}}{10 \left (8 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{6}-12 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{4}+6 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-1\right ) \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}}+\frac {B \sqrt {-2 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{4}+\sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}}\, \left (2 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2} \cos \left (\frac {d x}{2}+\frac {c}{2}\right )-\sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {2 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-1}\, \operatorname {EllipticE}\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right )\right )}{2 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2} \left (2 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-1\right )}+\left (\frac {A}{2}+\frac {B}{2}\right ) \left (-\frac {\cos \left (\frac {d x}{2}+\frac {c}{2}\right ) \sqrt {-2 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{4}+\sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}}}{6 \left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-\frac {1}{2}\right )^{2}}+\frac {\sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {-2 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}+1}\, \operatorname {EllipticF}\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right )}{3 \sqrt {-2 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{4}+\sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}}}\right )\right )}{\sin \left (\frac {d x}{2}+\frac {c}{2}\right ) \sqrt {2 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-1}\, d}\) \(634\)
parts \(\text {Expression too large to display}\) \(763\)

Input:

int((a+a*cos(d*x+c))*(A+B*cos(d*x+c))*sec(d*x+c)^(7/2),x,method=_RETURNVER 
BOSE)
 

Output:

-4*(-(-2*cos(1/2*d*x+1/2*c)^2+1)*sin(1/2*d*x+1/2*c)^2)^(1/2)*a*(1/10*A/(8* 
sin(1/2*d*x+1/2*c)^6-12*sin(1/2*d*x+1/2*c)^4+6*sin(1/2*d*x+1/2*c)^2-1)/sin 
(1/2*d*x+1/2*c)^2*(24*cos(1/2*d*x+1/2*c)*sin(1/2*d*x+1/2*c)^6-12*EllipticE 
(cos(1/2*d*x+1/2*c),2^(1/2))*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(2*sin(1/2*d*x+1 
/2*c)^2-1)^(1/2)*sin(1/2*d*x+1/2*c)^4-24*sin(1/2*d*x+1/2*c)^4*cos(1/2*d*x+ 
1/2*c)+12*EllipticE(cos(1/2*d*x+1/2*c),2^(1/2))*(sin(1/2*d*x+1/2*c)^2)^(1/ 
2)*(2*sin(1/2*d*x+1/2*c)^2-1)^(1/2)*sin(1/2*d*x+1/2*c)^2+8*sin(1/2*d*x+1/2 
*c)^2*cos(1/2*d*x+1/2*c)-3*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(2*sin(1/2*d*x+1/2 
*c)^2-1)^(1/2)*EllipticE(cos(1/2*d*x+1/2*c),2^(1/2)))*(-2*sin(1/2*d*x+1/2* 
c)^4+sin(1/2*d*x+1/2*c)^2)^(1/2)+1/2*B/sin(1/2*d*x+1/2*c)^2/(2*sin(1/2*d*x 
+1/2*c)^2-1)*(-2*sin(1/2*d*x+1/2*c)^4+sin(1/2*d*x+1/2*c)^2)^(1/2)*(2*sin(1 
/2*d*x+1/2*c)^2*cos(1/2*d*x+1/2*c)-(sin(1/2*d*x+1/2*c)^2)^(1/2)*(2*sin(1/2 
*d*x+1/2*c)^2-1)^(1/2)*EllipticE(cos(1/2*d*x+1/2*c),2^(1/2)))+(1/2*A+1/2*B 
)*(-1/6*cos(1/2*d*x+1/2*c)*(-2*sin(1/2*d*x+1/2*c)^4+sin(1/2*d*x+1/2*c)^2)^ 
(1/2)/(cos(1/2*d*x+1/2*c)^2-1/2)^2+1/3*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(-2*co 
s(1/2*d*x+1/2*c)^2+1)^(1/2)/(-2*sin(1/2*d*x+1/2*c)^4+sin(1/2*d*x+1/2*c)^2) 
^(1/2)*EllipticF(cos(1/2*d*x+1/2*c),2^(1/2))))/sin(1/2*d*x+1/2*c)/(2*cos(1 
/2*d*x+1/2*c)^2-1)^(1/2)/d
 

Fricas [C] (verification not implemented)

Result contains complex when optimal does not.

Time = 0.09 (sec) , antiderivative size = 219, normalized size of antiderivative = 1.27 \[ \int (a+a \cos (c+d x)) (A+B \cos (c+d x)) \sec ^{\frac {7}{2}}(c+d x) \, dx=\frac {-5 i \, \sqrt {2} {\left (A + B\right )} a \cos \left (d x + c\right )^{2} {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) + i \, \sin \left (d x + c\right )\right ) + 5 i \, \sqrt {2} {\left (A + B\right )} a \cos \left (d x + c\right )^{2} {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) - i \, \sin \left (d x + c\right )\right ) - 3 i \, \sqrt {2} {\left (3 \, A + 5 \, B\right )} a \cos \left (d x + c\right )^{2} {\rm weierstrassZeta}\left (-4, 0, {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) + i \, \sin \left (d x + c\right )\right )\right ) + 3 i \, \sqrt {2} {\left (3 \, A + 5 \, B\right )} a \cos \left (d x + c\right )^{2} {\rm weierstrassZeta}\left (-4, 0, {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) - i \, \sin \left (d x + c\right )\right )\right ) + \frac {2 \, {\left (3 \, {\left (3 \, A + 5 \, B\right )} a \cos \left (d x + c\right )^{2} + 5 \, {\left (A + B\right )} a \cos \left (d x + c\right ) + 3 \, A a\right )} \sin \left (d x + c\right )}{\sqrt {\cos \left (d x + c\right )}}}{15 \, d \cos \left (d x + c\right )^{2}} \] Input:

integrate((a+a*cos(d*x+c))*(A+B*cos(d*x+c))*sec(d*x+c)^(7/2),x, algorithm= 
"fricas")
 

Output:

1/15*(-5*I*sqrt(2)*(A + B)*a*cos(d*x + c)^2*weierstrassPInverse(-4, 0, cos 
(d*x + c) + I*sin(d*x + c)) + 5*I*sqrt(2)*(A + B)*a*cos(d*x + c)^2*weierst 
rassPInverse(-4, 0, cos(d*x + c) - I*sin(d*x + c)) - 3*I*sqrt(2)*(3*A + 5* 
B)*a*cos(d*x + c)^2*weierstrassZeta(-4, 0, weierstrassPInverse(-4, 0, cos( 
d*x + c) + I*sin(d*x + c))) + 3*I*sqrt(2)*(3*A + 5*B)*a*cos(d*x + c)^2*wei 
erstrassZeta(-4, 0, weierstrassPInverse(-4, 0, cos(d*x + c) - I*sin(d*x + 
c))) + 2*(3*(3*A + 5*B)*a*cos(d*x + c)^2 + 5*(A + B)*a*cos(d*x + c) + 3*A* 
a)*sin(d*x + c)/sqrt(cos(d*x + c)))/(d*cos(d*x + c)^2)
 

Sympy [F(-1)]

Timed out. \[ \int (a+a \cos (c+d x)) (A+B \cos (c+d x)) \sec ^{\frac {7}{2}}(c+d x) \, dx=\text {Timed out} \] Input:

integrate((a+a*cos(d*x+c))*(A+B*cos(d*x+c))*sec(d*x+c)**(7/2),x)
 

Output:

Timed out
                                                                                    
                                                                                    
 

Maxima [F]

\[ \int (a+a \cos (c+d x)) (A+B \cos (c+d x)) \sec ^{\frac {7}{2}}(c+d x) \, dx=\int { {\left (B \cos \left (d x + c\right ) + A\right )} {\left (a \cos \left (d x + c\right ) + a\right )} \sec \left (d x + c\right )^{\frac {7}{2}} \,d x } \] Input:

integrate((a+a*cos(d*x+c))*(A+B*cos(d*x+c))*sec(d*x+c)^(7/2),x, algorithm= 
"maxima")
 

Output:

integrate((B*cos(d*x + c) + A)*(a*cos(d*x + c) + a)*sec(d*x + c)^(7/2), x)
 

Giac [F]

\[ \int (a+a \cos (c+d x)) (A+B \cos (c+d x)) \sec ^{\frac {7}{2}}(c+d x) \, dx=\int { {\left (B \cos \left (d x + c\right ) + A\right )} {\left (a \cos \left (d x + c\right ) + a\right )} \sec \left (d x + c\right )^{\frac {7}{2}} \,d x } \] Input:

integrate((a+a*cos(d*x+c))*(A+B*cos(d*x+c))*sec(d*x+c)^(7/2),x, algorithm= 
"giac")
 

Output:

integrate((B*cos(d*x + c) + A)*(a*cos(d*x + c) + a)*sec(d*x + c)^(7/2), x)
 

Mupad [F(-1)]

Timed out. \[ \int (a+a \cos (c+d x)) (A+B \cos (c+d x)) \sec ^{\frac {7}{2}}(c+d x) \, dx=\int \left (A+B\,\cos \left (c+d\,x\right )\right )\,{\left (\frac {1}{\cos \left (c+d\,x\right )}\right )}^{7/2}\,\left (a+a\,\cos \left (c+d\,x\right )\right ) \,d x \] Input:

int((A + B*cos(c + d*x))*(1/cos(c + d*x))^(7/2)*(a + a*cos(c + d*x)),x)
 

Output:

int((A + B*cos(c + d*x))*(1/cos(c + d*x))^(7/2)*(a + a*cos(c + d*x)), x)
 

Reduce [F]

\[ \int (a+a \cos (c+d x)) (A+B \cos (c+d x)) \sec ^{\frac {7}{2}}(c+d x) \, dx=a \left (\left (\int \sqrt {\sec \left (d x +c \right )}\, \cos \left (d x +c \right ) \sec \left (d x +c \right )^{3}d x \right ) a +\left (\int \sqrt {\sec \left (d x +c \right )}\, \cos \left (d x +c \right ) \sec \left (d x +c \right )^{3}d x \right ) b +\left (\int \sqrt {\sec \left (d x +c \right )}\, \cos \left (d x +c \right )^{2} \sec \left (d x +c \right )^{3}d x \right ) b +\left (\int \sqrt {\sec \left (d x +c \right )}\, \sec \left (d x +c \right )^{3}d x \right ) a \right ) \] Input:

int((a+a*cos(d*x+c))*(A+B*cos(d*x+c))*sec(d*x+c)^(7/2),x)
 

Output:

a*(int(sqrt(sec(c + d*x))*cos(c + d*x)*sec(c + d*x)**3,x)*a + int(sqrt(sec 
(c + d*x))*cos(c + d*x)*sec(c + d*x)**3,x)*b + int(sqrt(sec(c + d*x))*cos( 
c + d*x)**2*sec(c + d*x)**3,x)*b + int(sqrt(sec(c + d*x))*sec(c + d*x)**3, 
x)*a)