\(\int (a+b \cos (c+d x))^2 (A+B \cos (c+d x)) \sec ^{\frac {5}{2}}(c+d x) \, dx\) [557]

Optimal result
Mathematica [A] (verified)
Rubi [A] (verified)
Maple [B] (verified)
Fricas [C] (verification not implemented)
Sympy [F(-1)]
Maxima [F]
Giac [F]
Mupad [F(-1)]
Reduce [F]

Optimal result

Integrand size = 33, antiderivative size = 177 \[ \int (a+b \cos (c+d x))^2 (A+B \cos (c+d x)) \sec ^{\frac {5}{2}}(c+d x) \, dx=-\frac {2 \left (2 a A b+a^2 B-b^2 B\right ) \sqrt {\cos (c+d x)} E\left (\left .\frac {1}{2} (c+d x)\right |2\right ) \sqrt {\sec (c+d x)}}{d}+\frac {2 \left (a^2 A+3 A b^2+6 a b B\right ) \sqrt {\cos (c+d x)} \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),2\right ) \sqrt {\sec (c+d x)}}{3 d}+\frac {2 a (5 A b+3 a B) \sqrt {\sec (c+d x)} \sin (c+d x)}{3 d}+\frac {2 a A \sqrt {\sec (c+d x)} (b+a \sec (c+d x)) \sin (c+d x)}{3 d} \] Output:

-2*(2*A*a*b+B*a^2-B*b^2)*cos(d*x+c)^(1/2)*EllipticE(sin(1/2*d*x+1/2*c),2^( 
1/2))*sec(d*x+c)^(1/2)/d+2/3*(A*a^2+3*A*b^2+6*B*a*b)*cos(d*x+c)^(1/2)*Inve 
rseJacobiAM(1/2*d*x+1/2*c,2^(1/2))*sec(d*x+c)^(1/2)/d+2/3*a*(5*A*b+3*B*a)* 
sec(d*x+c)^(1/2)*sin(d*x+c)/d+2/3*a*A*sec(d*x+c)^(1/2)*(b+a*sec(d*x+c))*si 
n(d*x+c)/d
 

Mathematica [A] (verified)

Time = 7.04 (sec) , antiderivative size = 125, normalized size of antiderivative = 0.71 \[ \int (a+b \cos (c+d x))^2 (A+B \cos (c+d x)) \sec ^{\frac {5}{2}}(c+d x) \, dx=\frac {2 \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \left (-3 \left (2 a A b+a^2 B-b^2 B\right ) E\left (\left .\frac {1}{2} (c+d x)\right |2\right )+\left (a^2 A+3 A b^2+6 a b B\right ) \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),2\right )+\frac {a (a A+3 (2 A b+a B) \cos (c+d x)) \sin (c+d x)}{\cos ^{\frac {3}{2}}(c+d x)}\right )}{3 d} \] Input:

Integrate[(a + b*Cos[c + d*x])^2*(A + B*Cos[c + d*x])*Sec[c + d*x]^(5/2),x 
]
 

Output:

(2*Sqrt[Cos[c + d*x]]*Sqrt[Sec[c + d*x]]*(-3*(2*a*A*b + a^2*B - b^2*B)*Ell 
ipticE[(c + d*x)/2, 2] + (a^2*A + 3*A*b^2 + 6*a*b*B)*EllipticF[(c + d*x)/2 
, 2] + (a*(a*A + 3*(2*A*b + a*B)*Cos[c + d*x])*Sin[c + d*x])/Cos[c + d*x]^ 
(3/2)))/(3*d)
 

Rubi [A] (verified)

Time = 1.22 (sec) , antiderivative size = 178, normalized size of antiderivative = 1.01, number of steps used = 16, number of rules used = 16, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.485, Rules used = {3042, 3439, 3042, 4514, 27, 3042, 4535, 3042, 4258, 3042, 3120, 4534, 3042, 4258, 3042, 3119}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \sec ^{\frac {5}{2}}(c+d x) (a+b \cos (c+d x))^2 (A+B \cos (c+d x)) \, dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \csc \left (c+d x+\frac {\pi }{2}\right )^{5/2} \left (a+b \sin \left (c+d x+\frac {\pi }{2}\right )\right )^2 \left (A+B \sin \left (c+d x+\frac {\pi }{2}\right )\right )dx\)

\(\Big \downarrow \) 3439

\(\displaystyle \int \frac {(a \sec (c+d x)+b)^2 (A \sec (c+d x)+B)}{\sqrt {\sec (c+d x)}}dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \frac {\left (a \csc \left (c+d x+\frac {\pi }{2}\right )+b\right )^2 \left (A \csc \left (c+d x+\frac {\pi }{2}\right )+B\right )}{\sqrt {\csc \left (c+d x+\frac {\pi }{2}\right )}}dx\)

\(\Big \downarrow \) 4514

\(\displaystyle \frac {2}{3} \int -\frac {-a (5 A b+3 a B) \sec ^2(c+d x)-\left (A a^2+6 b B a+3 A b^2\right ) \sec (c+d x)+b (a A-3 b B)}{2 \sqrt {\sec (c+d x)}}dx+\frac {2 a A \sin (c+d x) \sqrt {\sec (c+d x)} (a \sec (c+d x)+b)}{3 d}\)

\(\Big \downarrow \) 27

\(\displaystyle \frac {2 a A \sin (c+d x) \sqrt {\sec (c+d x)} (a \sec (c+d x)+b)}{3 d}-\frac {1}{3} \int \frac {-a (5 A b+3 a B) \sec ^2(c+d x)-\left (A a^2+6 b B a+3 A b^2\right ) \sec (c+d x)+b (a A-3 b B)}{\sqrt {\sec (c+d x)}}dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {2 a A \sin (c+d x) \sqrt {\sec (c+d x)} (a \sec (c+d x)+b)}{3 d}-\frac {1}{3} \int \frac {-a (5 A b+3 a B) \csc \left (c+d x+\frac {\pi }{2}\right )^2+\left (-A a^2-6 b B a-3 A b^2\right ) \csc \left (c+d x+\frac {\pi }{2}\right )+b (a A-3 b B)}{\sqrt {\csc \left (c+d x+\frac {\pi }{2}\right )}}dx\)

\(\Big \downarrow \) 4535

\(\displaystyle \frac {1}{3} \left (\left (a^2 A+6 a b B+3 A b^2\right ) \int \sqrt {\sec (c+d x)}dx-\int \frac {b (a A-3 b B)-a (5 A b+3 a B) \sec ^2(c+d x)}{\sqrt {\sec (c+d x)}}dx\right )+\frac {2 a A \sin (c+d x) \sqrt {\sec (c+d x)} (a \sec (c+d x)+b)}{3 d}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {1}{3} \left (\left (a^2 A+6 a b B+3 A b^2\right ) \int \sqrt {\csc \left (c+d x+\frac {\pi }{2}\right )}dx-\int \frac {b (a A-3 b B)-a (5 A b+3 a B) \csc \left (c+d x+\frac {\pi }{2}\right )^2}{\sqrt {\csc \left (c+d x+\frac {\pi }{2}\right )}}dx\right )+\frac {2 a A \sin (c+d x) \sqrt {\sec (c+d x)} (a \sec (c+d x)+b)}{3 d}\)

\(\Big \downarrow \) 4258

\(\displaystyle \frac {1}{3} \left (\left (a^2 A+6 a b B+3 A b^2\right ) \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \int \frac {1}{\sqrt {\cos (c+d x)}}dx-\int \frac {b (a A-3 b B)-a (5 A b+3 a B) \csc \left (c+d x+\frac {\pi }{2}\right )^2}{\sqrt {\csc \left (c+d x+\frac {\pi }{2}\right )}}dx\right )+\frac {2 a A \sin (c+d x) \sqrt {\sec (c+d x)} (a \sec (c+d x)+b)}{3 d}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {1}{3} \left (\left (a^2 A+6 a b B+3 A b^2\right ) \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \int \frac {1}{\sqrt {\sin \left (c+d x+\frac {\pi }{2}\right )}}dx-\int \frac {b (a A-3 b B)-a (5 A b+3 a B) \csc \left (c+d x+\frac {\pi }{2}\right )^2}{\sqrt {\csc \left (c+d x+\frac {\pi }{2}\right )}}dx\right )+\frac {2 a A \sin (c+d x) \sqrt {\sec (c+d x)} (a \sec (c+d x)+b)}{3 d}\)

\(\Big \downarrow \) 3120

\(\displaystyle \frac {1}{3} \left (\frac {2 \left (a^2 A+6 a b B+3 A b^2\right ) \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),2\right )}{d}-\int \frac {b (a A-3 b B)-a (5 A b+3 a B) \csc \left (c+d x+\frac {\pi }{2}\right )^2}{\sqrt {\csc \left (c+d x+\frac {\pi }{2}\right )}}dx\right )+\frac {2 a A \sin (c+d x) \sqrt {\sec (c+d x)} (a \sec (c+d x)+b)}{3 d}\)

\(\Big \downarrow \) 4534

\(\displaystyle \frac {1}{3} \left (-3 \left (a^2 B+2 a A b-b^2 B\right ) \int \frac {1}{\sqrt {\sec (c+d x)}}dx+\frac {2 \left (a^2 A+6 a b B+3 A b^2\right ) \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),2\right )}{d}+\frac {2 a (3 a B+5 A b) \sin (c+d x) \sqrt {\sec (c+d x)}}{d}\right )+\frac {2 a A \sin (c+d x) \sqrt {\sec (c+d x)} (a \sec (c+d x)+b)}{3 d}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {1}{3} \left (-3 \left (a^2 B+2 a A b-b^2 B\right ) \int \frac {1}{\sqrt {\csc \left (c+d x+\frac {\pi }{2}\right )}}dx+\frac {2 \left (a^2 A+6 a b B+3 A b^2\right ) \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),2\right )}{d}+\frac {2 a (3 a B+5 A b) \sin (c+d x) \sqrt {\sec (c+d x)}}{d}\right )+\frac {2 a A \sin (c+d x) \sqrt {\sec (c+d x)} (a \sec (c+d x)+b)}{3 d}\)

\(\Big \downarrow \) 4258

\(\displaystyle \frac {1}{3} \left (-3 \left (a^2 B+2 a A b-b^2 B\right ) \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \int \sqrt {\cos (c+d x)}dx+\frac {2 \left (a^2 A+6 a b B+3 A b^2\right ) \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),2\right )}{d}+\frac {2 a (3 a B+5 A b) \sin (c+d x) \sqrt {\sec (c+d x)}}{d}\right )+\frac {2 a A \sin (c+d x) \sqrt {\sec (c+d x)} (a \sec (c+d x)+b)}{3 d}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {1}{3} \left (-3 \left (a^2 B+2 a A b-b^2 B\right ) \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \int \sqrt {\sin \left (c+d x+\frac {\pi }{2}\right )}dx+\frac {2 \left (a^2 A+6 a b B+3 A b^2\right ) \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),2\right )}{d}+\frac {2 a (3 a B+5 A b) \sin (c+d x) \sqrt {\sec (c+d x)}}{d}\right )+\frac {2 a A \sin (c+d x) \sqrt {\sec (c+d x)} (a \sec (c+d x)+b)}{3 d}\)

\(\Big \downarrow \) 3119

\(\displaystyle \frac {1}{3} \left (\frac {2 \left (a^2 A+6 a b B+3 A b^2\right ) \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),2\right )}{d}-\frac {6 \left (a^2 B+2 a A b-b^2 B\right ) \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{d}+\frac {2 a (3 a B+5 A b) \sin (c+d x) \sqrt {\sec (c+d x)}}{d}\right )+\frac {2 a A \sin (c+d x) \sqrt {\sec (c+d x)} (a \sec (c+d x)+b)}{3 d}\)

Input:

Int[(a + b*Cos[c + d*x])^2*(A + B*Cos[c + d*x])*Sec[c + d*x]^(5/2),x]
 

Output:

(2*a*A*Sqrt[Sec[c + d*x]]*(b + a*Sec[c + d*x])*Sin[c + d*x])/(3*d) + ((-6* 
(2*a*A*b + a^2*B - b^2*B)*Sqrt[Cos[c + d*x]]*EllipticE[(c + d*x)/2, 2]*Sqr 
t[Sec[c + d*x]])/d + (2*(a^2*A + 3*A*b^2 + 6*a*b*B)*Sqrt[Cos[c + d*x]]*Ell 
ipticF[(c + d*x)/2, 2]*Sqrt[Sec[c + d*x]])/d + (2*a*(5*A*b + 3*a*B)*Sqrt[S 
ec[c + d*x]]*Sin[c + d*x])/d)/3
 

Defintions of rubi rules used

rule 27
Int[(a_)*(Fx_), x_Symbol] :> Simp[a   Int[Fx, x], x] /; FreeQ[a, x] &&  !Ma 
tchQ[Fx, (b_)*(Gx_) /; FreeQ[b, x]]
 

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 3119
Int[Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2/d)*EllipticE[(1/2)* 
(c - Pi/2 + d*x), 2], x] /; FreeQ[{c, d}, x]
 

rule 3120
Int[1/Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2/d)*EllipticF[(1/2 
)*(c - Pi/2 + d*x), 2], x] /; FreeQ[{c, d}, x]
 

rule 3439
Int[(csc[(e_.) + (f_.)*(x_)]*(g_.))^(p_.)*((a_.) + (b_.)*sin[(e_.) + (f_.)* 
(x_)])^(m_.)*((c_) + (d_.)*sin[(e_.) + (f_.)*(x_)])^(n_.), x_Symbol] :> Sim 
p[g^(m + n)   Int[(g*Csc[e + f*x])^(p - m - n)*(b + a*Csc[e + f*x])^m*(d + 
c*Csc[e + f*x])^n, x], x] /; FreeQ[{a, b, c, d, e, f, g, p}, x] && NeQ[b*c 
- a*d, 0] &&  !IntegerQ[p] && IntegerQ[m] && IntegerQ[n]
 

rule 4258
Int[(csc[(c_.) + (d_.)*(x_)]*(b_.))^(n_), x_Symbol] :> Simp[(b*Csc[c + d*x] 
)^n*Sin[c + d*x]^n   Int[1/Sin[c + d*x]^n, x], x] /; FreeQ[{b, c, d}, x] && 
 EqQ[n^2, 1/4]
 

rule 4514
Int[(csc[(e_.) + (f_.)*(x_)]*(d_.))^(n_)*(csc[(e_.) + (f_.)*(x_)]*(b_.) + ( 
a_))^(m_)*(csc[(e_.) + (f_.)*(x_)]*(B_.) + (A_)), x_Symbol] :> Simp[(-b)*B* 
Cot[e + f*x]*(a + b*Csc[e + f*x])^(m - 1)*((d*Csc[e + f*x])^n/(f*(m + n))), 
 x] + Simp[1/(m + n)   Int[(a + b*Csc[e + f*x])^(m - 2)*(d*Csc[e + f*x])^n* 
Simp[a^2*A*(m + n) + a*b*B*n + (a*(2*A*b + a*B)*(m + n) + b^2*B*(m + n - 1) 
)*Csc[e + f*x] + b*(A*b*(m + n) + a*B*(2*m + n - 1))*Csc[e + f*x]^2, x], x] 
, x] /; FreeQ[{a, b, d, e, f, A, B, n}, x] && NeQ[A*b - a*B, 0] && NeQ[a^2 
- b^2, 0] && GtQ[m, 1] &&  !(IGtQ[n, 1] &&  !IntegerQ[m])
 

rule 4534
Int[(csc[(e_.) + (f_.)*(x_)]*(b_.))^(m_.)*(csc[(e_.) + (f_.)*(x_)]^2*(C_.) 
+ (A_)), x_Symbol] :> Simp[(-C)*Cot[e + f*x]*((b*Csc[e + f*x])^m/(f*(m + 1) 
)), x] + Simp[(C*m + A*(m + 1))/(m + 1)   Int[(b*Csc[e + f*x])^m, x], x] /; 
 FreeQ[{b, e, f, A, C, m}, x] && NeQ[C*m + A*(m + 1), 0] &&  !LeQ[m, -1]
 

rule 4535
Int[(csc[(e_.) + (f_.)*(x_)]*(b_.))^(m_.)*((A_.) + csc[(e_.) + (f_.)*(x_)]* 
(B_.) + csc[(e_.) + (f_.)*(x_)]^2*(C_.)), x_Symbol] :> Simp[B/b   Int[(b*Cs 
c[e + f*x])^(m + 1), x], x] + Int[(b*Csc[e + f*x])^m*(A + C*Csc[e + f*x]^2) 
, x] /; FreeQ[{b, e, f, A, B, C, m}, x]
 
Maple [B] (verified)

Leaf count of result is larger than twice the leaf count of optimal. \(649\) vs. \(2(162)=324\).

Time = 527.68 (sec) , antiderivative size = 650, normalized size of antiderivative = 3.67

method result size
default \(-\frac {\sqrt {-\left (-2 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}+1\right ) \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}}\, \left (\frac {2 A \,b^{2} \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {-2 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}+1}\, \operatorname {EllipticF}\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right )}{\sqrt {-2 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{4}+\sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}}}+\frac {2 a \left (2 A b +B a \right ) \sqrt {-2 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{4}+\sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}}\, \left (2 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2} \cos \left (\frac {d x}{2}+\frac {c}{2}\right )-\sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {2 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-1}\, \operatorname {EllipticE}\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right )\right )}{\sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2} \left (2 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-1\right )}+2 a^{2} A \left (-\frac {\cos \left (\frac {d x}{2}+\frac {c}{2}\right ) \sqrt {-2 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{4}+\sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}}}{6 \left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-\frac {1}{2}\right )^{2}}+\frac {\sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {-2 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}+1}\, \operatorname {EllipticF}\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right )}{3 \sqrt {-2 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{4}+\sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}}}\right )-\frac {2 B \,b^{2} \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {-2 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}+1}\, \operatorname {EllipticF}\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right )}{\sqrt {-2 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{4}+\sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}}}+\frac {2 B \,b^{2} \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {-2 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}+1}\, \left (\operatorname {EllipticF}\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right )-\operatorname {EllipticE}\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right )\right )}{\sqrt {-2 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{4}+\sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}}}+\frac {4 B a b \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {-2 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}+1}\, \operatorname {EllipticF}\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right )}{\sqrt {-2 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{4}+\sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}}}\right )}{\sin \left (\frac {d x}{2}+\frac {c}{2}\right ) \sqrt {2 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-1}\, d}\) \(650\)
parts \(-\frac {2 a^{2} A \left (-2 \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {2 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-1}\, \operatorname {EllipticF}\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right ) \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-2 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2} \cos \left (\frac {d x}{2}+\frac {c}{2}\right )+\sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {2 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-1}\, \operatorname {EllipticF}\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right )\right ) \sqrt {\left (2 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-1\right ) \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}}}{3 \sqrt {-2 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{4}+\sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}}\, \left (2 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-1\right )^{\frac {3}{2}} \sin \left (\frac {d x}{2}+\frac {c}{2}\right ) d}-\frac {2 \left (A \,b^{2}+2 B a b \right ) \sqrt {\left (2 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-1\right ) \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}}\, \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {-2 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}+1}\, \operatorname {EllipticF}\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right )}{\sqrt {-2 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{4}+\sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}}\, \sin \left (\frac {d x}{2}+\frac {c}{2}\right ) \sqrt {2 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-1}\, d}-\frac {2 \left (2 A a b +a^{2} B \right ) \left (-2 \cos \left (\frac {d x}{2}+\frac {c}{2}\right ) \sqrt {-2 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{4}+\sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}}\, \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}+\sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {2 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-1}\, \sqrt {-2 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{4}+\sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}}\, \operatorname {EllipticE}\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right )\right )}{\sqrt {-2 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{4}+\sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}}\, \sin \left (\frac {d x}{2}+\frac {c}{2}\right ) \sqrt {2 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-1}\, d}+\frac {2 B \,b^{2} \sqrt {\left (2 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-1\right ) \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}}\, \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {-2 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}+1}\, \operatorname {EllipticE}\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right )}{\sqrt {-2 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{4}+\sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}}\, \sin \left (\frac {d x}{2}+\frac {c}{2}\right ) \sqrt {2 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-1}\, d}\) \(689\)

Input:

int((a+cos(d*x+c)*b)^2*(A+B*cos(d*x+c))*sec(d*x+c)^(5/2),x,method=_RETURNV 
ERBOSE)
 

Output:

-(-(-2*cos(1/2*d*x+1/2*c)^2+1)*sin(1/2*d*x+1/2*c)^2)^(1/2)*(2*A*b^2*(sin(1 
/2*d*x+1/2*c)^2)^(1/2)*(-2*cos(1/2*d*x+1/2*c)^2+1)^(1/2)/(-2*sin(1/2*d*x+1 
/2*c)^4+sin(1/2*d*x+1/2*c)^2)^(1/2)*EllipticF(cos(1/2*d*x+1/2*c),2^(1/2))+ 
2*a*(2*A*b+B*a)/sin(1/2*d*x+1/2*c)^2/(2*sin(1/2*d*x+1/2*c)^2-1)*(-2*sin(1/ 
2*d*x+1/2*c)^4+sin(1/2*d*x+1/2*c)^2)^(1/2)*(2*sin(1/2*d*x+1/2*c)^2*cos(1/2 
*d*x+1/2*c)-(sin(1/2*d*x+1/2*c)^2)^(1/2)*(2*sin(1/2*d*x+1/2*c)^2-1)^(1/2)* 
EllipticE(cos(1/2*d*x+1/2*c),2^(1/2)))+2*a^2*A*(-1/6*cos(1/2*d*x+1/2*c)*(- 
2*sin(1/2*d*x+1/2*c)^4+sin(1/2*d*x+1/2*c)^2)^(1/2)/(cos(1/2*d*x+1/2*c)^2-1 
/2)^2+1/3*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(-2*cos(1/2*d*x+1/2*c)^2+1)^(1/2)/( 
-2*sin(1/2*d*x+1/2*c)^4+sin(1/2*d*x+1/2*c)^2)^(1/2)*EllipticF(cos(1/2*d*x+ 
1/2*c),2^(1/2)))-2*B*b^2*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(-2*cos(1/2*d*x+1/2* 
c)^2+1)^(1/2)/(-2*sin(1/2*d*x+1/2*c)^4+sin(1/2*d*x+1/2*c)^2)^(1/2)*Ellipti 
cF(cos(1/2*d*x+1/2*c),2^(1/2))+2*B*b^2*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(-2*co 
s(1/2*d*x+1/2*c)^2+1)^(1/2)/(-2*sin(1/2*d*x+1/2*c)^4+sin(1/2*d*x+1/2*c)^2) 
^(1/2)*(EllipticF(cos(1/2*d*x+1/2*c),2^(1/2))-EllipticE(cos(1/2*d*x+1/2*c) 
,2^(1/2)))+4*B*a*b*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(-2*cos(1/2*d*x+1/2*c)^2+1 
)^(1/2)/(-2*sin(1/2*d*x+1/2*c)^4+sin(1/2*d*x+1/2*c)^2)^(1/2)*EllipticF(cos 
(1/2*d*x+1/2*c),2^(1/2)))/sin(1/2*d*x+1/2*c)/(2*cos(1/2*d*x+1/2*c)^2-1)^(1 
/2)/d
 

Fricas [C] (verification not implemented)

Result contains complex when optimal does not.

Time = 0.09 (sec) , antiderivative size = 247, normalized size of antiderivative = 1.40 \[ \int (a+b \cos (c+d x))^2 (A+B \cos (c+d x)) \sec ^{\frac {5}{2}}(c+d x) \, dx=\frac {\sqrt {2} {\left (-i \, A a^{2} - 6 i \, B a b - 3 i \, A b^{2}\right )} \cos \left (d x + c\right ) {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) + i \, \sin \left (d x + c\right )\right ) + \sqrt {2} {\left (i \, A a^{2} + 6 i \, B a b + 3 i \, A b^{2}\right )} \cos \left (d x + c\right ) {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) - i \, \sin \left (d x + c\right )\right ) - 3 \, \sqrt {2} {\left (i \, B a^{2} + 2 i \, A a b - i \, B b^{2}\right )} \cos \left (d x + c\right ) {\rm weierstrassZeta}\left (-4, 0, {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) + i \, \sin \left (d x + c\right )\right )\right ) - 3 \, \sqrt {2} {\left (-i \, B a^{2} - 2 i \, A a b + i \, B b^{2}\right )} \cos \left (d x + c\right ) {\rm weierstrassZeta}\left (-4, 0, {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) - i \, \sin \left (d x + c\right )\right )\right ) + \frac {2 \, {\left (A a^{2} + 3 \, {\left (B a^{2} + 2 \, A a b\right )} \cos \left (d x + c\right )\right )} \sin \left (d x + c\right )}{\sqrt {\cos \left (d x + c\right )}}}{3 \, d \cos \left (d x + c\right )} \] Input:

integrate((a+b*cos(d*x+c))^2*(A+B*cos(d*x+c))*sec(d*x+c)^(5/2),x, algorith 
m="fricas")
 

Output:

1/3*(sqrt(2)*(-I*A*a^2 - 6*I*B*a*b - 3*I*A*b^2)*cos(d*x + c)*weierstrassPI 
nverse(-4, 0, cos(d*x + c) + I*sin(d*x + c)) + sqrt(2)*(I*A*a^2 + 6*I*B*a* 
b + 3*I*A*b^2)*cos(d*x + c)*weierstrassPInverse(-4, 0, cos(d*x + c) - I*si 
n(d*x + c)) - 3*sqrt(2)*(I*B*a^2 + 2*I*A*a*b - I*B*b^2)*cos(d*x + c)*weier 
strassZeta(-4, 0, weierstrassPInverse(-4, 0, cos(d*x + c) + I*sin(d*x + c) 
)) - 3*sqrt(2)*(-I*B*a^2 - 2*I*A*a*b + I*B*b^2)*cos(d*x + c)*weierstrassZe 
ta(-4, 0, weierstrassPInverse(-4, 0, cos(d*x + c) - I*sin(d*x + c))) + 2*( 
A*a^2 + 3*(B*a^2 + 2*A*a*b)*cos(d*x + c))*sin(d*x + c)/sqrt(cos(d*x + c))) 
/(d*cos(d*x + c))
 

Sympy [F(-1)]

Timed out. \[ \int (a+b \cos (c+d x))^2 (A+B \cos (c+d x)) \sec ^{\frac {5}{2}}(c+d x) \, dx=\text {Timed out} \] Input:

integrate((a+b*cos(d*x+c))**2*(A+B*cos(d*x+c))*sec(d*x+c)**(5/2),x)
 

Output:

Timed out
                                                                                    
                                                                                    
 

Maxima [F]

\[ \int (a+b \cos (c+d x))^2 (A+B \cos (c+d x)) \sec ^{\frac {5}{2}}(c+d x) \, dx=\int { {\left (B \cos \left (d x + c\right ) + A\right )} {\left (b \cos \left (d x + c\right ) + a\right )}^{2} \sec \left (d x + c\right )^{\frac {5}{2}} \,d x } \] Input:

integrate((a+b*cos(d*x+c))^2*(A+B*cos(d*x+c))*sec(d*x+c)^(5/2),x, algorith 
m="maxima")
 

Output:

integrate((B*cos(d*x + c) + A)*(b*cos(d*x + c) + a)^2*sec(d*x + c)^(5/2), 
x)
 

Giac [F]

\[ \int (a+b \cos (c+d x))^2 (A+B \cos (c+d x)) \sec ^{\frac {5}{2}}(c+d x) \, dx=\int { {\left (B \cos \left (d x + c\right ) + A\right )} {\left (b \cos \left (d x + c\right ) + a\right )}^{2} \sec \left (d x + c\right )^{\frac {5}{2}} \,d x } \] Input:

integrate((a+b*cos(d*x+c))^2*(A+B*cos(d*x+c))*sec(d*x+c)^(5/2),x, algorith 
m="giac")
 

Output:

integrate((B*cos(d*x + c) + A)*(b*cos(d*x + c) + a)^2*sec(d*x + c)^(5/2), 
x)
 

Mupad [F(-1)]

Timed out. \[ \int (a+b \cos (c+d x))^2 (A+B \cos (c+d x)) \sec ^{\frac {5}{2}}(c+d x) \, dx=\int \left (A+B\,\cos \left (c+d\,x\right )\right )\,{\left (\frac {1}{\cos \left (c+d\,x\right )}\right )}^{5/2}\,{\left (a+b\,\cos \left (c+d\,x\right )\right )}^2 \,d x \] Input:

int((A + B*cos(c + d*x))*(1/cos(c + d*x))^(5/2)*(a + b*cos(c + d*x))^2,x)
 

Output:

int((A + B*cos(c + d*x))*(1/cos(c + d*x))^(5/2)*(a + b*cos(c + d*x))^2, x)
 

Reduce [F]

\[ \int (a+b \cos (c+d x))^2 (A+B \cos (c+d x)) \sec ^{\frac {5}{2}}(c+d x) \, dx=3 \left (\int \sqrt {\sec \left (d x +c \right )}\, \cos \left (d x +c \right ) \sec \left (d x +c \right )^{2}d x \right ) a^{2} b +\left (\int \sqrt {\sec \left (d x +c \right )}\, \cos \left (d x +c \right )^{3} \sec \left (d x +c \right )^{2}d x \right ) b^{3}+3 \left (\int \sqrt {\sec \left (d x +c \right )}\, \cos \left (d x +c \right )^{2} \sec \left (d x +c \right )^{2}d x \right ) a \,b^{2}+\left (\int \sqrt {\sec \left (d x +c \right )}\, \sec \left (d x +c \right )^{2}d x \right ) a^{3} \] Input:

int((a+b*cos(d*x+c))^2*(A+B*cos(d*x+c))*sec(d*x+c)^(5/2),x)
 

Output:

3*int(sqrt(sec(c + d*x))*cos(c + d*x)*sec(c + d*x)**2,x)*a**2*b + int(sqrt 
(sec(c + d*x))*cos(c + d*x)**3*sec(c + d*x)**2,x)*b**3 + 3*int(sqrt(sec(c 
+ d*x))*cos(c + d*x)**2*sec(c + d*x)**2,x)*a*b**2 + int(sqrt(sec(c + d*x)) 
*sec(c + d*x)**2,x)*a**3