\(\int \frac {(A+B \cos (c+d x)) \sqrt {\sec (c+d x)}}{(a+a \cos (c+d x))^3} \, dx\) [488]

Optimal result
Mathematica [C] (verified)
Rubi [A] (verified)
Maple [B] (verified)
Fricas [C] (verification not implemented)
Sympy [F]
Maxima [F]
Giac [F]
Mupad [F(-1)]
Reduce [F]

Optimal result

Integrand size = 33, antiderivative size = 222 \[ \int \frac {(A+B \cos (c+d x)) \sqrt {\sec (c+d x)}}{(a+a \cos (c+d x))^3} \, dx=\frac {(9 A+B) \sqrt {\cos (c+d x)} E\left (\left .\frac {1}{2} (c+d x)\right |2\right ) \sqrt {\sec (c+d x)}}{10 a^3 d}+\frac {(3 A+B) \sqrt {\cos (c+d x)} \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),2\right ) \sqrt {\sec (c+d x)}}{6 a^3 d}-\frac {(A-B) \sec ^{\frac {5}{2}}(c+d x) \sin (c+d x)}{5 d (a+a \sec (c+d x))^3}-\frac {(6 A-B) \sec ^{\frac {3}{2}}(c+d x) \sin (c+d x)}{15 a d (a+a \sec (c+d x))^2}-\frac {(9 A+B) \sqrt {\sec (c+d x)} \sin (c+d x)}{10 d \left (a^3+a^3 \sec (c+d x)\right )} \] Output:

1/10*(9*A+B)*cos(d*x+c)^(1/2)*EllipticE(sin(1/2*d*x+1/2*c),2^(1/2))*sec(d* 
x+c)^(1/2)/a^3/d+1/6*(3*A+B)*cos(d*x+c)^(1/2)*InverseJacobiAM(1/2*d*x+1/2* 
c,2^(1/2))*sec(d*x+c)^(1/2)/a^3/d-1/5*(A-B)*sec(d*x+c)^(5/2)*sin(d*x+c)/d/ 
(a+a*sec(d*x+c))^3-1/15*(6*A-B)*sec(d*x+c)^(3/2)*sin(d*x+c)/a/d/(a+a*sec(d 
*x+c))^2-1/10*(9*A+B)*sec(d*x+c)^(1/2)*sin(d*x+c)/d/(a^3+a^3*sec(d*x+c))
 

Mathematica [C] (verified)

Result contains higher order function than in optimal. Order 5 vs. order 4 in optimal.

Time = 8.61 (sec) , antiderivative size = 793, normalized size of antiderivative = 3.57 \[ \int \frac {(A+B \cos (c+d x)) \sqrt {\sec (c+d x)}}{(a+a \cos (c+d x))^3} \, dx =\text {Too large to display} \] Input:

Integrate[((A + B*Cos[c + d*x])*Sqrt[Sec[c + d*x]])/(a + a*Cos[c + d*x])^3 
,x]
 

Output:

(-3*Sqrt[2]*A*Sqrt[E^(I*(c + d*x))/(1 + E^((2*I)*(c + d*x)))]*Sqrt[1 + E^( 
(2*I)*(c + d*x))]*Cos[c/2 + (d*x)/2]^6*Csc[c/2]*(-3*Sqrt[1 + E^((2*I)*(c + 
 d*x))] + E^((2*I)*d*x)*(-1 + E^((2*I)*c))*Hypergeometric2F1[1/2, 3/4, 7/4 
, -E^((2*I)*(c + d*x))])*Sec[c/2])/(5*d*E^(I*d*x)*(a + a*Cos[c + d*x])^3) 
- (Sqrt[2]*B*Sqrt[E^(I*(c + d*x))/(1 + E^((2*I)*(c + d*x)))]*Sqrt[1 + E^(( 
2*I)*(c + d*x))]*Cos[c/2 + (d*x)/2]^6*Csc[c/2]*(-3*Sqrt[1 + E^((2*I)*(c + 
d*x))] + E^((2*I)*d*x)*(-1 + E^((2*I)*c))*Hypergeometric2F1[1/2, 3/4, 7/4, 
 -E^((2*I)*(c + d*x))])*Sec[c/2])/(15*d*E^(I*d*x)*(a + a*Cos[c + d*x])^3) 
+ (2*A*Cos[c/2 + (d*x)/2]^6*Sqrt[Cos[c + d*x]]*Csc[c/2]*EllipticF[(c + d*x 
)/2, 2]*Sec[c/2]*Sqrt[Sec[c + d*x]]*Sin[c])/(d*(a + a*Cos[c + d*x])^3) + ( 
2*B*Cos[c/2 + (d*x)/2]^6*Sqrt[Cos[c + d*x]]*Csc[c/2]*EllipticF[(c + d*x)/2 
, 2]*Sec[c/2]*Sqrt[Sec[c + d*x]]*Sin[c])/(3*d*(a + a*Cos[c + d*x])^3) + (C 
os[c/2 + (d*x)/2]^6*Sqrt[Sec[c + d*x]]*((-2*(9*A + B)*Cos[d*x]*Csc[c/2]*Se 
c[c/2])/(5*d) + (2*Sec[c/2]*Sec[c/2 + (d*x)/2]^5*(A*Sin[(d*x)/2] - B*Sin[( 
d*x)/2]))/(5*d) + (4*Sec[c/2]*Sec[c/2 + (d*x)/2]*(3*A*Sin[(d*x)/2] + B*Sin 
[(d*x)/2]))/(3*d) + (4*Sec[c/2]*Sec[c/2 + (d*x)/2]^3*(3*A*Sin[(d*x)/2] + 2 
*B*Sin[(d*x)/2]))/(15*d) + (4*(3*A + B)*Tan[c/2])/(3*d) + (4*(3*A + 2*B)*S 
ec[c/2 + (d*x)/2]^2*Tan[c/2])/(15*d) + (2*(A - B)*Sec[c/2 + (d*x)/2]^4*Tan 
[c/2])/(5*d)))/(a + a*Cos[c + d*x])^3
 

Rubi [A] (verified)

Time = 1.51 (sec) , antiderivative size = 237, normalized size of antiderivative = 1.07, number of steps used = 17, number of rules used = 17, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.515, Rules used = {3042, 3439, 3042, 4507, 27, 3042, 4507, 3042, 4507, 27, 3042, 4274, 3042, 4258, 3042, 3119, 3120}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {\sqrt {\sec (c+d x)} (A+B \cos (c+d x))}{(a \cos (c+d x)+a)^3} \, dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \frac {\sqrt {\csc \left (c+d x+\frac {\pi }{2}\right )} \left (A+B \sin \left (c+d x+\frac {\pi }{2}\right )\right )}{\left (a \sin \left (c+d x+\frac {\pi }{2}\right )+a\right )^3}dx\)

\(\Big \downarrow \) 3439

\(\displaystyle \int \frac {\sec ^{\frac {5}{2}}(c+d x) (A \sec (c+d x)+B)}{(a \sec (c+d x)+a)^3}dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \frac {\csc \left (c+d x+\frac {\pi }{2}\right )^{5/2} \left (A \csc \left (c+d x+\frac {\pi }{2}\right )+B\right )}{\left (a \csc \left (c+d x+\frac {\pi }{2}\right )+a\right )^3}dx\)

\(\Big \downarrow \) 4507

\(\displaystyle \frac {\int -\frac {\sec ^{\frac {3}{2}}(c+d x) (3 a (A-B)-a (9 A+B) \sec (c+d x))}{2 (\sec (c+d x) a+a)^2}dx}{5 a^2}-\frac {(A-B) \sin (c+d x) \sec ^{\frac {5}{2}}(c+d x)}{5 d (a \sec (c+d x)+a)^3}\)

\(\Big \downarrow \) 27

\(\displaystyle -\frac {\int \frac {\sec ^{\frac {3}{2}}(c+d x) (3 a (A-B)-a (9 A+B) \sec (c+d x))}{(\sec (c+d x) a+a)^2}dx}{10 a^2}-\frac {(A-B) \sin (c+d x) \sec ^{\frac {5}{2}}(c+d x)}{5 d (a \sec (c+d x)+a)^3}\)

\(\Big \downarrow \) 3042

\(\displaystyle -\frac {\int \frac {\csc \left (c+d x+\frac {\pi }{2}\right )^{3/2} \left (3 a (A-B)-a (9 A+B) \csc \left (c+d x+\frac {\pi }{2}\right )\right )}{\left (\csc \left (c+d x+\frac {\pi }{2}\right ) a+a\right )^2}dx}{10 a^2}-\frac {(A-B) \sin (c+d x) \sec ^{\frac {5}{2}}(c+d x)}{5 d (a \sec (c+d x)+a)^3}\)

\(\Big \downarrow \) 4507

\(\displaystyle -\frac {\frac {\int \frac {\sqrt {\sec (c+d x)} \left (a^2 (6 A-B)-a^2 (21 A+4 B) \sec (c+d x)\right )}{\sec (c+d x) a+a}dx}{3 a^2}+\frac {2 a (6 A-B) \sin (c+d x) \sec ^{\frac {3}{2}}(c+d x)}{3 d (a \sec (c+d x)+a)^2}}{10 a^2}-\frac {(A-B) \sin (c+d x) \sec ^{\frac {5}{2}}(c+d x)}{5 d (a \sec (c+d x)+a)^3}\)

\(\Big \downarrow \) 3042

\(\displaystyle -\frac {\frac {\int \frac {\sqrt {\csc \left (c+d x+\frac {\pi }{2}\right )} \left (a^2 (6 A-B)-a^2 (21 A+4 B) \csc \left (c+d x+\frac {\pi }{2}\right )\right )}{\csc \left (c+d x+\frac {\pi }{2}\right ) a+a}dx}{3 a^2}+\frac {2 a (6 A-B) \sin (c+d x) \sec ^{\frac {3}{2}}(c+d x)}{3 d (a \sec (c+d x)+a)^2}}{10 a^2}-\frac {(A-B) \sin (c+d x) \sec ^{\frac {5}{2}}(c+d x)}{5 d (a \sec (c+d x)+a)^3}\)

\(\Big \downarrow \) 4507

\(\displaystyle -\frac {\frac {\frac {\int -\frac {3 (9 A+B) a^3+5 (3 A+B) \sec (c+d x) a^3}{2 \sqrt {\sec (c+d x)}}dx}{a^2}+\frac {3 a^2 (9 A+B) \sin (c+d x) \sqrt {\sec (c+d x)}}{d (a \sec (c+d x)+a)}}{3 a^2}+\frac {2 a (6 A-B) \sin (c+d x) \sec ^{\frac {3}{2}}(c+d x)}{3 d (a \sec (c+d x)+a)^2}}{10 a^2}-\frac {(A-B) \sin (c+d x) \sec ^{\frac {5}{2}}(c+d x)}{5 d (a \sec (c+d x)+a)^3}\)

\(\Big \downarrow \) 27

\(\displaystyle -\frac {\frac {\frac {3 a^2 (9 A+B) \sin (c+d x) \sqrt {\sec (c+d x)}}{d (a \sec (c+d x)+a)}-\frac {\int \frac {3 (9 A+B) a^3+5 (3 A+B) \sec (c+d x) a^3}{\sqrt {\sec (c+d x)}}dx}{2 a^2}}{3 a^2}+\frac {2 a (6 A-B) \sin (c+d x) \sec ^{\frac {3}{2}}(c+d x)}{3 d (a \sec (c+d x)+a)^2}}{10 a^2}-\frac {(A-B) \sin (c+d x) \sec ^{\frac {5}{2}}(c+d x)}{5 d (a \sec (c+d x)+a)^3}\)

\(\Big \downarrow \) 3042

\(\displaystyle -\frac {\frac {\frac {3 a^2 (9 A+B) \sin (c+d x) \sqrt {\sec (c+d x)}}{d (a \sec (c+d x)+a)}-\frac {\int \frac {3 (9 A+B) a^3+5 (3 A+B) \csc \left (c+d x+\frac {\pi }{2}\right ) a^3}{\sqrt {\csc \left (c+d x+\frac {\pi }{2}\right )}}dx}{2 a^2}}{3 a^2}+\frac {2 a (6 A-B) \sin (c+d x) \sec ^{\frac {3}{2}}(c+d x)}{3 d (a \sec (c+d x)+a)^2}}{10 a^2}-\frac {(A-B) \sin (c+d x) \sec ^{\frac {5}{2}}(c+d x)}{5 d (a \sec (c+d x)+a)^3}\)

\(\Big \downarrow \) 4274

\(\displaystyle -\frac {\frac {\frac {3 a^2 (9 A+B) \sin (c+d x) \sqrt {\sec (c+d x)}}{d (a \sec (c+d x)+a)}-\frac {3 a^3 (9 A+B) \int \frac {1}{\sqrt {\sec (c+d x)}}dx+5 a^3 (3 A+B) \int \sqrt {\sec (c+d x)}dx}{2 a^2}}{3 a^2}+\frac {2 a (6 A-B) \sin (c+d x) \sec ^{\frac {3}{2}}(c+d x)}{3 d (a \sec (c+d x)+a)^2}}{10 a^2}-\frac {(A-B) \sin (c+d x) \sec ^{\frac {5}{2}}(c+d x)}{5 d (a \sec (c+d x)+a)^3}\)

\(\Big \downarrow \) 3042

\(\displaystyle -\frac {\frac {\frac {3 a^2 (9 A+B) \sin (c+d x) \sqrt {\sec (c+d x)}}{d (a \sec (c+d x)+a)}-\frac {3 a^3 (9 A+B) \int \frac {1}{\sqrt {\csc \left (c+d x+\frac {\pi }{2}\right )}}dx+5 a^3 (3 A+B) \int \sqrt {\csc \left (c+d x+\frac {\pi }{2}\right )}dx}{2 a^2}}{3 a^2}+\frac {2 a (6 A-B) \sin (c+d x) \sec ^{\frac {3}{2}}(c+d x)}{3 d (a \sec (c+d x)+a)^2}}{10 a^2}-\frac {(A-B) \sin (c+d x) \sec ^{\frac {5}{2}}(c+d x)}{5 d (a \sec (c+d x)+a)^3}\)

\(\Big \downarrow \) 4258

\(\displaystyle -\frac {\frac {\frac {3 a^2 (9 A+B) \sin (c+d x) \sqrt {\sec (c+d x)}}{d (a \sec (c+d x)+a)}-\frac {5 a^3 (3 A+B) \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \int \frac {1}{\sqrt {\cos (c+d x)}}dx+3 a^3 (9 A+B) \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \int \sqrt {\cos (c+d x)}dx}{2 a^2}}{3 a^2}+\frac {2 a (6 A-B) \sin (c+d x) \sec ^{\frac {3}{2}}(c+d x)}{3 d (a \sec (c+d x)+a)^2}}{10 a^2}-\frac {(A-B) \sin (c+d x) \sec ^{\frac {5}{2}}(c+d x)}{5 d (a \sec (c+d x)+a)^3}\)

\(\Big \downarrow \) 3042

\(\displaystyle -\frac {\frac {\frac {3 a^2 (9 A+B) \sin (c+d x) \sqrt {\sec (c+d x)}}{d (a \sec (c+d x)+a)}-\frac {5 a^3 (3 A+B) \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \int \frac {1}{\sqrt {\sin \left (c+d x+\frac {\pi }{2}\right )}}dx+3 a^3 (9 A+B) \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \int \sqrt {\sin \left (c+d x+\frac {\pi }{2}\right )}dx}{2 a^2}}{3 a^2}+\frac {2 a (6 A-B) \sin (c+d x) \sec ^{\frac {3}{2}}(c+d x)}{3 d (a \sec (c+d x)+a)^2}}{10 a^2}-\frac {(A-B) \sin (c+d x) \sec ^{\frac {5}{2}}(c+d x)}{5 d (a \sec (c+d x)+a)^3}\)

\(\Big \downarrow \) 3119

\(\displaystyle -\frac {\frac {\frac {3 a^2 (9 A+B) \sin (c+d x) \sqrt {\sec (c+d x)}}{d (a \sec (c+d x)+a)}-\frac {5 a^3 (3 A+B) \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \int \frac {1}{\sqrt {\sin \left (c+d x+\frac {\pi }{2}\right )}}dx+\frac {6 a^3 (9 A+B) \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{d}}{2 a^2}}{3 a^2}+\frac {2 a (6 A-B) \sin (c+d x) \sec ^{\frac {3}{2}}(c+d x)}{3 d (a \sec (c+d x)+a)^2}}{10 a^2}-\frac {(A-B) \sin (c+d x) \sec ^{\frac {5}{2}}(c+d x)}{5 d (a \sec (c+d x)+a)^3}\)

\(\Big \downarrow \) 3120

\(\displaystyle -\frac {\frac {\frac {3 a^2 (9 A+B) \sin (c+d x) \sqrt {\sec (c+d x)}}{d (a \sec (c+d x)+a)}-\frac {\frac {10 a^3 (3 A+B) \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),2\right )}{d}+\frac {6 a^3 (9 A+B) \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{d}}{2 a^2}}{3 a^2}+\frac {2 a (6 A-B) \sin (c+d x) \sec ^{\frac {3}{2}}(c+d x)}{3 d (a \sec (c+d x)+a)^2}}{10 a^2}-\frac {(A-B) \sin (c+d x) \sec ^{\frac {5}{2}}(c+d x)}{5 d (a \sec (c+d x)+a)^3}\)

Input:

Int[((A + B*Cos[c + d*x])*Sqrt[Sec[c + d*x]])/(a + a*Cos[c + d*x])^3,x]
 

Output:

-1/5*((A - B)*Sec[c + d*x]^(5/2)*Sin[c + d*x])/(d*(a + a*Sec[c + d*x])^3) 
- ((2*a*(6*A - B)*Sec[c + d*x]^(3/2)*Sin[c + d*x])/(3*d*(a + a*Sec[c + d*x 
])^2) + (-1/2*((6*a^3*(9*A + B)*Sqrt[Cos[c + d*x]]*EllipticE[(c + d*x)/2, 
2]*Sqrt[Sec[c + d*x]])/d + (10*a^3*(3*A + B)*Sqrt[Cos[c + d*x]]*EllipticF[ 
(c + d*x)/2, 2]*Sqrt[Sec[c + d*x]])/d)/a^2 + (3*a^2*(9*A + B)*Sqrt[Sec[c + 
 d*x]]*Sin[c + d*x])/(d*(a + a*Sec[c + d*x])))/(3*a^2))/(10*a^2)
 

Defintions of rubi rules used

rule 27
Int[(a_)*(Fx_), x_Symbol] :> Simp[a   Int[Fx, x], x] /; FreeQ[a, x] &&  !Ma 
tchQ[Fx, (b_)*(Gx_) /; FreeQ[b, x]]
 

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 3119
Int[Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2/d)*EllipticE[(1/2)* 
(c - Pi/2 + d*x), 2], x] /; FreeQ[{c, d}, x]
 

rule 3120
Int[1/Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2/d)*EllipticF[(1/2 
)*(c - Pi/2 + d*x), 2], x] /; FreeQ[{c, d}, x]
 

rule 3439
Int[(csc[(e_.) + (f_.)*(x_)]*(g_.))^(p_.)*((a_.) + (b_.)*sin[(e_.) + (f_.)* 
(x_)])^(m_.)*((c_) + (d_.)*sin[(e_.) + (f_.)*(x_)])^(n_.), x_Symbol] :> Sim 
p[g^(m + n)   Int[(g*Csc[e + f*x])^(p - m - n)*(b + a*Csc[e + f*x])^m*(d + 
c*Csc[e + f*x])^n, x], x] /; FreeQ[{a, b, c, d, e, f, g, p}, x] && NeQ[b*c 
- a*d, 0] &&  !IntegerQ[p] && IntegerQ[m] && IntegerQ[n]
 

rule 4258
Int[(csc[(c_.) + (d_.)*(x_)]*(b_.))^(n_), x_Symbol] :> Simp[(b*Csc[c + d*x] 
)^n*Sin[c + d*x]^n   Int[1/Sin[c + d*x]^n, x], x] /; FreeQ[{b, c, d}, x] && 
 EqQ[n^2, 1/4]
 

rule 4274
Int[(csc[(e_.) + (f_.)*(x_)]*(d_.))^(n_.)*(csc[(e_.) + (f_.)*(x_)]*(b_.) + 
(a_)), x_Symbol] :> Simp[a   Int[(d*Csc[e + f*x])^n, x], x] + Simp[b/d   In 
t[(d*Csc[e + f*x])^(n + 1), x], x] /; FreeQ[{a, b, d, e, f, n}, x]
 

rule 4507
Int[(csc[(e_.) + (f_.)*(x_)]*(d_.))^(n_)*(csc[(e_.) + (f_.)*(x_)]*(b_.) + ( 
a_))^(m_)*(csc[(e_.) + (f_.)*(x_)]*(B_.) + (A_)), x_Symbol] :> Simp[d*(A*b 
- a*B)*Cot[e + f*x]*(a + b*Csc[e + f*x])^m*((d*Csc[e + f*x])^(n - 1)/(a*f*( 
2*m + 1))), x] - Simp[1/(a*b*(2*m + 1))   Int[(a + b*Csc[e + f*x])^(m + 1)* 
(d*Csc[e + f*x])^(n - 1)*Simp[A*(a*d*(n - 1)) - B*(b*d*(n - 1)) - d*(a*B*(m 
 - n + 1) + A*b*(m + n))*Csc[e + f*x], x], x], x] /; FreeQ[{a, b, d, e, f, 
A, B}, x] && NeQ[A*b - a*B, 0] && EqQ[a^2 - b^2, 0] && LtQ[m, -2^(-1)] && G 
tQ[n, 0]
 
Maple [B] (verified)

Leaf count of result is larger than twice the leaf count of optimal. \(450\) vs. \(2(201)=402\).

Time = 5.88 (sec) , antiderivative size = 451, normalized size of antiderivative = 2.03

method result size
default \(\frac {\sqrt {\left (2 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-1\right ) \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}}\, \left (108 A \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{8}-30 A \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {-2 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}+1}\, \operatorname {EllipticF}\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right ) \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{5}+54 A \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{5} \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {-2 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}+1}\, \operatorname {EllipticE}\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right )+12 B \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{8}-10 B \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {-2 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}+1}\, \operatorname {EllipticF}\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right ) \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{5}+6 B \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{5} \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {-2 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}+1}\, \operatorname {EllipticE}\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right )-138 A \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{6}-22 B \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{6}+24 A \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{4}+6 B \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{4}+3 A \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}+7 B \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}+3 A -3 B \right )}{60 a^{3} \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{5} \sqrt {-2 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{4}+\sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}}\, \sin \left (\frac {d x}{2}+\frac {c}{2}\right ) \sqrt {2 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-1}\, d}\) \(451\)

Input:

int((A+B*cos(d*x+c))*sec(d*x+c)^(1/2)/(a+a*cos(d*x+c))^3,x,method=_RETURNV 
ERBOSE)
 

Output:

1/60*((2*cos(1/2*d*x+1/2*c)^2-1)*sin(1/2*d*x+1/2*c)^2)^(1/2)*(108*A*cos(1/ 
2*d*x+1/2*c)^8-30*A*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(-2*cos(1/2*d*x+1/2*c)^2+ 
1)^(1/2)*EllipticF(cos(1/2*d*x+1/2*c),2^(1/2))*cos(1/2*d*x+1/2*c)^5+54*A*c 
os(1/2*d*x+1/2*c)^5*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(-2*cos(1/2*d*x+1/2*c)^2+ 
1)^(1/2)*EllipticE(cos(1/2*d*x+1/2*c),2^(1/2))+12*B*cos(1/2*d*x+1/2*c)^8-1 
0*B*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(-2*cos(1/2*d*x+1/2*c)^2+1)^(1/2)*Ellipti 
cF(cos(1/2*d*x+1/2*c),2^(1/2))*cos(1/2*d*x+1/2*c)^5+6*B*cos(1/2*d*x+1/2*c) 
^5*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(-2*cos(1/2*d*x+1/2*c)^2+1)^(1/2)*Elliptic 
E(cos(1/2*d*x+1/2*c),2^(1/2))-138*A*cos(1/2*d*x+1/2*c)^6-22*B*cos(1/2*d*x+ 
1/2*c)^6+24*A*cos(1/2*d*x+1/2*c)^4+6*B*cos(1/2*d*x+1/2*c)^4+3*A*cos(1/2*d* 
x+1/2*c)^2+7*B*cos(1/2*d*x+1/2*c)^2+3*A-3*B)/a^3/cos(1/2*d*x+1/2*c)^5/(-2* 
sin(1/2*d*x+1/2*c)^4+sin(1/2*d*x+1/2*c)^2)^(1/2)/sin(1/2*d*x+1/2*c)/(2*cos 
(1/2*d*x+1/2*c)^2-1)^(1/2)/d
 

Fricas [C] (verification not implemented)

Result contains complex when optimal does not.

Time = 0.11 (sec) , antiderivative size = 476, normalized size of antiderivative = 2.14 \[ \int \frac {(A+B \cos (c+d x)) \sqrt {\sec (c+d x)}}{(a+a \cos (c+d x))^3} \, dx =\text {Too large to display} \] Input:

integrate((A+B*cos(d*x+c))*sec(d*x+c)^(1/2)/(a+a*cos(d*x+c))^3,x, algorith 
m="fricas")
 

Output:

-1/60*(5*(sqrt(2)*(3*I*A + I*B)*cos(d*x + c)^3 + 3*sqrt(2)*(3*I*A + I*B)*c 
os(d*x + c)^2 + 3*sqrt(2)*(3*I*A + I*B)*cos(d*x + c) + sqrt(2)*(3*I*A + I* 
B))*weierstrassPInverse(-4, 0, cos(d*x + c) + I*sin(d*x + c)) + 5*(sqrt(2) 
*(-3*I*A - I*B)*cos(d*x + c)^3 + 3*sqrt(2)*(-3*I*A - I*B)*cos(d*x + c)^2 + 
 3*sqrt(2)*(-3*I*A - I*B)*cos(d*x + c) + sqrt(2)*(-3*I*A - I*B))*weierstra 
ssPInverse(-4, 0, cos(d*x + c) - I*sin(d*x + c)) + 3*(sqrt(2)*(-9*I*A - I* 
B)*cos(d*x + c)^3 + 3*sqrt(2)*(-9*I*A - I*B)*cos(d*x + c)^2 + 3*sqrt(2)*(- 
9*I*A - I*B)*cos(d*x + c) + sqrt(2)*(-9*I*A - I*B))*weierstrassZeta(-4, 0, 
 weierstrassPInverse(-4, 0, cos(d*x + c) + I*sin(d*x + c))) + 3*(sqrt(2)*( 
9*I*A + I*B)*cos(d*x + c)^3 + 3*sqrt(2)*(9*I*A + I*B)*cos(d*x + c)^2 + 3*s 
qrt(2)*(9*I*A + I*B)*cos(d*x + c) + sqrt(2)*(9*I*A + I*B))*weierstrassZeta 
(-4, 0, weierstrassPInverse(-4, 0, cos(d*x + c) - I*sin(d*x + c))) + 2*(3* 
(9*A + B)*cos(d*x + c)^3 + 2*(33*A + 2*B)*cos(d*x + c)^2 + 5*(9*A - B)*cos 
(d*x + c))*sin(d*x + c)/sqrt(cos(d*x + c)))/(a^3*d*cos(d*x + c)^3 + 3*a^3* 
d*cos(d*x + c)^2 + 3*a^3*d*cos(d*x + c) + a^3*d)
 

Sympy [F]

\[ \int \frac {(A+B \cos (c+d x)) \sqrt {\sec (c+d x)}}{(a+a \cos (c+d x))^3} \, dx=\frac {\int \frac {A \sqrt {\sec {\left (c + d x \right )}}}{\cos ^{3}{\left (c + d x \right )} + 3 \cos ^{2}{\left (c + d x \right )} + 3 \cos {\left (c + d x \right )} + 1}\, dx + \int \frac {B \cos {\left (c + d x \right )} \sqrt {\sec {\left (c + d x \right )}}}{\cos ^{3}{\left (c + d x \right )} + 3 \cos ^{2}{\left (c + d x \right )} + 3 \cos {\left (c + d x \right )} + 1}\, dx}{a^{3}} \] Input:

integrate((A+B*cos(d*x+c))*sec(d*x+c)**(1/2)/(a+a*cos(d*x+c))**3,x)
 

Output:

(Integral(A*sqrt(sec(c + d*x))/(cos(c + d*x)**3 + 3*cos(c + d*x)**2 + 3*co 
s(c + d*x) + 1), x) + Integral(B*cos(c + d*x)*sqrt(sec(c + d*x))/(cos(c + 
d*x)**3 + 3*cos(c + d*x)**2 + 3*cos(c + d*x) + 1), x))/a**3
 

Maxima [F]

\[ \int \frac {(A+B \cos (c+d x)) \sqrt {\sec (c+d x)}}{(a+a \cos (c+d x))^3} \, dx=\int { \frac {{\left (B \cos \left (d x + c\right ) + A\right )} \sqrt {\sec \left (d x + c\right )}}{{\left (a \cos \left (d x + c\right ) + a\right )}^{3}} \,d x } \] Input:

integrate((A+B*cos(d*x+c))*sec(d*x+c)^(1/2)/(a+a*cos(d*x+c))^3,x, algorith 
m="maxima")
 

Output:

integrate((B*cos(d*x + c) + A)*sqrt(sec(d*x + c))/(a*cos(d*x + c) + a)^3, 
x)
 

Giac [F]

\[ \int \frac {(A+B \cos (c+d x)) \sqrt {\sec (c+d x)}}{(a+a \cos (c+d x))^3} \, dx=\int { \frac {{\left (B \cos \left (d x + c\right ) + A\right )} \sqrt {\sec \left (d x + c\right )}}{{\left (a \cos \left (d x + c\right ) + a\right )}^{3}} \,d x } \] Input:

integrate((A+B*cos(d*x+c))*sec(d*x+c)^(1/2)/(a+a*cos(d*x+c))^3,x, algorith 
m="giac")
 

Output:

integrate((B*cos(d*x + c) + A)*sqrt(sec(d*x + c))/(a*cos(d*x + c) + a)^3, 
x)
 

Mupad [F(-1)]

Timed out. \[ \int \frac {(A+B \cos (c+d x)) \sqrt {\sec (c+d x)}}{(a+a \cos (c+d x))^3} \, dx=\int \frac {\left (A+B\,\cos \left (c+d\,x\right )\right )\,\sqrt {\frac {1}{\cos \left (c+d\,x\right )}}}{{\left (a+a\,\cos \left (c+d\,x\right )\right )}^3} \,d x \] Input:

int(((A + B*cos(c + d*x))*(1/cos(c + d*x))^(1/2))/(a + a*cos(c + d*x))^3,x 
)
 

Output:

int(((A + B*cos(c + d*x))*(1/cos(c + d*x))^(1/2))/(a + a*cos(c + d*x))^3, 
x)
 

Reduce [F]

\[ \int \frac {(A+B \cos (c+d x)) \sqrt {\sec (c+d x)}}{(a+a \cos (c+d x))^3} \, dx=\frac {\left (\int \frac {\sqrt {\sec \left (d x +c \right )}}{\cos \left (d x +c \right )^{3}+3 \cos \left (d x +c \right )^{2}+3 \cos \left (d x +c \right )+1}d x \right ) a +\left (\int \frac {\sqrt {\sec \left (d x +c \right )}\, \cos \left (d x +c \right )}{\cos \left (d x +c \right )^{3}+3 \cos \left (d x +c \right )^{2}+3 \cos \left (d x +c \right )+1}d x \right ) b}{a^{3}} \] Input:

int((A+B*cos(d*x+c))*sec(d*x+c)^(1/2)/(a+a*cos(d*x+c))^3,x)
 

Output:

(int(sqrt(sec(c + d*x))/(cos(c + d*x)**3 + 3*cos(c + d*x)**2 + 3*cos(c + d 
*x) + 1),x)*a + int((sqrt(sec(c + d*x))*cos(c + d*x))/(cos(c + d*x)**3 + 3 
*cos(c + d*x)**2 + 3*cos(c + d*x) + 1),x)*b)/a**3