\(\int \frac {(A+B \cos (c+d x)) \sec ^{\frac {5}{2}}(c+d x)}{a+a \cos (c+d x)} \, dx\) [476]

Optimal result
Mathematica [C] (verified)
Rubi [A] (verified)
Maple [B] (verified)
Fricas [C] (verification not implemented)
Sympy [F(-1)]
Maxima [F]
Giac [F]
Mupad [F(-1)]
Reduce [F]

Optimal result

Integrand size = 33, antiderivative size = 193 \[ \int \frac {(A+B \cos (c+d x)) \sec ^{\frac {5}{2}}(c+d x)}{a+a \cos (c+d x)} \, dx=\frac {3 (A-B) \sqrt {\cos (c+d x)} E\left (\left .\frac {1}{2} (c+d x)\right |2\right ) \sqrt {\sec (c+d x)}}{a d}+\frac {(5 A-3 B) \sqrt {\cos (c+d x)} \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),2\right ) \sqrt {\sec (c+d x)}}{3 a d}-\frac {3 (A-B) \sqrt {\sec (c+d x)} \sin (c+d x)}{a d}+\frac {(5 A-3 B) \sec ^{\frac {3}{2}}(c+d x) \sin (c+d x)}{3 a d}-\frac {(A-B) \sec ^{\frac {5}{2}}(c+d x) \sin (c+d x)}{d (a+a \sec (c+d x))} \] Output:

3*(A-B)*cos(d*x+c)^(1/2)*EllipticE(sin(1/2*d*x+1/2*c),2^(1/2))*sec(d*x+c)^ 
(1/2)/a/d+1/3*(5*A-3*B)*cos(d*x+c)^(1/2)*InverseJacobiAM(1/2*d*x+1/2*c,2^( 
1/2))*sec(d*x+c)^(1/2)/a/d-3*(A-B)*sec(d*x+c)^(1/2)*sin(d*x+c)/a/d+1/3*(5* 
A-3*B)*sec(d*x+c)^(3/2)*sin(d*x+c)/a/d-(A-B)*sec(d*x+c)^(5/2)*sin(d*x+c)/d 
/(a+a*sec(d*x+c))
 

Mathematica [C] (verified)

Result contains higher order function than in optimal. Order 5 vs. order 4 in optimal.

Time = 9.00 (sec) , antiderivative size = 650, normalized size of antiderivative = 3.37 \[ \int \frac {(A+B \cos (c+d x)) \sec ^{\frac {5}{2}}(c+d x)}{a+a \cos (c+d x)} \, dx=-\frac {A e^{-i d x} \sqrt {\frac {e^{i (c+d x)}}{1+e^{2 i (c+d x)}}} \sqrt {1+e^{2 i (c+d x)}} \cos ^2\left (\frac {c}{2}+\frac {d x}{2}\right ) \csc \left (\frac {c}{2}\right ) \left (-3 \sqrt {1+e^{2 i (c+d x)}}+e^{2 i d x} \left (-1+e^{2 i c}\right ) \operatorname {Hypergeometric2F1}\left (\frac {1}{2},\frac {3}{4},\frac {7}{4},-e^{2 i (c+d x)}\right )\right ) \sec \left (\frac {c}{2}\right )}{\sqrt {2} d (a+a \cos (c+d x))}+\frac {B e^{-i d x} \sqrt {\frac {e^{i (c+d x)}}{1+e^{2 i (c+d x)}}} \sqrt {1+e^{2 i (c+d x)}} \cos ^2\left (\frac {c}{2}+\frac {d x}{2}\right ) \csc \left (\frac {c}{2}\right ) \left (-3 \sqrt {1+e^{2 i (c+d x)}}+e^{2 i d x} \left (-1+e^{2 i c}\right ) \operatorname {Hypergeometric2F1}\left (\frac {1}{2},\frac {3}{4},\frac {7}{4},-e^{2 i (c+d x)}\right )\right ) \sec \left (\frac {c}{2}\right )}{\sqrt {2} d (a+a \cos (c+d x))}+\frac {5 A \cos ^2\left (\frac {c}{2}+\frac {d x}{2}\right ) \sqrt {\cos (c+d x)} \csc \left (\frac {c}{2}\right ) \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),2\right ) \sec \left (\frac {c}{2}\right ) \sqrt {\sec (c+d x)} \sin (c)}{3 d (a+a \cos (c+d x))}-\frac {B \cos ^2\left (\frac {c}{2}+\frac {d x}{2}\right ) \sqrt {\cos (c+d x)} \csc \left (\frac {c}{2}\right ) \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),2\right ) \sec \left (\frac {c}{2}\right ) \sqrt {\sec (c+d x)} \sin (c)}{d (a+a \cos (c+d x))}+\frac {\cos ^2\left (\frac {c}{2}+\frac {d x}{2}\right ) \sqrt {\sec (c+d x)} \left (-\frac {3 (A-B) \cos (d x) \csc \left (\frac {c}{2}\right ) \sec \left (\frac {c}{2}\right )}{d}+\frac {2 \sec \left (\frac {c}{2}\right ) \sec \left (\frac {c}{2}+\frac {d x}{2}\right ) \left (A \sin \left (\frac {d x}{2}\right )-B \sin \left (\frac {d x}{2}\right )\right )}{d}+\frac {4 A \sec (c) \sec (c+d x) \sin (d x)}{3 d}+\frac {2 (2 A+5 A \cos (c)-3 B \cos (c)) \sec (c) \tan \left (\frac {c}{2}\right )}{3 d}\right )}{a+a \cos (c+d x)} \] Input:

Integrate[((A + B*Cos[c + d*x])*Sec[c + d*x]^(5/2))/(a + a*Cos[c + d*x]),x 
]
 

Output:

-((A*Sqrt[E^(I*(c + d*x))/(1 + E^((2*I)*(c + d*x)))]*Sqrt[1 + E^((2*I)*(c 
+ d*x))]*Cos[c/2 + (d*x)/2]^2*Csc[c/2]*(-3*Sqrt[1 + E^((2*I)*(c + d*x))] + 
 E^((2*I)*d*x)*(-1 + E^((2*I)*c))*Hypergeometric2F1[1/2, 3/4, 7/4, -E^((2* 
I)*(c + d*x))])*Sec[c/2])/(Sqrt[2]*d*E^(I*d*x)*(a + a*Cos[c + d*x]))) + (B 
*Sqrt[E^(I*(c + d*x))/(1 + E^((2*I)*(c + d*x)))]*Sqrt[1 + E^((2*I)*(c + d* 
x))]*Cos[c/2 + (d*x)/2]^2*Csc[c/2]*(-3*Sqrt[1 + E^((2*I)*(c + d*x))] + E^( 
(2*I)*d*x)*(-1 + E^((2*I)*c))*Hypergeometric2F1[1/2, 3/4, 7/4, -E^((2*I)*( 
c + d*x))])*Sec[c/2])/(Sqrt[2]*d*E^(I*d*x)*(a + a*Cos[c + d*x])) + (5*A*Co 
s[c/2 + (d*x)/2]^2*Sqrt[Cos[c + d*x]]*Csc[c/2]*EllipticF[(c + d*x)/2, 2]*S 
ec[c/2]*Sqrt[Sec[c + d*x]]*Sin[c])/(3*d*(a + a*Cos[c + d*x])) - (B*Cos[c/2 
 + (d*x)/2]^2*Sqrt[Cos[c + d*x]]*Csc[c/2]*EllipticF[(c + d*x)/2, 2]*Sec[c/ 
2]*Sqrt[Sec[c + d*x]]*Sin[c])/(d*(a + a*Cos[c + d*x])) + (Cos[c/2 + (d*x)/ 
2]^2*Sqrt[Sec[c + d*x]]*((-3*(A - B)*Cos[d*x]*Csc[c/2]*Sec[c/2])/d + (2*Se 
c[c/2]*Sec[c/2 + (d*x)/2]*(A*Sin[(d*x)/2] - B*Sin[(d*x)/2]))/d + (4*A*Sec[ 
c]*Sec[c + d*x]*Sin[d*x])/(3*d) + (2*(2*A + 5*A*Cos[c] - 3*B*Cos[c])*Sec[c 
]*Tan[c/2])/(3*d)))/(a + a*Cos[c + d*x])
 

Rubi [A] (verified)

Time = 0.99 (sec) , antiderivative size = 185, normalized size of antiderivative = 0.96, number of steps used = 14, number of rules used = 14, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.424, Rules used = {3042, 3439, 3042, 4507, 27, 3042, 4274, 3042, 4255, 3042, 4258, 3042, 3119, 3120}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {\sec ^{\frac {5}{2}}(c+d x) (A+B \cos (c+d x))}{a \cos (c+d x)+a} \, dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \frac {\csc \left (c+d x+\frac {\pi }{2}\right )^{5/2} \left (A+B \sin \left (c+d x+\frac {\pi }{2}\right )\right )}{a \sin \left (c+d x+\frac {\pi }{2}\right )+a}dx\)

\(\Big \downarrow \) 3439

\(\displaystyle \int \frac {\sec ^{\frac {5}{2}}(c+d x) (A \sec (c+d x)+B)}{a \sec (c+d x)+a}dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \frac {\csc \left (c+d x+\frac {\pi }{2}\right )^{5/2} \left (A \csc \left (c+d x+\frac {\pi }{2}\right )+B\right )}{a \csc \left (c+d x+\frac {\pi }{2}\right )+a}dx\)

\(\Big \downarrow \) 4507

\(\displaystyle \frac {\int -\frac {1}{2} \sec ^{\frac {3}{2}}(c+d x) (3 a (A-B)-a (5 A-3 B) \sec (c+d x))dx}{a^2}-\frac {(A-B) \sin (c+d x) \sec ^{\frac {5}{2}}(c+d x)}{d (a \sec (c+d x)+a)}\)

\(\Big \downarrow \) 27

\(\displaystyle -\frac {\int \sec ^{\frac {3}{2}}(c+d x) (3 a (A-B)-a (5 A-3 B) \sec (c+d x))dx}{2 a^2}-\frac {(A-B) \sin (c+d x) \sec ^{\frac {5}{2}}(c+d x)}{d (a \sec (c+d x)+a)}\)

\(\Big \downarrow \) 3042

\(\displaystyle -\frac {\int \csc \left (c+d x+\frac {\pi }{2}\right )^{3/2} \left (3 a (A-B)-a (5 A-3 B) \csc \left (c+d x+\frac {\pi }{2}\right )\right )dx}{2 a^2}-\frac {(A-B) \sin (c+d x) \sec ^{\frac {5}{2}}(c+d x)}{d (a \sec (c+d x)+a)}\)

\(\Big \downarrow \) 4274

\(\displaystyle -\frac {3 a (A-B) \int \sec ^{\frac {3}{2}}(c+d x)dx-a (5 A-3 B) \int \sec ^{\frac {5}{2}}(c+d x)dx}{2 a^2}-\frac {(A-B) \sin (c+d x) \sec ^{\frac {5}{2}}(c+d x)}{d (a \sec (c+d x)+a)}\)

\(\Big \downarrow \) 3042

\(\displaystyle -\frac {3 a (A-B) \int \csc \left (c+d x+\frac {\pi }{2}\right )^{3/2}dx-a (5 A-3 B) \int \csc \left (c+d x+\frac {\pi }{2}\right )^{5/2}dx}{2 a^2}-\frac {(A-B) \sin (c+d x) \sec ^{\frac {5}{2}}(c+d x)}{d (a \sec (c+d x)+a)}\)

\(\Big \downarrow \) 4255

\(\displaystyle -\frac {3 a (A-B) \left (\frac {2 \sin (c+d x) \sqrt {\sec (c+d x)}}{d}-\int \frac {1}{\sqrt {\sec (c+d x)}}dx\right )-a (5 A-3 B) \left (\frac {1}{3} \int \sqrt {\sec (c+d x)}dx+\frac {2 \sin (c+d x) \sec ^{\frac {3}{2}}(c+d x)}{3 d}\right )}{2 a^2}-\frac {(A-B) \sin (c+d x) \sec ^{\frac {5}{2}}(c+d x)}{d (a \sec (c+d x)+a)}\)

\(\Big \downarrow \) 3042

\(\displaystyle -\frac {3 a (A-B) \left (\frac {2 \sin (c+d x) \sqrt {\sec (c+d x)}}{d}-\int \frac {1}{\sqrt {\csc \left (c+d x+\frac {\pi }{2}\right )}}dx\right )-a (5 A-3 B) \left (\frac {1}{3} \int \sqrt {\csc \left (c+d x+\frac {\pi }{2}\right )}dx+\frac {2 \sin (c+d x) \sec ^{\frac {3}{2}}(c+d x)}{3 d}\right )}{2 a^2}-\frac {(A-B) \sin (c+d x) \sec ^{\frac {5}{2}}(c+d x)}{d (a \sec (c+d x)+a)}\)

\(\Big \downarrow \) 4258

\(\displaystyle -\frac {3 a (A-B) \left (\frac {2 \sin (c+d x) \sqrt {\sec (c+d x)}}{d}-\sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \int \sqrt {\cos (c+d x)}dx\right )-a (5 A-3 B) \left (\frac {1}{3} \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \int \frac {1}{\sqrt {\cos (c+d x)}}dx+\frac {2 \sin (c+d x) \sec ^{\frac {3}{2}}(c+d x)}{3 d}\right )}{2 a^2}-\frac {(A-B) \sin (c+d x) \sec ^{\frac {5}{2}}(c+d x)}{d (a \sec (c+d x)+a)}\)

\(\Big \downarrow \) 3042

\(\displaystyle -\frac {3 a (A-B) \left (\frac {2 \sin (c+d x) \sqrt {\sec (c+d x)}}{d}-\sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \int \sqrt {\sin \left (c+d x+\frac {\pi }{2}\right )}dx\right )-a (5 A-3 B) \left (\frac {1}{3} \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \int \frac {1}{\sqrt {\sin \left (c+d x+\frac {\pi }{2}\right )}}dx+\frac {2 \sin (c+d x) \sec ^{\frac {3}{2}}(c+d x)}{3 d}\right )}{2 a^2}-\frac {(A-B) \sin (c+d x) \sec ^{\frac {5}{2}}(c+d x)}{d (a \sec (c+d x)+a)}\)

\(\Big \downarrow \) 3119

\(\displaystyle -\frac {3 a (A-B) \left (\frac {2 \sin (c+d x) \sqrt {\sec (c+d x)}}{d}-\frac {2 \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{d}\right )-a (5 A-3 B) \left (\frac {1}{3} \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \int \frac {1}{\sqrt {\sin \left (c+d x+\frac {\pi }{2}\right )}}dx+\frac {2 \sin (c+d x) \sec ^{\frac {3}{2}}(c+d x)}{3 d}\right )}{2 a^2}-\frac {(A-B) \sin (c+d x) \sec ^{\frac {5}{2}}(c+d x)}{d (a \sec (c+d x)+a)}\)

\(\Big \downarrow \) 3120

\(\displaystyle -\frac {3 a (A-B) \left (\frac {2 \sin (c+d x) \sqrt {\sec (c+d x)}}{d}-\frac {2 \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{d}\right )-a (5 A-3 B) \left (\frac {2 \sin (c+d x) \sec ^{\frac {3}{2}}(c+d x)}{3 d}+\frac {2 \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),2\right )}{3 d}\right )}{2 a^2}-\frac {(A-B) \sin (c+d x) \sec ^{\frac {5}{2}}(c+d x)}{d (a \sec (c+d x)+a)}\)

Input:

Int[((A + B*Cos[c + d*x])*Sec[c + d*x]^(5/2))/(a + a*Cos[c + d*x]),x]
 

Output:

-(((A - B)*Sec[c + d*x]^(5/2)*Sin[c + d*x])/(d*(a + a*Sec[c + d*x]))) - (3 
*a*(A - B)*((-2*Sqrt[Cos[c + d*x]]*EllipticE[(c + d*x)/2, 2]*Sqrt[Sec[c + 
d*x]])/d + (2*Sqrt[Sec[c + d*x]]*Sin[c + d*x])/d) - a*(5*A - 3*B)*((2*Sqrt 
[Cos[c + d*x]]*EllipticF[(c + d*x)/2, 2]*Sqrt[Sec[c + d*x]])/(3*d) + (2*Se 
c[c + d*x]^(3/2)*Sin[c + d*x])/(3*d)))/(2*a^2)
 

Defintions of rubi rules used

rule 27
Int[(a_)*(Fx_), x_Symbol] :> Simp[a   Int[Fx, x], x] /; FreeQ[a, x] &&  !Ma 
tchQ[Fx, (b_)*(Gx_) /; FreeQ[b, x]]
 

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 3119
Int[Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2/d)*EllipticE[(1/2)* 
(c - Pi/2 + d*x), 2], x] /; FreeQ[{c, d}, x]
 

rule 3120
Int[1/Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2/d)*EllipticF[(1/2 
)*(c - Pi/2 + d*x), 2], x] /; FreeQ[{c, d}, x]
 

rule 3439
Int[(csc[(e_.) + (f_.)*(x_)]*(g_.))^(p_.)*((a_.) + (b_.)*sin[(e_.) + (f_.)* 
(x_)])^(m_.)*((c_) + (d_.)*sin[(e_.) + (f_.)*(x_)])^(n_.), x_Symbol] :> Sim 
p[g^(m + n)   Int[(g*Csc[e + f*x])^(p - m - n)*(b + a*Csc[e + f*x])^m*(d + 
c*Csc[e + f*x])^n, x], x] /; FreeQ[{a, b, c, d, e, f, g, p}, x] && NeQ[b*c 
- a*d, 0] &&  !IntegerQ[p] && IntegerQ[m] && IntegerQ[n]
 

rule 4255
Int[(csc[(c_.) + (d_.)*(x_)]*(b_.))^(n_), x_Symbol] :> Simp[(-b)*Cos[c + d* 
x]*((b*Csc[c + d*x])^(n - 1)/(d*(n - 1))), x] + Simp[b^2*((n - 2)/(n - 1)) 
  Int[(b*Csc[c + d*x])^(n - 2), x], x] /; FreeQ[{b, c, d}, x] && GtQ[n, 1] 
&& IntegerQ[2*n]
 

rule 4258
Int[(csc[(c_.) + (d_.)*(x_)]*(b_.))^(n_), x_Symbol] :> Simp[(b*Csc[c + d*x] 
)^n*Sin[c + d*x]^n   Int[1/Sin[c + d*x]^n, x], x] /; FreeQ[{b, c, d}, x] && 
 EqQ[n^2, 1/4]
 

rule 4274
Int[(csc[(e_.) + (f_.)*(x_)]*(d_.))^(n_.)*(csc[(e_.) + (f_.)*(x_)]*(b_.) + 
(a_)), x_Symbol] :> Simp[a   Int[(d*Csc[e + f*x])^n, x], x] + Simp[b/d   In 
t[(d*Csc[e + f*x])^(n + 1), x], x] /; FreeQ[{a, b, d, e, f, n}, x]
 

rule 4507
Int[(csc[(e_.) + (f_.)*(x_)]*(d_.))^(n_)*(csc[(e_.) + (f_.)*(x_)]*(b_.) + ( 
a_))^(m_)*(csc[(e_.) + (f_.)*(x_)]*(B_.) + (A_)), x_Symbol] :> Simp[d*(A*b 
- a*B)*Cot[e + f*x]*(a + b*Csc[e + f*x])^m*((d*Csc[e + f*x])^(n - 1)/(a*f*( 
2*m + 1))), x] - Simp[1/(a*b*(2*m + 1))   Int[(a + b*Csc[e + f*x])^(m + 1)* 
(d*Csc[e + f*x])^(n - 1)*Simp[A*(a*d*(n - 1)) - B*(b*d*(n - 1)) - d*(a*B*(m 
 - n + 1) + A*b*(m + n))*Csc[e + f*x], x], x], x] /; FreeQ[{a, b, d, e, f, 
A, B}, x] && NeQ[A*b - a*B, 0] && EqQ[a^2 - b^2, 0] && LtQ[m, -2^(-1)] && G 
tQ[n, 0]
 
Maple [B] (verified)

Leaf count of result is larger than twice the leaf count of optimal. \(465\) vs. \(2(178)=356\).

Time = 7.35 (sec) , antiderivative size = 466, normalized size of antiderivative = 2.41

method result size
default \(-\frac {\sqrt {-\left (-2 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}+1\right ) \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}}\, \left (\frac {\left (-2 A +2 B \right ) \sqrt {-2 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{4}+\sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}}\, \left (2 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2} \cos \left (\frac {d x}{2}+\frac {c}{2}\right )-\sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {2 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-1}\, \operatorname {EllipticE}\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right )\right )}{\sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2} \left (2 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-1\right )}+\frac {\left (A -B \right ) \left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ) \sqrt {2 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-1}\, \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \left (\operatorname {EllipticF}\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right )-\operatorname {EllipticE}\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right )\right )-2 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{4}+\sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}\right )}{\cos \left (\frac {d x}{2}+\frac {c}{2}\right ) \sqrt {-2 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{4}+\sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}}}+2 A \left (-\frac {\cos \left (\frac {d x}{2}+\frac {c}{2}\right ) \sqrt {-2 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{4}+\sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}}}{6 \left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-\frac {1}{2}\right )^{2}}+\frac {\sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {-2 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}+1}\, \operatorname {EllipticF}\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right )}{3 \sqrt {-2 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{4}+\sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}}}\right )\right )}{a \sin \left (\frac {d x}{2}+\frac {c}{2}\right ) \sqrt {2 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-1}\, d}\) \(466\)

Input:

int((A+B*cos(d*x+c))*sec(d*x+c)^(5/2)/(a+a*cos(d*x+c)),x,method=_RETURNVER 
BOSE)
 

Output:

-(-(-2*cos(1/2*d*x+1/2*c)^2+1)*sin(1/2*d*x+1/2*c)^2)^(1/2)/a*((-2*A+2*B)/s 
in(1/2*d*x+1/2*c)^2/(2*sin(1/2*d*x+1/2*c)^2-1)*(-2*sin(1/2*d*x+1/2*c)^4+si 
n(1/2*d*x+1/2*c)^2)^(1/2)*(2*sin(1/2*d*x+1/2*c)^2*cos(1/2*d*x+1/2*c)-(sin( 
1/2*d*x+1/2*c)^2)^(1/2)*(2*sin(1/2*d*x+1/2*c)^2-1)^(1/2)*EllipticE(cos(1/2 
*d*x+1/2*c),2^(1/2)))+(A-B)*(cos(1/2*d*x+1/2*c)*(2*sin(1/2*d*x+1/2*c)^2-1) 
^(1/2)*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(EllipticF(cos(1/2*d*x+1/2*c),2^(1/2)) 
-EllipticE(cos(1/2*d*x+1/2*c),2^(1/2)))-2*sin(1/2*d*x+1/2*c)^4+sin(1/2*d*x 
+1/2*c)^2)/cos(1/2*d*x+1/2*c)/(-2*sin(1/2*d*x+1/2*c)^4+sin(1/2*d*x+1/2*c)^ 
2)^(1/2)+2*A*(-1/6*cos(1/2*d*x+1/2*c)*(-2*sin(1/2*d*x+1/2*c)^4+sin(1/2*d*x 
+1/2*c)^2)^(1/2)/(cos(1/2*d*x+1/2*c)^2-1/2)^2+1/3*(sin(1/2*d*x+1/2*c)^2)^( 
1/2)*(-2*cos(1/2*d*x+1/2*c)^2+1)^(1/2)/(-2*sin(1/2*d*x+1/2*c)^4+sin(1/2*d* 
x+1/2*c)^2)^(1/2)*EllipticF(cos(1/2*d*x+1/2*c),2^(1/2))))/sin(1/2*d*x+1/2* 
c)/(2*cos(1/2*d*x+1/2*c)^2-1)^(1/2)/d
 

Fricas [C] (verification not implemented)

Result contains complex when optimal does not.

Time = 0.12 (sec) , antiderivative size = 308, normalized size of antiderivative = 1.60 \[ \int \frac {(A+B \cos (c+d x)) \sec ^{\frac {5}{2}}(c+d x)}{a+a \cos (c+d x)} \, dx=\frac {{\left (\sqrt {2} {\left (-5 i \, A + 3 i \, B\right )} \cos \left (d x + c\right )^{2} + \sqrt {2} {\left (-5 i \, A + 3 i \, B\right )} \cos \left (d x + c\right )\right )} {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) + i \, \sin \left (d x + c\right )\right ) + {\left (\sqrt {2} {\left (5 i \, A - 3 i \, B\right )} \cos \left (d x + c\right )^{2} + \sqrt {2} {\left (5 i \, A - 3 i \, B\right )} \cos \left (d x + c\right )\right )} {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) - i \, \sin \left (d x + c\right )\right ) - 9 \, {\left (\sqrt {2} {\left (-i \, A + i \, B\right )} \cos \left (d x + c\right )^{2} + \sqrt {2} {\left (-i \, A + i \, B\right )} \cos \left (d x + c\right )\right )} {\rm weierstrassZeta}\left (-4, 0, {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) + i \, \sin \left (d x + c\right )\right )\right ) - 9 \, {\left (\sqrt {2} {\left (i \, A - i \, B\right )} \cos \left (d x + c\right )^{2} + \sqrt {2} {\left (i \, A - i \, B\right )} \cos \left (d x + c\right )\right )} {\rm weierstrassZeta}\left (-4, 0, {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) - i \, \sin \left (d x + c\right )\right )\right ) - \frac {2 \, {\left (9 \, {\left (A - B\right )} \cos \left (d x + c\right )^{2} + 2 \, {\left (2 \, A - 3 \, B\right )} \cos \left (d x + c\right ) - 2 \, A\right )} \sin \left (d x + c\right )}{\sqrt {\cos \left (d x + c\right )}}}{6 \, {\left (a d \cos \left (d x + c\right )^{2} + a d \cos \left (d x + c\right )\right )}} \] Input:

integrate((A+B*cos(d*x+c))*sec(d*x+c)^(5/2)/(a+a*cos(d*x+c)),x, algorithm= 
"fricas")
 

Output:

1/6*((sqrt(2)*(-5*I*A + 3*I*B)*cos(d*x + c)^2 + sqrt(2)*(-5*I*A + 3*I*B)*c 
os(d*x + c))*weierstrassPInverse(-4, 0, cos(d*x + c) + I*sin(d*x + c)) + ( 
sqrt(2)*(5*I*A - 3*I*B)*cos(d*x + c)^2 + sqrt(2)*(5*I*A - 3*I*B)*cos(d*x + 
 c))*weierstrassPInverse(-4, 0, cos(d*x + c) - I*sin(d*x + c)) - 9*(sqrt(2 
)*(-I*A + I*B)*cos(d*x + c)^2 + sqrt(2)*(-I*A + I*B)*cos(d*x + c))*weierst 
rassZeta(-4, 0, weierstrassPInverse(-4, 0, cos(d*x + c) + I*sin(d*x + c))) 
 - 9*(sqrt(2)*(I*A - I*B)*cos(d*x + c)^2 + sqrt(2)*(I*A - I*B)*cos(d*x + c 
))*weierstrassZeta(-4, 0, weierstrassPInverse(-4, 0, cos(d*x + c) - I*sin( 
d*x + c))) - 2*(9*(A - B)*cos(d*x + c)^2 + 2*(2*A - 3*B)*cos(d*x + c) - 2* 
A)*sin(d*x + c)/sqrt(cos(d*x + c)))/(a*d*cos(d*x + c)^2 + a*d*cos(d*x + c) 
)
 

Sympy [F(-1)]

Timed out. \[ \int \frac {(A+B \cos (c+d x)) \sec ^{\frac {5}{2}}(c+d x)}{a+a \cos (c+d x)} \, dx=\text {Timed out} \] Input:

integrate((A+B*cos(d*x+c))*sec(d*x+c)**(5/2)/(a+a*cos(d*x+c)),x)
 

Output:

Timed out
                                                                                    
                                                                                    
 

Maxima [F]

\[ \int \frac {(A+B \cos (c+d x)) \sec ^{\frac {5}{2}}(c+d x)}{a+a \cos (c+d x)} \, dx=\int { \frac {{\left (B \cos \left (d x + c\right ) + A\right )} \sec \left (d x + c\right )^{\frac {5}{2}}}{a \cos \left (d x + c\right ) + a} \,d x } \] Input:

integrate((A+B*cos(d*x+c))*sec(d*x+c)^(5/2)/(a+a*cos(d*x+c)),x, algorithm= 
"maxima")
 

Output:

integrate((B*cos(d*x + c) + A)*sec(d*x + c)^(5/2)/(a*cos(d*x + c) + a), x)
 

Giac [F]

\[ \int \frac {(A+B \cos (c+d x)) \sec ^{\frac {5}{2}}(c+d x)}{a+a \cos (c+d x)} \, dx=\int { \frac {{\left (B \cos \left (d x + c\right ) + A\right )} \sec \left (d x + c\right )^{\frac {5}{2}}}{a \cos \left (d x + c\right ) + a} \,d x } \] Input:

integrate((A+B*cos(d*x+c))*sec(d*x+c)^(5/2)/(a+a*cos(d*x+c)),x, algorithm= 
"giac")
 

Output:

integrate((B*cos(d*x + c) + A)*sec(d*x + c)^(5/2)/(a*cos(d*x + c) + a), x)
 

Mupad [F(-1)]

Timed out. \[ \int \frac {(A+B \cos (c+d x)) \sec ^{\frac {5}{2}}(c+d x)}{a+a \cos (c+d x)} \, dx=\int \frac {\left (A+B\,\cos \left (c+d\,x\right )\right )\,{\left (\frac {1}{\cos \left (c+d\,x\right )}\right )}^{5/2}}{a+a\,\cos \left (c+d\,x\right )} \,d x \] Input:

int(((A + B*cos(c + d*x))*(1/cos(c + d*x))^(5/2))/(a + a*cos(c + d*x)),x)
 

Output:

int(((A + B*cos(c + d*x))*(1/cos(c + d*x))^(5/2))/(a + a*cos(c + d*x)), x)
 

Reduce [F]

\[ \int \frac {(A+B \cos (c+d x)) \sec ^{\frac {5}{2}}(c+d x)}{a+a \cos (c+d x)} \, dx=\frac {\left (\int \frac {\sqrt {\sec \left (d x +c \right )}\, \cos \left (d x +c \right ) \sec \left (d x +c \right )^{2}}{\cos \left (d x +c \right )+1}d x \right ) b +\left (\int \frac {\sqrt {\sec \left (d x +c \right )}\, \sec \left (d x +c \right )^{2}}{\cos \left (d x +c \right )+1}d x \right ) a}{a} \] Input:

int((A+B*cos(d*x+c))*sec(d*x+c)^(5/2)/(a+a*cos(d*x+c)),x)
 

Output:

(int((sqrt(sec(c + d*x))*cos(c + d*x)*sec(c + d*x)**2)/(cos(c + d*x) + 1), 
x)*b + int((sqrt(sec(c + d*x))*sec(c + d*x)**2)/(cos(c + d*x) + 1),x)*a)/a