\(\int \sqrt {a+a \cos (c+d x)} (A+B \cos (c+d x)) \sec ^{\frac {9}{2}}(c+d x) \, dx\) [494]

Optimal result
Mathematica [A] (verified)
Rubi [A] (verified)
Maple [B] (verified)
Fricas [A] (verification not implemented)
Sympy [F(-1)]
Maxima [B] (verification not implemented)
Giac [F(-1)]
Mupad [B] (verification not implemented)
Reduce [F]

Optimal result

Integrand size = 35, antiderivative size = 175 \[ \int \sqrt {a+a \cos (c+d x)} (A+B \cos (c+d x)) \sec ^{\frac {9}{2}}(c+d x) \, dx=\frac {16 a (6 A+7 B) \sqrt {\sec (c+d x)} \sin (c+d x)}{105 d \sqrt {a+a \cos (c+d x)}}+\frac {8 a (6 A+7 B) \sec ^{\frac {3}{2}}(c+d x) \sin (c+d x)}{105 d \sqrt {a+a \cos (c+d x)}}+\frac {2 a (6 A+7 B) \sec ^{\frac {5}{2}}(c+d x) \sin (c+d x)}{35 d \sqrt {a+a \cos (c+d x)}}+\frac {2 a A \sec ^{\frac {7}{2}}(c+d x) \sin (c+d x)}{7 d \sqrt {a+a \cos (c+d x)}} \] Output:

16/105*a*(6*A+7*B)*sec(d*x+c)^(1/2)*sin(d*x+c)/d/(a+a*cos(d*x+c))^(1/2)+8/ 
105*a*(6*A+7*B)*sec(d*x+c)^(3/2)*sin(d*x+c)/d/(a+a*cos(d*x+c))^(1/2)+2/35* 
a*(6*A+7*B)*sec(d*x+c)^(5/2)*sin(d*x+c)/d/(a+a*cos(d*x+c))^(1/2)+2/7*a*A*s 
ec(d*x+c)^(7/2)*sin(d*x+c)/d/(a+a*cos(d*x+c))^(1/2)
 

Mathematica [A] (verified)

Time = 0.50 (sec) , antiderivative size = 102, normalized size of antiderivative = 0.58 \[ \int \sqrt {a+a \cos (c+d x)} (A+B \cos (c+d x)) \sec ^{\frac {9}{2}}(c+d x) \, dx=\frac {2 \sqrt {a (1+\cos (c+d x))} (27 A+14 B+9 (6 A+7 B) \cos (c+d x)+2 (6 A+7 B) \cos (2 (c+d x))+12 A \cos (3 (c+d x))+14 B \cos (3 (c+d x))) \sec ^{\frac {7}{2}}(c+d x) \tan \left (\frac {1}{2} (c+d x)\right )}{105 d} \] Input:

Integrate[Sqrt[a + a*Cos[c + d*x]]*(A + B*Cos[c + d*x])*Sec[c + d*x]^(9/2) 
,x]
 

Output:

(2*Sqrt[a*(1 + Cos[c + d*x])]*(27*A + 14*B + 9*(6*A + 7*B)*Cos[c + d*x] + 
2*(6*A + 7*B)*Cos[2*(c + d*x)] + 12*A*Cos[3*(c + d*x)] + 14*B*Cos[3*(c + d 
*x)])*Sec[c + d*x]^(7/2)*Tan[(c + d*x)/2])/(105*d)
 

Rubi [A] (verified)

Time = 0.95 (sec) , antiderivative size = 192, normalized size of antiderivative = 1.10, number of steps used = 10, number of rules used = 10, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.286, Rules used = {3042, 3440, 3042, 3459, 3042, 3251, 3042, 3251, 3042, 3250}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \sec ^{\frac {9}{2}}(c+d x) \sqrt {a \cos (c+d x)+a} (A+B \cos (c+d x)) \, dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \csc \left (c+d x+\frac {\pi }{2}\right )^{9/2} \sqrt {a \sin \left (c+d x+\frac {\pi }{2}\right )+a} \left (A+B \sin \left (c+d x+\frac {\pi }{2}\right )\right )dx\)

\(\Big \downarrow \) 3440

\(\displaystyle \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \int \frac {\sqrt {\cos (c+d x) a+a} (A+B \cos (c+d x))}{\cos ^{\frac {9}{2}}(c+d x)}dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \int \frac {\sqrt {\sin \left (c+d x+\frac {\pi }{2}\right ) a+a} \left (A+B \sin \left (c+d x+\frac {\pi }{2}\right )\right )}{\sin \left (c+d x+\frac {\pi }{2}\right )^{9/2}}dx\)

\(\Big \downarrow \) 3459

\(\displaystyle \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \left (\frac {1}{7} (6 A+7 B) \int \frac {\sqrt {\cos (c+d x) a+a}}{\cos ^{\frac {7}{2}}(c+d x)}dx+\frac {2 a A \sin (c+d x)}{7 d \cos ^{\frac {7}{2}}(c+d x) \sqrt {a \cos (c+d x)+a}}\right )\)

\(\Big \downarrow \) 3042

\(\displaystyle \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \left (\frac {1}{7} (6 A+7 B) \int \frac {\sqrt {\sin \left (c+d x+\frac {\pi }{2}\right ) a+a}}{\sin \left (c+d x+\frac {\pi }{2}\right )^{7/2}}dx+\frac {2 a A \sin (c+d x)}{7 d \cos ^{\frac {7}{2}}(c+d x) \sqrt {a \cos (c+d x)+a}}\right )\)

\(\Big \downarrow \) 3251

\(\displaystyle \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \left (\frac {1}{7} (6 A+7 B) \left (\frac {4}{5} \int \frac {\sqrt {\cos (c+d x) a+a}}{\cos ^{\frac {5}{2}}(c+d x)}dx+\frac {2 a \sin (c+d x)}{5 d \cos ^{\frac {5}{2}}(c+d x) \sqrt {a \cos (c+d x)+a}}\right )+\frac {2 a A \sin (c+d x)}{7 d \cos ^{\frac {7}{2}}(c+d x) \sqrt {a \cos (c+d x)+a}}\right )\)

\(\Big \downarrow \) 3042

\(\displaystyle \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \left (\frac {1}{7} (6 A+7 B) \left (\frac {4}{5} \int \frac {\sqrt {\sin \left (c+d x+\frac {\pi }{2}\right ) a+a}}{\sin \left (c+d x+\frac {\pi }{2}\right )^{5/2}}dx+\frac {2 a \sin (c+d x)}{5 d \cos ^{\frac {5}{2}}(c+d x) \sqrt {a \cos (c+d x)+a}}\right )+\frac {2 a A \sin (c+d x)}{7 d \cos ^{\frac {7}{2}}(c+d x) \sqrt {a \cos (c+d x)+a}}\right )\)

\(\Big \downarrow \) 3251

\(\displaystyle \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \left (\frac {1}{7} (6 A+7 B) \left (\frac {4}{5} \left (\frac {2}{3} \int \frac {\sqrt {\cos (c+d x) a+a}}{\cos ^{\frac {3}{2}}(c+d x)}dx+\frac {2 a \sin (c+d x)}{3 d \cos ^{\frac {3}{2}}(c+d x) \sqrt {a \cos (c+d x)+a}}\right )+\frac {2 a \sin (c+d x)}{5 d \cos ^{\frac {5}{2}}(c+d x) \sqrt {a \cos (c+d x)+a}}\right )+\frac {2 a A \sin (c+d x)}{7 d \cos ^{\frac {7}{2}}(c+d x) \sqrt {a \cos (c+d x)+a}}\right )\)

\(\Big \downarrow \) 3042

\(\displaystyle \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \left (\frac {1}{7} (6 A+7 B) \left (\frac {4}{5} \left (\frac {2}{3} \int \frac {\sqrt {\sin \left (c+d x+\frac {\pi }{2}\right ) a+a}}{\sin \left (c+d x+\frac {\pi }{2}\right )^{3/2}}dx+\frac {2 a \sin (c+d x)}{3 d \cos ^{\frac {3}{2}}(c+d x) \sqrt {a \cos (c+d x)+a}}\right )+\frac {2 a \sin (c+d x)}{5 d \cos ^{\frac {5}{2}}(c+d x) \sqrt {a \cos (c+d x)+a}}\right )+\frac {2 a A \sin (c+d x)}{7 d \cos ^{\frac {7}{2}}(c+d x) \sqrt {a \cos (c+d x)+a}}\right )\)

\(\Big \downarrow \) 3250

\(\displaystyle \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \left (\frac {1}{7} (6 A+7 B) \left (\frac {2 a \sin (c+d x)}{5 d \cos ^{\frac {5}{2}}(c+d x) \sqrt {a \cos (c+d x)+a}}+\frac {4}{5} \left (\frac {2 a \sin (c+d x)}{3 d \cos ^{\frac {3}{2}}(c+d x) \sqrt {a \cos (c+d x)+a}}+\frac {4 a \sin (c+d x)}{3 d \sqrt {\cos (c+d x)} \sqrt {a \cos (c+d x)+a}}\right )\right )+\frac {2 a A \sin (c+d x)}{7 d \cos ^{\frac {7}{2}}(c+d x) \sqrt {a \cos (c+d x)+a}}\right )\)

Input:

Int[Sqrt[a + a*Cos[c + d*x]]*(A + B*Cos[c + d*x])*Sec[c + d*x]^(9/2),x]
 

Output:

Sqrt[Cos[c + d*x]]*Sqrt[Sec[c + d*x]]*((2*a*A*Sin[c + d*x])/(7*d*Cos[c + d 
*x]^(7/2)*Sqrt[a + a*Cos[c + d*x]]) + ((6*A + 7*B)*((2*a*Sin[c + d*x])/(5* 
d*Cos[c + d*x]^(5/2)*Sqrt[a + a*Cos[c + d*x]]) + (4*((2*a*Sin[c + d*x])/(3 
*d*Cos[c + d*x]^(3/2)*Sqrt[a + a*Cos[c + d*x]]) + (4*a*Sin[c + d*x])/(3*d* 
Sqrt[Cos[c + d*x]]*Sqrt[a + a*Cos[c + d*x]])))/5))/7)
 

Defintions of rubi rules used

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 3250
Int[Sqrt[(a_) + (b_.)*sin[(e_.) + (f_.)*(x_)]]/((c_.) + (d_.)*sin[(e_.) + ( 
f_.)*(x_)])^(3/2), x_Symbol] :> Simp[-2*b^2*(Cos[e + f*x]/(f*(b*c + a*d)*Sq 
rt[a + b*Sin[e + f*x]]*Sqrt[c + d*Sin[e + f*x]])), x] /; FreeQ[{a, b, c, d, 
 e, f}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0]
 

rule 3251
Int[Sqrt[(a_) + (b_.)*sin[(e_.) + (f_.)*(x_)]]*((c_.) + (d_.)*sin[(e_.) + ( 
f_.)*(x_)])^(n_), x_Symbol] :> Simp[(b*c - a*d)*Cos[e + f*x]*((c + d*Sin[e 
+ f*x])^(n + 1)/(f*(n + 1)*(c^2 - d^2)*Sqrt[a + b*Sin[e + f*x]])), x] + Sim 
p[(2*n + 3)*((b*c - a*d)/(2*b*(n + 1)*(c^2 - d^2)))   Int[Sqrt[a + b*Sin[e 
+ f*x]]*(c + d*Sin[e + f*x])^(n + 1), x], x] /; FreeQ[{a, b, c, d, e, f}, x 
] && NeQ[b*c - a*d, 0] && EqQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0] && LtQ[n, 
-1] && NeQ[2*n + 3, 0] && IntegerQ[2*n]
 

rule 3440
Int[(csc[(e_.) + (f_.)*(x_)]*(g_.))^(p_.)*((a_.) + (b_.)*sin[(e_.) + (f_.)* 
(x_)])^(m_.)*((c_) + (d_.)*sin[(e_.) + (f_.)*(x_)])^(n_.), x_Symbol] :> Sim 
p[(g*Csc[e + f*x])^p*(g*Sin[e + f*x])^p   Int[(a + b*Sin[e + f*x])^m*((c + 
d*Sin[e + f*x])^n/(g*Sin[e + f*x])^p), x], x] /; FreeQ[{a, b, c, d, e, f, g 
, m, n, p}, x] && NeQ[b*c - a*d, 0] &&  !IntegerQ[p] &&  !(IntegerQ[m] && I 
ntegerQ[n])
 

rule 3459
Int[Sqrt[(a_) + (b_.)*sin[(e_.) + (f_.)*(x_)]]*((A_.) + (B_.)*sin[(e_.) + ( 
f_.)*(x_)])*((c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)])^(n_), x_Symbol] :> Simp 
[(-b^2)*(B*c - A*d)*Cos[e + f*x]*((c + d*Sin[e + f*x])^(n + 1)/(d*f*(n + 1) 
*(b*c + a*d)*Sqrt[a + b*Sin[e + f*x]])), x] + Simp[(A*b*d*(2*n + 3) - B*(b* 
c - 2*a*d*(n + 1)))/(2*d*(n + 1)*(b*c + a*d))   Int[Sqrt[a + b*Sin[e + f*x] 
]*(c + d*Sin[e + f*x])^(n + 1), x], x] /; FreeQ[{a, b, c, d, e, f, A, B}, x 
] && NeQ[b*c - a*d, 0] && EqQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0] && LtQ[n, 
-1]
 
Maple [B] (verified)

Leaf count of result is larger than twice the leaf count of optimal. \(326\) vs. \(2(151)=302\).

Time = 18.29 (sec) , antiderivative size = 327, normalized size of antiderivative = 1.87

method result size
default \(\sqrt {2}\, \left (\frac {2 A \tan \left (\frac {d x}{2}+\frac {c}{2}\right ) \left (128 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{6}-160 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{4}+76 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-9\right ) \sqrt {a \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}}\, \sqrt {\frac {1}{\cos \left (d x +c \right )}}}{35 d \left (2 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-1\right )^{3}}-\frac {2 B \tan \left (\frac {d x}{2}+\frac {c}{2}\right ) \left (128 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{6}-160 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{4}+76 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-9\right ) \sqrt {a \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}}\, \sqrt {\frac {1}{\cos \left (d x +c \right )}}}{35 d \left (2 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-1\right )^{3}}+\frac {4 B \tan \left (\frac {d x}{2}+\frac {c}{2}\right ) \left (416 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{6}-520 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{4}+247 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-38\right ) \sqrt {a \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}}\, \sqrt {\frac {1}{\cos \left (d x +c \right )}}}{105 d \left (2 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-1\right )^{3}}\right )\) \(327\)
parts \(\frac {2 A \sqrt {2}\, \tan \left (\frac {d x}{2}+\frac {c}{2}\right ) \left (128 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{6}-160 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{4}+76 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-9\right ) \sqrt {a \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}}\, \sqrt {\frac {1}{\cos \left (d x +c \right )}}}{35 d \left (2 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-1\right )^{3}}+B \sqrt {2}\, \left (-\frac {2 \tan \left (\frac {d x}{2}+\frac {c}{2}\right ) \left (128 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{6}-160 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{4}+76 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-9\right ) \sqrt {a \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}}\, \sqrt {\frac {1}{\cos \left (d x +c \right )}}}{35 d \left (2 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-1\right )^{3}}+\frac {4 \tan \left (\frac {d x}{2}+\frac {c}{2}\right ) \left (416 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{6}-520 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{4}+247 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-38\right ) \sqrt {a \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}}\, \sqrt {\frac {1}{\cos \left (d x +c \right )}}}{105 d \left (2 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-1\right )^{3}}\right )\) \(330\)

Input:

int((a+a*cos(d*x+c))^(1/2)*(A+B*cos(d*x+c))*sec(d*x+c)^(9/2),x,method=_RET 
URNVERBOSE)
 

Output:

2^(1/2)*(2/35*A/d*tan(1/2*d*x+1/2*c)*(128*cos(1/2*d*x+1/2*c)^6-160*cos(1/2 
*d*x+1/2*c)^4+76*cos(1/2*d*x+1/2*c)^2-9)*(a*cos(1/2*d*x+1/2*c)^2)^(1/2)*(1 
/(2*cos(1/2*d*x+1/2*c)^2-1))^(1/2)/(2*cos(1/2*d*x+1/2*c)^2-1)^3-2/35*B/d*t 
an(1/2*d*x+1/2*c)*(128*cos(1/2*d*x+1/2*c)^6-160*cos(1/2*d*x+1/2*c)^4+76*co 
s(1/2*d*x+1/2*c)^2-9)*(a*cos(1/2*d*x+1/2*c)^2)^(1/2)*(1/(2*cos(1/2*d*x+1/2 
*c)^2-1))^(1/2)/(2*cos(1/2*d*x+1/2*c)^2-1)^3+4/105*B/d*tan(1/2*d*x+1/2*c)* 
(416*cos(1/2*d*x+1/2*c)^6-520*cos(1/2*d*x+1/2*c)^4+247*cos(1/2*d*x+1/2*c)^ 
2-38)*(a*cos(1/2*d*x+1/2*c)^2)^(1/2)*(1/(2*cos(1/2*d*x+1/2*c)^2-1))^(1/2)/ 
(2*cos(1/2*d*x+1/2*c)^2-1)^3)
 

Fricas [A] (verification not implemented)

Time = 0.09 (sec) , antiderivative size = 104, normalized size of antiderivative = 0.59 \[ \int \sqrt {a+a \cos (c+d x)} (A+B \cos (c+d x)) \sec ^{\frac {9}{2}}(c+d x) \, dx=\frac {2 \, {\left (8 \, {\left (6 \, A + 7 \, B\right )} \cos \left (d x + c\right )^{3} + 4 \, {\left (6 \, A + 7 \, B\right )} \cos \left (d x + c\right )^{2} + 3 \, {\left (6 \, A + 7 \, B\right )} \cos \left (d x + c\right ) + 15 \, A\right )} \sqrt {a \cos \left (d x + c\right ) + a} \sin \left (d x + c\right )}{105 \, {\left (d \cos \left (d x + c\right )^{4} + d \cos \left (d x + c\right )^{3}\right )} \sqrt {\cos \left (d x + c\right )}} \] Input:

integrate((a+a*cos(d*x+c))^(1/2)*(A+B*cos(d*x+c))*sec(d*x+c)^(9/2),x, algo 
rithm="fricas")
 

Output:

2/105*(8*(6*A + 7*B)*cos(d*x + c)^3 + 4*(6*A + 7*B)*cos(d*x + c)^2 + 3*(6* 
A + 7*B)*cos(d*x + c) + 15*A)*sqrt(a*cos(d*x + c) + a)*sin(d*x + c)/((d*co 
s(d*x + c)^4 + d*cos(d*x + c)^3)*sqrt(cos(d*x + c)))
 

Sympy [F(-1)]

Timed out. \[ \int \sqrt {a+a \cos (c+d x)} (A+B \cos (c+d x)) \sec ^{\frac {9}{2}}(c+d x) \, dx=\text {Timed out} \] Input:

integrate((a+a*cos(d*x+c))**(1/2)*(A+B*cos(d*x+c))*sec(d*x+c)**(9/2),x)
 

Output:

Timed out
 

Maxima [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 568 vs. \(2 (151) = 302\).

Time = 0.26 (sec) , antiderivative size = 568, normalized size of antiderivative = 3.25 \[ \int \sqrt {a+a \cos (c+d x)} (A+B \cos (c+d x)) \sec ^{\frac {9}{2}}(c+d x) \, dx =\text {Too large to display} \] Input:

integrate((a+a*cos(d*x+c))^(1/2)*(A+B*cos(d*x+c))*sec(d*x+c)^(9/2),x, algo 
rithm="maxima")
 

Output:

2/105*(3*A*(35*sqrt(2)*sqrt(a)*sin(d*x + c)/(cos(d*x + c) + 1) - 70*sqrt(2 
)*sqrt(a)*sin(d*x + c)^3/(cos(d*x + c) + 1)^3 + 84*sqrt(2)*sqrt(a)*sin(d*x 
 + c)^5/(cos(d*x + c) + 1)^5 - 58*sqrt(2)*sqrt(a)*sin(d*x + c)^7/(cos(d*x 
+ c) + 1)^7 + 9*sqrt(2)*sqrt(a)*sin(d*x + c)^9/(cos(d*x + c) + 1)^9)*(sin( 
d*x + c)^2/(cos(d*x + c) + 1)^2 + 1)^4/((sin(d*x + c)/(cos(d*x + c) + 1) + 
 1)^(9/2)*(-sin(d*x + c)/(cos(d*x + c) + 1) + 1)^(9/2)*(4*sin(d*x + c)^2/( 
cos(d*x + c) + 1)^2 + 6*sin(d*x + c)^4/(cos(d*x + c) + 1)^4 + 4*sin(d*x + 
c)^6/(cos(d*x + c) + 1)^6 + sin(d*x + c)^8/(cos(d*x + c) + 1)^8 + 1)) + 7* 
B*(15*sqrt(2)*sqrt(a)*sin(d*x + c)/(cos(d*x + c) + 1) - 40*sqrt(2)*sqrt(a) 
*sin(d*x + c)^3/(cos(d*x + c) + 1)^3 + 42*sqrt(2)*sqrt(a)*sin(d*x + c)^5/( 
cos(d*x + c) + 1)^5 - 24*sqrt(2)*sqrt(a)*sin(d*x + c)^7/(cos(d*x + c) + 1) 
^7 + 7*sqrt(2)*sqrt(a)*sin(d*x + c)^9/(cos(d*x + c) + 1)^9)*(sin(d*x + c)^ 
2/(cos(d*x + c) + 1)^2 + 1)^4/((sin(d*x + c)/(cos(d*x + c) + 1) + 1)^(9/2) 
*(-sin(d*x + c)/(cos(d*x + c) + 1) + 1)^(9/2)*(4*sin(d*x + c)^2/(cos(d*x + 
 c) + 1)^2 + 6*sin(d*x + c)^4/(cos(d*x + c) + 1)^4 + 4*sin(d*x + c)^6/(cos 
(d*x + c) + 1)^6 + sin(d*x + c)^8/(cos(d*x + c) + 1)^8 + 1)))/d
 

Giac [F(-1)]

Timed out. \[ \int \sqrt {a+a \cos (c+d x)} (A+B \cos (c+d x)) \sec ^{\frac {9}{2}}(c+d x) \, dx=\text {Timed out} \] Input:

integrate((a+a*cos(d*x+c))^(1/2)*(A+B*cos(d*x+c))*sec(d*x+c)^(9/2),x, algo 
rithm="giac")
 

Output:

Timed out
 

Mupad [B] (verification not implemented)

Time = 29.04 (sec) , antiderivative size = 441, normalized size of antiderivative = 2.52 \[ \int \sqrt {a+a \cos (c+d x)} (A+B \cos (c+d x)) \sec ^{\frac {9}{2}}(c+d x) \, dx=\frac {\sqrt {\frac {1}{\frac {{\mathrm {e}}^{-c\,1{}\mathrm {i}-d\,x\,1{}\mathrm {i}}}{2}+\frac {{\mathrm {e}}^{c\,1{}\mathrm {i}+d\,x\,1{}\mathrm {i}}}{2}}}\,\left (\frac {\sqrt {a+a\,\left (\frac {{\mathrm {e}}^{-c\,1{}\mathrm {i}-d\,x\,1{}\mathrm {i}}}{2}+\frac {{\mathrm {e}}^{c\,1{}\mathrm {i}+d\,x\,1{}\mathrm {i}}}{2}\right )}\,\left (96\,A+112\,B\right )\,1{}\mathrm {i}}{105\,d}-\frac {{\mathrm {e}}^{c\,7{}\mathrm {i}+d\,x\,7{}\mathrm {i}}\,\sqrt {a+a\,\left (\frac {{\mathrm {e}}^{-c\,1{}\mathrm {i}-d\,x\,1{}\mathrm {i}}}{2}+\frac {{\mathrm {e}}^{c\,1{}\mathrm {i}+d\,x\,1{}\mathrm {i}}}{2}\right )}\,\left (96\,A+112\,B\right )\,1{}\mathrm {i}}{105\,d}+\frac {{\mathrm {e}}^{c\,2{}\mathrm {i}+d\,x\,2{}\mathrm {i}}\,\sqrt {a+a\,\left (\frac {{\mathrm {e}}^{-c\,1{}\mathrm {i}-d\,x\,1{}\mathrm {i}}}{2}+\frac {{\mathrm {e}}^{c\,1{}\mathrm {i}+d\,x\,1{}\mathrm {i}}}{2}\right )}\,\left (336\,A+392\,B\right )\,1{}\mathrm {i}}{105\,d}-\frac {{\mathrm {e}}^{c\,5{}\mathrm {i}+d\,x\,5{}\mathrm {i}}\,\sqrt {a+a\,\left (\frac {{\mathrm {e}}^{-c\,1{}\mathrm {i}-d\,x\,1{}\mathrm {i}}}{2}+\frac {{\mathrm {e}}^{c\,1{}\mathrm {i}+d\,x\,1{}\mathrm {i}}}{2}\right )}\,\left (336\,A+392\,B\right )\,1{}\mathrm {i}}{105\,d}-\frac {B\,{\mathrm {e}}^{c\,3{}\mathrm {i}+d\,x\,3{}\mathrm {i}}\,\sqrt {a+a\,\left (\frac {{\mathrm {e}}^{-c\,1{}\mathrm {i}-d\,x\,1{}\mathrm {i}}}{2}+\frac {{\mathrm {e}}^{c\,1{}\mathrm {i}+d\,x\,1{}\mathrm {i}}}{2}\right )}\,8{}\mathrm {i}}{3\,d}+\frac {B\,{\mathrm {e}}^{c\,4{}\mathrm {i}+d\,x\,4{}\mathrm {i}}\,\sqrt {a+a\,\left (\frac {{\mathrm {e}}^{-c\,1{}\mathrm {i}-d\,x\,1{}\mathrm {i}}}{2}+\frac {{\mathrm {e}}^{c\,1{}\mathrm {i}+d\,x\,1{}\mathrm {i}}}{2}\right )}\,8{}\mathrm {i}}{3\,d}\right )}{{\mathrm {e}}^{c\,1{}\mathrm {i}+d\,x\,1{}\mathrm {i}}+3\,{\mathrm {e}}^{c\,2{}\mathrm {i}+d\,x\,2{}\mathrm {i}}+3\,{\mathrm {e}}^{c\,3{}\mathrm {i}+d\,x\,3{}\mathrm {i}}+3\,{\mathrm {e}}^{c\,4{}\mathrm {i}+d\,x\,4{}\mathrm {i}}+3\,{\mathrm {e}}^{c\,5{}\mathrm {i}+d\,x\,5{}\mathrm {i}}+{\mathrm {e}}^{c\,6{}\mathrm {i}+d\,x\,6{}\mathrm {i}}+{\mathrm {e}}^{c\,7{}\mathrm {i}+d\,x\,7{}\mathrm {i}}+1} \] Input:

int((A + B*cos(c + d*x))*(1/cos(c + d*x))^(9/2)*(a + a*cos(c + d*x))^(1/2) 
,x)
 

Output:

((1/(exp(- c*1i - d*x*1i)/2 + exp(c*1i + d*x*1i)/2))^(1/2)*(((a + a*(exp(- 
 c*1i - d*x*1i)/2 + exp(c*1i + d*x*1i)/2))^(1/2)*(96*A + 112*B)*1i)/(105*d 
) - (exp(c*7i + d*x*7i)*(a + a*(exp(- c*1i - d*x*1i)/2 + exp(c*1i + d*x*1i 
)/2))^(1/2)*(96*A + 112*B)*1i)/(105*d) + (exp(c*2i + d*x*2i)*(a + a*(exp(- 
 c*1i - d*x*1i)/2 + exp(c*1i + d*x*1i)/2))^(1/2)*(336*A + 392*B)*1i)/(105* 
d) - (exp(c*5i + d*x*5i)*(a + a*(exp(- c*1i - d*x*1i)/2 + exp(c*1i + d*x*1 
i)/2))^(1/2)*(336*A + 392*B)*1i)/(105*d) - (B*exp(c*3i + d*x*3i)*(a + a*(e 
xp(- c*1i - d*x*1i)/2 + exp(c*1i + d*x*1i)/2))^(1/2)*8i)/(3*d) + (B*exp(c* 
4i + d*x*4i)*(a + a*(exp(- c*1i - d*x*1i)/2 + exp(c*1i + d*x*1i)/2))^(1/2) 
*8i)/(3*d)))/(exp(c*1i + d*x*1i) + 3*exp(c*2i + d*x*2i) + 3*exp(c*3i + d*x 
*3i) + 3*exp(c*4i + d*x*4i) + 3*exp(c*5i + d*x*5i) + exp(c*6i + d*x*6i) + 
exp(c*7i + d*x*7i) + 1)
 

Reduce [F]

\[ \int \sqrt {a+a \cos (c+d x)} (A+B \cos (c+d x)) \sec ^{\frac {9}{2}}(c+d x) \, dx=\sqrt {a}\, \left (\left (\int \sqrt {\sec \left (d x +c \right )}\, \sqrt {\cos \left (d x +c \right )+1}\, \cos \left (d x +c \right ) \sec \left (d x +c \right )^{4}d x \right ) b +\left (\int \sqrt {\sec \left (d x +c \right )}\, \sqrt {\cos \left (d x +c \right )+1}\, \sec \left (d x +c \right )^{4}d x \right ) a \right ) \] Input:

int((a+a*cos(d*x+c))^(1/2)*(A+B*cos(d*x+c))*sec(d*x+c)^(9/2),x)
 

Output:

sqrt(a)*(int(sqrt(sec(c + d*x))*sqrt(cos(c + d*x) + 1)*cos(c + d*x)*sec(c 
+ d*x)**4,x)*b + int(sqrt(sec(c + d*x))*sqrt(cos(c + d*x) + 1)*sec(c + d*x 
)**4,x)*a)