\(\int (a+a \cos (c+d x)) (A+B \cos (c+d x)) \sqrt {\sec (c+d x)} \, dx\) [462]

Optimal result
Mathematica [C] (verified)
Rubi [A] (verified)
Maple [B] (verified)
Fricas [C] (verification not implemented)
Sympy [F]
Maxima [F]
Giac [F]
Mupad [F(-1)]
Reduce [F]

Optimal result

Integrand size = 31, antiderivative size = 110 \[ \int (a+a \cos (c+d x)) (A+B \cos (c+d x)) \sqrt {\sec (c+d x)} \, dx=\frac {2 a (A+B) \sqrt {\cos (c+d x)} E\left (\left .\frac {1}{2} (c+d x)\right |2\right ) \sqrt {\sec (c+d x)}}{d}+\frac {2 a (3 A+B) \sqrt {\cos (c+d x)} \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),2\right ) \sqrt {\sec (c+d x)}}{3 d}+\frac {2 a B \sin (c+d x)}{3 d \sqrt {\sec (c+d x)}} \] Output:

2*a*(A+B)*cos(d*x+c)^(1/2)*EllipticE(sin(1/2*d*x+1/2*c),2^(1/2))*sec(d*x+c 
)^(1/2)/d+2/3*a*(3*A+B)*cos(d*x+c)^(1/2)*InverseJacobiAM(1/2*d*x+1/2*c,2^( 
1/2))*sec(d*x+c)^(1/2)/d+2/3*a*B*sin(d*x+c)/d/sec(d*x+c)^(1/2)
 

Mathematica [C] (verified)

Result contains higher order function than in optimal. Order 5 vs. order 4 in optimal.

Time = 2.55 (sec) , antiderivative size = 148, normalized size of antiderivative = 1.35 \[ \int (a+a \cos (c+d x)) (A+B \cos (c+d x)) \sqrt {\sec (c+d x)} \, dx=\frac {2 a e^{-i d x} \sqrt {\sec (c+d x)} (\cos (d x)+i \sin (d x)) \left ((3 A+B) \sqrt {\cos (c+d x)} \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),2\right )-i (A+B) e^{i (c+d x)} \sqrt {1+e^{2 i (c+d x)}} \operatorname {Hypergeometric2F1}\left (\frac {1}{2},\frac {3}{4},\frac {7}{4},-e^{2 i (c+d x)}\right )+\cos (c+d x) (3 i (A+B)+B \sin (c+d x))\right )}{3 d} \] Input:

Integrate[(a + a*Cos[c + d*x])*(A + B*Cos[c + d*x])*Sqrt[Sec[c + d*x]],x]
 

Output:

(2*a*Sqrt[Sec[c + d*x]]*(Cos[d*x] + I*Sin[d*x])*((3*A + B)*Sqrt[Cos[c + d* 
x]]*EllipticF[(c + d*x)/2, 2] - I*(A + B)*E^(I*(c + d*x))*Sqrt[1 + E^((2*I 
)*(c + d*x))]*Hypergeometric2F1[1/2, 3/4, 7/4, -E^((2*I)*(c + d*x))] + Cos 
[c + d*x]*((3*I)*(A + B) + B*Sin[c + d*x])))/(3*d*E^(I*d*x))
 

Rubi [A] (verified)

Time = 0.70 (sec) , antiderivative size = 113, normalized size of antiderivative = 1.03, number of steps used = 12, number of rules used = 12, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.387, Rules used = {3042, 3439, 3042, 4484, 27, 3042, 4274, 3042, 4258, 3042, 3119, 3120}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \sqrt {\sec (c+d x)} (a \cos (c+d x)+a) (A+B \cos (c+d x)) \, dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \sqrt {\csc \left (c+d x+\frac {\pi }{2}\right )} \left (a \sin \left (c+d x+\frac {\pi }{2}\right )+a\right ) \left (A+B \sin \left (c+d x+\frac {\pi }{2}\right )\right )dx\)

\(\Big \downarrow \) 3439

\(\displaystyle \int \frac {(a \sec (c+d x)+a) (A \sec (c+d x)+B)}{\sec ^{\frac {3}{2}}(c+d x)}dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \frac {\left (a \csc \left (c+d x+\frac {\pi }{2}\right )+a\right ) \left (A \csc \left (c+d x+\frac {\pi }{2}\right )+B\right )}{\csc \left (c+d x+\frac {\pi }{2}\right )^{3/2}}dx\)

\(\Big \downarrow \) 4484

\(\displaystyle \frac {2 a B \sin (c+d x)}{3 d \sqrt {\sec (c+d x)}}-\frac {2}{3} \int -\frac {3 a (A+B)+a (3 A+B) \sec (c+d x)}{2 \sqrt {\sec (c+d x)}}dx\)

\(\Big \downarrow \) 27

\(\displaystyle \frac {1}{3} \int \frac {3 a (A+B)+a (3 A+B) \sec (c+d x)}{\sqrt {\sec (c+d x)}}dx+\frac {2 a B \sin (c+d x)}{3 d \sqrt {\sec (c+d x)}}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {1}{3} \int \frac {3 a (A+B)+a (3 A+B) \csc \left (c+d x+\frac {\pi }{2}\right )}{\sqrt {\csc \left (c+d x+\frac {\pi }{2}\right )}}dx+\frac {2 a B \sin (c+d x)}{3 d \sqrt {\sec (c+d x)}}\)

\(\Big \downarrow \) 4274

\(\displaystyle \frac {1}{3} \left (3 a (A+B) \int \frac {1}{\sqrt {\sec (c+d x)}}dx+a (3 A+B) \int \sqrt {\sec (c+d x)}dx\right )+\frac {2 a B \sin (c+d x)}{3 d \sqrt {\sec (c+d x)}}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {1}{3} \left (3 a (A+B) \int \frac {1}{\sqrt {\csc \left (c+d x+\frac {\pi }{2}\right )}}dx+a (3 A+B) \int \sqrt {\csc \left (c+d x+\frac {\pi }{2}\right )}dx\right )+\frac {2 a B \sin (c+d x)}{3 d \sqrt {\sec (c+d x)}}\)

\(\Big \downarrow \) 4258

\(\displaystyle \frac {1}{3} \left (a (3 A+B) \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \int \frac {1}{\sqrt {\cos (c+d x)}}dx+3 a (A+B) \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \int \sqrt {\cos (c+d x)}dx\right )+\frac {2 a B \sin (c+d x)}{3 d \sqrt {\sec (c+d x)}}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {1}{3} \left (a (3 A+B) \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \int \frac {1}{\sqrt {\sin \left (c+d x+\frac {\pi }{2}\right )}}dx+3 a (A+B) \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \int \sqrt {\sin \left (c+d x+\frac {\pi }{2}\right )}dx\right )+\frac {2 a B \sin (c+d x)}{3 d \sqrt {\sec (c+d x)}}\)

\(\Big \downarrow \) 3119

\(\displaystyle \frac {1}{3} \left (a (3 A+B) \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \int \frac {1}{\sqrt {\sin \left (c+d x+\frac {\pi }{2}\right )}}dx+\frac {6 a (A+B) \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{d}\right )+\frac {2 a B \sin (c+d x)}{3 d \sqrt {\sec (c+d x)}}\)

\(\Big \downarrow \) 3120

\(\displaystyle \frac {1}{3} \left (\frac {2 a (3 A+B) \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),2\right )}{d}+\frac {6 a (A+B) \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{d}\right )+\frac {2 a B \sin (c+d x)}{3 d \sqrt {\sec (c+d x)}}\)

Input:

Int[(a + a*Cos[c + d*x])*(A + B*Cos[c + d*x])*Sqrt[Sec[c + d*x]],x]
 

Output:

((6*a*(A + B)*Sqrt[Cos[c + d*x]]*EllipticE[(c + d*x)/2, 2]*Sqrt[Sec[c + d* 
x]])/d + (2*a*(3*A + B)*Sqrt[Cos[c + d*x]]*EllipticF[(c + d*x)/2, 2]*Sqrt[ 
Sec[c + d*x]])/d)/3 + (2*a*B*Sin[c + d*x])/(3*d*Sqrt[Sec[c + d*x]])
 

Defintions of rubi rules used

rule 27
Int[(a_)*(Fx_), x_Symbol] :> Simp[a   Int[Fx, x], x] /; FreeQ[a, x] &&  !Ma 
tchQ[Fx, (b_)*(Gx_) /; FreeQ[b, x]]
 

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 3119
Int[Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2/d)*EllipticE[(1/2)* 
(c - Pi/2 + d*x), 2], x] /; FreeQ[{c, d}, x]
 

rule 3120
Int[1/Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2/d)*EllipticF[(1/2 
)*(c - Pi/2 + d*x), 2], x] /; FreeQ[{c, d}, x]
 

rule 3439
Int[(csc[(e_.) + (f_.)*(x_)]*(g_.))^(p_.)*((a_.) + (b_.)*sin[(e_.) + (f_.)* 
(x_)])^(m_.)*((c_) + (d_.)*sin[(e_.) + (f_.)*(x_)])^(n_.), x_Symbol] :> Sim 
p[g^(m + n)   Int[(g*Csc[e + f*x])^(p - m - n)*(b + a*Csc[e + f*x])^m*(d + 
c*Csc[e + f*x])^n, x], x] /; FreeQ[{a, b, c, d, e, f, g, p}, x] && NeQ[b*c 
- a*d, 0] &&  !IntegerQ[p] && IntegerQ[m] && IntegerQ[n]
 

rule 4258
Int[(csc[(c_.) + (d_.)*(x_)]*(b_.))^(n_), x_Symbol] :> Simp[(b*Csc[c + d*x] 
)^n*Sin[c + d*x]^n   Int[1/Sin[c + d*x]^n, x], x] /; FreeQ[{b, c, d}, x] && 
 EqQ[n^2, 1/4]
 

rule 4274
Int[(csc[(e_.) + (f_.)*(x_)]*(d_.))^(n_.)*(csc[(e_.) + (f_.)*(x_)]*(b_.) + 
(a_)), x_Symbol] :> Simp[a   Int[(d*Csc[e + f*x])^n, x], x] + Simp[b/d   In 
t[(d*Csc[e + f*x])^(n + 1), x], x] /; FreeQ[{a, b, d, e, f, n}, x]
 

rule 4484
Int[(csc[(e_.) + (f_.)*(x_)]*(d_.))^(n_)*(csc[(e_.) + (f_.)*(x_)]*(b_.) + ( 
a_))*(csc[(e_.) + (f_.)*(x_)]*(B_.) + (A_)), x_Symbol] :> Simp[A*a*Cot[e + 
f*x]*((d*Csc[e + f*x])^n/(f*n)), x] + Simp[1/(d*n)   Int[(d*Csc[e + f*x])^( 
n + 1)*Simp[n*(B*a + A*b) + (B*b*n + A*a*(n + 1))*Csc[e + f*x], x], x], x] 
/; FreeQ[{a, b, d, e, f, A, B}, x] && NeQ[A*b - a*B, 0] && LeQ[n, -1]
 
Maple [B] (verified)

Leaf count of result is larger than twice the leaf count of optimal. \(320\) vs. \(2(99)=198\).

Time = 6.52 (sec) , antiderivative size = 321, normalized size of antiderivative = 2.92

method result size
default \(-\frac {2 \sqrt {\left (2 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-1\right ) \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}}\, a \left (4 B \cos \left (\frac {d x}{2}+\frac {c}{2}\right ) \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{4}+3 A \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {2 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-1}\, \operatorname {EllipticF}\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right )-3 A \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {2 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-1}\, \operatorname {EllipticE}\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right )-2 B \cos \left (\frac {d x}{2}+\frac {c}{2}\right ) \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}+B \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {2 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-1}\, \operatorname {EllipticF}\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right )-3 B \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {2 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-1}\, \operatorname {EllipticE}\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right )\right )}{3 \sqrt {-2 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{4}+\sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}}\, \sin \left (\frac {d x}{2}+\frac {c}{2}\right ) \sqrt {2 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-1}\, d}\) \(321\)
parts \(-\frac {2 A a \sqrt {\left (2 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-1\right ) \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}}\, \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {-2 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}+1}\, \operatorname {EllipticF}\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right )}{\sqrt {-2 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{4}+\sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}}\, \sin \left (\frac {d x}{2}+\frac {c}{2}\right ) \sqrt {2 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-1}\, d}+\frac {2 \left (A a +B a \right ) \sqrt {\left (2 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-1\right ) \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}}\, \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {-2 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}+1}\, \operatorname {EllipticE}\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right )}{\sqrt {-2 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{4}+\sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}}\, \sin \left (\frac {d x}{2}+\frac {c}{2}\right ) \sqrt {2 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-1}\, d}-\frac {2 B a \sqrt {\left (2 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-1\right ) \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}}\, \left (4 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{4} \cos \left (\frac {d x}{2}+\frac {c}{2}\right )-2 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2} \cos \left (\frac {d x}{2}+\frac {c}{2}\right )+\sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {2 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-1}\, \operatorname {EllipticF}\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right )\right )}{3 \sqrt {-2 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{4}+\sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}}\, \sin \left (\frac {d x}{2}+\frac {c}{2}\right ) \sqrt {2 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-1}\, d}\) \(455\)

Input:

int((a+a*cos(d*x+c))*(A+B*cos(d*x+c))*sec(d*x+c)^(1/2),x,method=_RETURNVER 
BOSE)
 

Output:

-2/3*((2*cos(1/2*d*x+1/2*c)^2-1)*sin(1/2*d*x+1/2*c)^2)^(1/2)*a*(4*B*cos(1/ 
2*d*x+1/2*c)*sin(1/2*d*x+1/2*c)^4+3*A*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(2*sin( 
1/2*d*x+1/2*c)^2-1)^(1/2)*EllipticF(cos(1/2*d*x+1/2*c),2^(1/2))-3*A*(sin(1 
/2*d*x+1/2*c)^2)^(1/2)*(2*sin(1/2*d*x+1/2*c)^2-1)^(1/2)*EllipticE(cos(1/2* 
d*x+1/2*c),2^(1/2))-2*B*cos(1/2*d*x+1/2*c)*sin(1/2*d*x+1/2*c)^2+B*(sin(1/2 
*d*x+1/2*c)^2)^(1/2)*(2*sin(1/2*d*x+1/2*c)^2-1)^(1/2)*EllipticF(cos(1/2*d* 
x+1/2*c),2^(1/2))-3*B*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(2*sin(1/2*d*x+1/2*c)^2 
-1)^(1/2)*EllipticE(cos(1/2*d*x+1/2*c),2^(1/2)))/(-2*sin(1/2*d*x+1/2*c)^4+ 
sin(1/2*d*x+1/2*c)^2)^(1/2)/sin(1/2*d*x+1/2*c)/(2*cos(1/2*d*x+1/2*c)^2-1)^ 
(1/2)/d
 

Fricas [C] (verification not implemented)

Result contains complex when optimal does not.

Time = 0.09 (sec) , antiderivative size = 142, normalized size of antiderivative = 1.29 \[ \int (a+a \cos (c+d x)) (A+B \cos (c+d x)) \sqrt {\sec (c+d x)} \, dx=\frac {2 \, B a \sqrt {\cos \left (d x + c\right )} \sin \left (d x + c\right ) - i \, \sqrt {2} {\left (3 \, A + B\right )} a {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) + i \, \sin \left (d x + c\right )\right ) + i \, \sqrt {2} {\left (3 \, A + B\right )} a {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) - i \, \sin \left (d x + c\right )\right ) + 3 i \, \sqrt {2} {\left (A + B\right )} a {\rm weierstrassZeta}\left (-4, 0, {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) + i \, \sin \left (d x + c\right )\right )\right ) - 3 i \, \sqrt {2} {\left (A + B\right )} a {\rm weierstrassZeta}\left (-4, 0, {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) - i \, \sin \left (d x + c\right )\right )\right )}{3 \, d} \] Input:

integrate((a+a*cos(d*x+c))*(A+B*cos(d*x+c))*sec(d*x+c)^(1/2),x, algorithm= 
"fricas")
 

Output:

1/3*(2*B*a*sqrt(cos(d*x + c))*sin(d*x + c) - I*sqrt(2)*(3*A + B)*a*weierst 
rassPInverse(-4, 0, cos(d*x + c) + I*sin(d*x + c)) + I*sqrt(2)*(3*A + B)*a 
*weierstrassPInverse(-4, 0, cos(d*x + c) - I*sin(d*x + c)) + 3*I*sqrt(2)*( 
A + B)*a*weierstrassZeta(-4, 0, weierstrassPInverse(-4, 0, cos(d*x + c) + 
I*sin(d*x + c))) - 3*I*sqrt(2)*(A + B)*a*weierstrassZeta(-4, 0, weierstras 
sPInverse(-4, 0, cos(d*x + c) - I*sin(d*x + c))))/d
 

Sympy [F]

\[ \int (a+a \cos (c+d x)) (A+B \cos (c+d x)) \sqrt {\sec (c+d x)} \, dx=a \left (\int A \sqrt {\sec {\left (c + d x \right )}}\, dx + \int A \cos {\left (c + d x \right )} \sqrt {\sec {\left (c + d x \right )}}\, dx + \int B \cos {\left (c + d x \right )} \sqrt {\sec {\left (c + d x \right )}}\, dx + \int B \cos ^{2}{\left (c + d x \right )} \sqrt {\sec {\left (c + d x \right )}}\, dx\right ) \] Input:

integrate((a+a*cos(d*x+c))*(A+B*cos(d*x+c))*sec(d*x+c)**(1/2),x)
 

Output:

a*(Integral(A*sqrt(sec(c + d*x)), x) + Integral(A*cos(c + d*x)*sqrt(sec(c 
+ d*x)), x) + Integral(B*cos(c + d*x)*sqrt(sec(c + d*x)), x) + Integral(B* 
cos(c + d*x)**2*sqrt(sec(c + d*x)), x))
 

Maxima [F]

\[ \int (a+a \cos (c+d x)) (A+B \cos (c+d x)) \sqrt {\sec (c+d x)} \, dx=\int { {\left (B \cos \left (d x + c\right ) + A\right )} {\left (a \cos \left (d x + c\right ) + a\right )} \sqrt {\sec \left (d x + c\right )} \,d x } \] Input:

integrate((a+a*cos(d*x+c))*(A+B*cos(d*x+c))*sec(d*x+c)^(1/2),x, algorithm= 
"maxima")
 

Output:

integrate((B*cos(d*x + c) + A)*(a*cos(d*x + c) + a)*sqrt(sec(d*x + c)), x)
 

Giac [F]

\[ \int (a+a \cos (c+d x)) (A+B \cos (c+d x)) \sqrt {\sec (c+d x)} \, dx=\int { {\left (B \cos \left (d x + c\right ) + A\right )} {\left (a \cos \left (d x + c\right ) + a\right )} \sqrt {\sec \left (d x + c\right )} \,d x } \] Input:

integrate((a+a*cos(d*x+c))*(A+B*cos(d*x+c))*sec(d*x+c)^(1/2),x, algorithm= 
"giac")
 

Output:

integrate((B*cos(d*x + c) + A)*(a*cos(d*x + c) + a)*sqrt(sec(d*x + c)), x)
 

Mupad [F(-1)]

Timed out. \[ \int (a+a \cos (c+d x)) (A+B \cos (c+d x)) \sqrt {\sec (c+d x)} \, dx=\int \left (A+B\,\cos \left (c+d\,x\right )\right )\,\sqrt {\frac {1}{\cos \left (c+d\,x\right )}}\,\left (a+a\,\cos \left (c+d\,x\right )\right ) \,d x \] Input:

int((A + B*cos(c + d*x))*(1/cos(c + d*x))^(1/2)*(a + a*cos(c + d*x)),x)
 

Output:

int((A + B*cos(c + d*x))*(1/cos(c + d*x))^(1/2)*(a + a*cos(c + d*x)), x)
 

Reduce [F]

\[ \int (a+a \cos (c+d x)) (A+B \cos (c+d x)) \sqrt {\sec (c+d x)} \, dx=a \left (\left (\int \sqrt {\sec \left (d x +c \right )}d x \right ) a +\left (\int \sqrt {\sec \left (d x +c \right )}\, \cos \left (d x +c \right )d x \right ) a +\left (\int \sqrt {\sec \left (d x +c \right )}\, \cos \left (d x +c \right )d x \right ) b +\left (\int \sqrt {\sec \left (d x +c \right )}\, \cos \left (d x +c \right )^{2}d x \right ) b \right ) \] Input:

int((a+a*cos(d*x+c))*(A+B*cos(d*x+c))*sec(d*x+c)^(1/2),x)
 

Output:

a*(int(sqrt(sec(c + d*x)),x)*a + int(sqrt(sec(c + d*x))*cos(c + d*x),x)*a 
+ int(sqrt(sec(c + d*x))*cos(c + d*x),x)*b + int(sqrt(sec(c + d*x))*cos(c 
+ d*x)**2,x)*b)