\(\int \frac {(A+B \cos (c+d x)) \sqrt {\sec (c+d x)}}{(a+b \cos (c+d x))^2} \, dx\) [574]

Optimal result
Mathematica [B] (warning: unable to verify)
Rubi [A] (verified)
Maple [B] (verified)
Fricas [F(-1)]
Sympy [F]
Maxima [F]
Giac [F]
Mupad [F(-1)]
Reduce [F]

Optimal result

Integrand size = 33, antiderivative size = 260 \[ \int \frac {(A+B \cos (c+d x)) \sqrt {\sec (c+d x)}}{(a+b \cos (c+d x))^2} \, dx=-\frac {(A b-a B) \sqrt {\cos (c+d x)} E\left (\left .\frac {1}{2} (c+d x)\right |2\right ) \sqrt {\sec (c+d x)}}{a \left (a^2-b^2\right ) d}-\frac {(A b-a B) \sqrt {\cos (c+d x)} \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),2\right ) \sqrt {\sec (c+d x)}}{b \left (a^2-b^2\right ) d}+\frac {\left (3 a^2 A b-A b^3-a^3 B-a b^2 B\right ) \sqrt {\cos (c+d x)} \operatorname {EllipticPi}\left (\frac {2 b}{a+b},\frac {1}{2} (c+d x),2\right ) \sqrt {\sec (c+d x)}}{a (a-b) b (a+b)^2 d}+\frac {b (A b-a B) \sqrt {\sec (c+d x)} \sin (c+d x)}{a \left (a^2-b^2\right ) d (b+a \sec (c+d x))} \] Output:

-(A*b-B*a)*cos(d*x+c)^(1/2)*EllipticE(sin(1/2*d*x+1/2*c),2^(1/2))*sec(d*x+ 
c)^(1/2)/a/(a^2-b^2)/d-(A*b-B*a)*cos(d*x+c)^(1/2)*InverseJacobiAM(1/2*d*x+ 
1/2*c,2^(1/2))*sec(d*x+c)^(1/2)/b/(a^2-b^2)/d+(3*A*a^2*b-A*b^3-B*a^3-B*a*b 
^2)*cos(d*x+c)^(1/2)*EllipticPi(sin(1/2*d*x+1/2*c),2*b/(a+b),2^(1/2))*sec( 
d*x+c)^(1/2)/a/(a-b)/b/(a+b)^2/d+b*(A*b-B*a)*sec(d*x+c)^(1/2)*sin(d*x+c)/a 
/(a^2-b^2)/d/(b+a*sec(d*x+c))
 

Mathematica [B] (warning: unable to verify)

Leaf count is larger than twice the leaf count of optimal. \(639\) vs. \(2(260)=520\).

Time = 7.23 (sec) , antiderivative size = 639, normalized size of antiderivative = 2.46 \[ \int \frac {(A+B \cos (c+d x)) \sqrt {\sec (c+d x)}}{(a+b \cos (c+d x))^2} \, dx=\frac {\frac {2 \left (-4 a^2 A+3 A b^2+a b B\right ) \cos ^2(c+d x) \left (\operatorname {EllipticF}\left (\arcsin \left (\sqrt {\sec (c+d x)}\right ),-1\right )-\operatorname {EllipticPi}\left (-\frac {a}{b},\arcsin \left (\sqrt {\sec (c+d x)}\right ),-1\right )\right ) (b+a \sec (c+d x)) \sqrt {1-\sec ^2(c+d x)} \sin (c+d x)}{a (a+b \cos (c+d x)) \left (1-\cos ^2(c+d x)\right )}+\frac {2 \left (4 a A b-4 a^2 B\right ) \cos ^2(c+d x) \operatorname {EllipticPi}\left (-\frac {a}{b},\arcsin \left (\sqrt {\sec (c+d x)}\right ),-1\right ) (b+a \sec (c+d x)) \sqrt {1-\sec ^2(c+d x)} \sin (c+d x)}{b (a+b \cos (c+d x)) \left (1-\cos ^2(c+d x)\right )}+\frac {\left (A b^2-a b B\right ) \cos (2 (c+d x)) (b+a \sec (c+d x)) \left (-4 a b+4 a b \sec ^2(c+d x)-4 a b E\left (\left .\arcsin \left (\sqrt {\sec (c+d x)}\right )\right |-1\right ) \sqrt {\sec (c+d x)} \sqrt {1-\sec ^2(c+d x)}+2 (2 a-b) b \operatorname {EllipticF}\left (\arcsin \left (\sqrt {\sec (c+d x)}\right ),-1\right ) \sqrt {\sec (c+d x)} \sqrt {1-\sec ^2(c+d x)}-4 a^2 \operatorname {EllipticPi}\left (-\frac {a}{b},\arcsin \left (\sqrt {\sec (c+d x)}\right ),-1\right ) \sqrt {\sec (c+d x)} \sqrt {1-\sec ^2(c+d x)}+2 b^2 \operatorname {EllipticPi}\left (-\frac {a}{b},\arcsin \left (\sqrt {\sec (c+d x)}\right ),-1\right ) \sqrt {\sec (c+d x)} \sqrt {1-\sec ^2(c+d x)}\right ) \sin (c+d x)}{a b^2 (a+b \cos (c+d x)) \left (1-\cos ^2(c+d x)\right ) \sqrt {\sec (c+d x)} \left (2-\sec ^2(c+d x)\right )}}{4 a (-a+b) (a+b) d}+\frac {\sqrt {\sec (c+d x)} \left (-\frac {(-A b+a B) \sin (c+d x)}{a \left (a^2-b^2\right )}+\frac {-A b \sin (c+d x)+a B \sin (c+d x)}{\left (a^2-b^2\right ) (a+b \cos (c+d x))}\right )}{d} \] Input:

Integrate[((A + B*Cos[c + d*x])*Sqrt[Sec[c + d*x]])/(a + b*Cos[c + d*x])^2 
,x]
 

Output:

((2*(-4*a^2*A + 3*A*b^2 + a*b*B)*Cos[c + d*x]^2*(EllipticF[ArcSin[Sqrt[Sec 
[c + d*x]]], -1] - EllipticPi[-(a/b), ArcSin[Sqrt[Sec[c + d*x]]], -1])*(b 
+ a*Sec[c + d*x])*Sqrt[1 - Sec[c + d*x]^2]*Sin[c + d*x])/(a*(a + b*Cos[c + 
 d*x])*(1 - Cos[c + d*x]^2)) + (2*(4*a*A*b - 4*a^2*B)*Cos[c + d*x]^2*Ellip 
ticPi[-(a/b), ArcSin[Sqrt[Sec[c + d*x]]], -1]*(b + a*Sec[c + d*x])*Sqrt[1 
- Sec[c + d*x]^2]*Sin[c + d*x])/(b*(a + b*Cos[c + d*x])*(1 - Cos[c + d*x]^ 
2)) + ((A*b^2 - a*b*B)*Cos[2*(c + d*x)]*(b + a*Sec[c + d*x])*(-4*a*b + 4*a 
*b*Sec[c + d*x]^2 - 4*a*b*EllipticE[ArcSin[Sqrt[Sec[c + d*x]]], -1]*Sqrt[S 
ec[c + d*x]]*Sqrt[1 - Sec[c + d*x]^2] + 2*(2*a - b)*b*EllipticF[ArcSin[Sqr 
t[Sec[c + d*x]]], -1]*Sqrt[Sec[c + d*x]]*Sqrt[1 - Sec[c + d*x]^2] - 4*a^2* 
EllipticPi[-(a/b), ArcSin[Sqrt[Sec[c + d*x]]], -1]*Sqrt[Sec[c + d*x]]*Sqrt 
[1 - Sec[c + d*x]^2] + 2*b^2*EllipticPi[-(a/b), ArcSin[Sqrt[Sec[c + d*x]]] 
, -1]*Sqrt[Sec[c + d*x]]*Sqrt[1 - Sec[c + d*x]^2])*Sin[c + d*x])/(a*b^2*(a 
 + b*Cos[c + d*x])*(1 - Cos[c + d*x]^2)*Sqrt[Sec[c + d*x]]*(2 - Sec[c + d* 
x]^2)))/(4*a*(-a + b)*(a + b)*d) + (Sqrt[Sec[c + d*x]]*(-(((-(A*b) + a*B)* 
Sin[c + d*x])/(a*(a^2 - b^2))) + (-(A*b*Sin[c + d*x]) + a*B*Sin[c + d*x])/ 
((a^2 - b^2)*(a + b*Cos[c + d*x]))))/d
 

Rubi [A] (verified)

Time = 1.82 (sec) , antiderivative size = 252, normalized size of antiderivative = 0.97, number of steps used = 17, number of rules used = 17, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.515, Rules used = {3042, 3439, 3042, 4517, 27, 3042, 4594, 3042, 4274, 3042, 4258, 3042, 3119, 3120, 4336, 3042, 3284}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {\sqrt {\sec (c+d x)} (A+B \cos (c+d x))}{(a+b \cos (c+d x))^2} \, dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \frac {\sqrt {\csc \left (c+d x+\frac {\pi }{2}\right )} \left (A+B \sin \left (c+d x+\frac {\pi }{2}\right )\right )}{\left (a+b \sin \left (c+d x+\frac {\pi }{2}\right )\right )^2}dx\)

\(\Big \downarrow \) 3439

\(\displaystyle \int \frac {\sec ^{\frac {3}{2}}(c+d x) (A \sec (c+d x)+B)}{(a \sec (c+d x)+b)^2}dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \frac {\csc \left (c+d x+\frac {\pi }{2}\right )^{3/2} \left (A \csc \left (c+d x+\frac {\pi }{2}\right )+B\right )}{\left (a \csc \left (c+d x+\frac {\pi }{2}\right )+b\right )^2}dx\)

\(\Big \downarrow \) 4517

\(\displaystyle \frac {b (A b-a B) \sin (c+d x) \sqrt {\sec (c+d x)}}{a d \left (a^2-b^2\right ) (a \sec (c+d x)+b)}-\frac {\int \frac {-\left (\left (2 A a^2-b B a-A b^2\right ) \sec ^2(c+d x)\right )+2 a (A b-a B) \sec (c+d x)+b (A b-a B)}{2 \sqrt {\sec (c+d x)} (b+a \sec (c+d x))}dx}{a \left (a^2-b^2\right )}\)

\(\Big \downarrow \) 27

\(\displaystyle \frac {b (A b-a B) \sin (c+d x) \sqrt {\sec (c+d x)}}{a d \left (a^2-b^2\right ) (a \sec (c+d x)+b)}-\frac {\int \frac {-\left (\left (2 A a^2-b B a-A b^2\right ) \sec ^2(c+d x)\right )+2 a (A b-a B) \sec (c+d x)+b (A b-a B)}{\sqrt {\sec (c+d x)} (b+a \sec (c+d x))}dx}{2 a \left (a^2-b^2\right )}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {b (A b-a B) \sin (c+d x) \sqrt {\sec (c+d x)}}{a d \left (a^2-b^2\right ) (a \sec (c+d x)+b)}-\frac {\int \frac {\left (-2 A a^2+b B a+A b^2\right ) \csc \left (c+d x+\frac {\pi }{2}\right )^2+2 a (A b-a B) \csc \left (c+d x+\frac {\pi }{2}\right )+b (A b-a B)}{\sqrt {\csc \left (c+d x+\frac {\pi }{2}\right )} \left (b+a \csc \left (c+d x+\frac {\pi }{2}\right )\right )}dx}{2 a \left (a^2-b^2\right )}\)

\(\Big \downarrow \) 4594

\(\displaystyle \frac {b (A b-a B) \sin (c+d x) \sqrt {\sec (c+d x)}}{a d \left (a^2-b^2\right ) (a \sec (c+d x)+b)}-\frac {\frac {\int \frac {(A b-a B) b^2+a (A b-a B) \sec (c+d x) b}{\sqrt {\sec (c+d x)}}dx}{b^2}-\frac {\left (a^3 (-B)+3 a^2 A b-a b^2 B-A b^3\right ) \int \frac {\sec ^{\frac {3}{2}}(c+d x)}{b+a \sec (c+d x)}dx}{b}}{2 a \left (a^2-b^2\right )}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {b (A b-a B) \sin (c+d x) \sqrt {\sec (c+d x)}}{a d \left (a^2-b^2\right ) (a \sec (c+d x)+b)}-\frac {\frac {\int \frac {(A b-a B) b^2+a (A b-a B) \csc \left (c+d x+\frac {\pi }{2}\right ) b}{\sqrt {\csc \left (c+d x+\frac {\pi }{2}\right )}}dx}{b^2}-\frac {\left (a^3 (-B)+3 a^2 A b-a b^2 B-A b^3\right ) \int \frac {\csc \left (c+d x+\frac {\pi }{2}\right )^{3/2}}{b+a \csc \left (c+d x+\frac {\pi }{2}\right )}dx}{b}}{2 a \left (a^2-b^2\right )}\)

\(\Big \downarrow \) 4274

\(\displaystyle \frac {b (A b-a B) \sin (c+d x) \sqrt {\sec (c+d x)}}{a d \left (a^2-b^2\right ) (a \sec (c+d x)+b)}-\frac {\frac {b^2 (A b-a B) \int \frac {1}{\sqrt {\sec (c+d x)}}dx+a b (A b-a B) \int \sqrt {\sec (c+d x)}dx}{b^2}-\frac {\left (a^3 (-B)+3 a^2 A b-a b^2 B-A b^3\right ) \int \frac {\csc \left (c+d x+\frac {\pi }{2}\right )^{3/2}}{b+a \csc \left (c+d x+\frac {\pi }{2}\right )}dx}{b}}{2 a \left (a^2-b^2\right )}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {b (A b-a B) \sin (c+d x) \sqrt {\sec (c+d x)}}{a d \left (a^2-b^2\right ) (a \sec (c+d x)+b)}-\frac {\frac {b^2 (A b-a B) \int \frac {1}{\sqrt {\csc \left (c+d x+\frac {\pi }{2}\right )}}dx+a b (A b-a B) \int \sqrt {\csc \left (c+d x+\frac {\pi }{2}\right )}dx}{b^2}-\frac {\left (a^3 (-B)+3 a^2 A b-a b^2 B-A b^3\right ) \int \frac {\csc \left (c+d x+\frac {\pi }{2}\right )^{3/2}}{b+a \csc \left (c+d x+\frac {\pi }{2}\right )}dx}{b}}{2 a \left (a^2-b^2\right )}\)

\(\Big \downarrow \) 4258

\(\displaystyle \frac {b (A b-a B) \sin (c+d x) \sqrt {\sec (c+d x)}}{a d \left (a^2-b^2\right ) (a \sec (c+d x)+b)}-\frac {\frac {b^2 (A b-a B) \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \int \sqrt {\cos (c+d x)}dx+a b (A b-a B) \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \int \frac {1}{\sqrt {\cos (c+d x)}}dx}{b^2}-\frac {\left (a^3 (-B)+3 a^2 A b-a b^2 B-A b^3\right ) \int \frac {\csc \left (c+d x+\frac {\pi }{2}\right )^{3/2}}{b+a \csc \left (c+d x+\frac {\pi }{2}\right )}dx}{b}}{2 a \left (a^2-b^2\right )}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {b (A b-a B) \sin (c+d x) \sqrt {\sec (c+d x)}}{a d \left (a^2-b^2\right ) (a \sec (c+d x)+b)}-\frac {\frac {b^2 (A b-a B) \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \int \sqrt {\sin \left (c+d x+\frac {\pi }{2}\right )}dx+a b (A b-a B) \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \int \frac {1}{\sqrt {\sin \left (c+d x+\frac {\pi }{2}\right )}}dx}{b^2}-\frac {\left (a^3 (-B)+3 a^2 A b-a b^2 B-A b^3\right ) \int \frac {\csc \left (c+d x+\frac {\pi }{2}\right )^{3/2}}{b+a \csc \left (c+d x+\frac {\pi }{2}\right )}dx}{b}}{2 a \left (a^2-b^2\right )}\)

\(\Big \downarrow \) 3119

\(\displaystyle \frac {b (A b-a B) \sin (c+d x) \sqrt {\sec (c+d x)}}{a d \left (a^2-b^2\right ) (a \sec (c+d x)+b)}-\frac {\frac {a b (A b-a B) \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \int \frac {1}{\sqrt {\sin \left (c+d x+\frac {\pi }{2}\right )}}dx+\frac {2 b^2 (A b-a B) \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{d}}{b^2}-\frac {\left (a^3 (-B)+3 a^2 A b-a b^2 B-A b^3\right ) \int \frac {\csc \left (c+d x+\frac {\pi }{2}\right )^{3/2}}{b+a \csc \left (c+d x+\frac {\pi }{2}\right )}dx}{b}}{2 a \left (a^2-b^2\right )}\)

\(\Big \downarrow \) 3120

\(\displaystyle \frac {b (A b-a B) \sin (c+d x) \sqrt {\sec (c+d x)}}{a d \left (a^2-b^2\right ) (a \sec (c+d x)+b)}-\frac {\frac {\frac {2 b^2 (A b-a B) \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{d}+\frac {2 a b (A b-a B) \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),2\right )}{d}}{b^2}-\frac {\left (a^3 (-B)+3 a^2 A b-a b^2 B-A b^3\right ) \int \frac {\csc \left (c+d x+\frac {\pi }{2}\right )^{3/2}}{b+a \csc \left (c+d x+\frac {\pi }{2}\right )}dx}{b}}{2 a \left (a^2-b^2\right )}\)

\(\Big \downarrow \) 4336

\(\displaystyle \frac {b (A b-a B) \sin (c+d x) \sqrt {\sec (c+d x)}}{a d \left (a^2-b^2\right ) (a \sec (c+d x)+b)}-\frac {\frac {\frac {2 b^2 (A b-a B) \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{d}+\frac {2 a b (A b-a B) \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),2\right )}{d}}{b^2}-\frac {\left (a^3 (-B)+3 a^2 A b-a b^2 B-A b^3\right ) \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \int \frac {1}{\sqrt {\cos (c+d x)} (a+b \cos (c+d x))}dx}{b}}{2 a \left (a^2-b^2\right )}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {b (A b-a B) \sin (c+d x) \sqrt {\sec (c+d x)}}{a d \left (a^2-b^2\right ) (a \sec (c+d x)+b)}-\frac {\frac {\frac {2 b^2 (A b-a B) \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{d}+\frac {2 a b (A b-a B) \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),2\right )}{d}}{b^2}-\frac {\left (a^3 (-B)+3 a^2 A b-a b^2 B-A b^3\right ) \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \int \frac {1}{\sqrt {\sin \left (c+d x+\frac {\pi }{2}\right )} \left (a+b \sin \left (c+d x+\frac {\pi }{2}\right )\right )}dx}{b}}{2 a \left (a^2-b^2\right )}\)

\(\Big \downarrow \) 3284

\(\displaystyle \frac {b (A b-a B) \sin (c+d x) \sqrt {\sec (c+d x)}}{a d \left (a^2-b^2\right ) (a \sec (c+d x)+b)}-\frac {\frac {\frac {2 b^2 (A b-a B) \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{d}+\frac {2 a b (A b-a B) \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),2\right )}{d}}{b^2}-\frac {2 \left (a^3 (-B)+3 a^2 A b-a b^2 B-A b^3\right ) \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \operatorname {EllipticPi}\left (\frac {2 b}{a+b},\frac {1}{2} (c+d x),2\right )}{b d (a+b)}}{2 a \left (a^2-b^2\right )}\)

Input:

Int[((A + B*Cos[c + d*x])*Sqrt[Sec[c + d*x]])/(a + b*Cos[c + d*x])^2,x]
 

Output:

-1/2*(((2*b^2*(A*b - a*B)*Sqrt[Cos[c + d*x]]*EllipticE[(c + d*x)/2, 2]*Sqr 
t[Sec[c + d*x]])/d + (2*a*b*(A*b - a*B)*Sqrt[Cos[c + d*x]]*EllipticF[(c + 
d*x)/2, 2]*Sqrt[Sec[c + d*x]])/d)/b^2 - (2*(3*a^2*A*b - A*b^3 - a^3*B - a* 
b^2*B)*Sqrt[Cos[c + d*x]]*EllipticPi[(2*b)/(a + b), (c + d*x)/2, 2]*Sqrt[S 
ec[c + d*x]])/(b*(a + b)*d))/(a*(a^2 - b^2)) + (b*(A*b - a*B)*Sqrt[Sec[c + 
 d*x]]*Sin[c + d*x])/(a*(a^2 - b^2)*d*(b + a*Sec[c + d*x]))
 

Defintions of rubi rules used

rule 27
Int[(a_)*(Fx_), x_Symbol] :> Simp[a   Int[Fx, x], x] /; FreeQ[a, x] &&  !Ma 
tchQ[Fx, (b_)*(Gx_) /; FreeQ[b, x]]
 

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 3119
Int[Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2/d)*EllipticE[(1/2)* 
(c - Pi/2 + d*x), 2], x] /; FreeQ[{c, d}, x]
 

rule 3120
Int[1/Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2/d)*EllipticF[(1/2 
)*(c - Pi/2 + d*x), 2], x] /; FreeQ[{c, d}, x]
 

rule 3284
Int[1/(((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])*Sqrt[(c_.) + (d_.)*sin[(e_.) 
 + (f_.)*(x_)]]), x_Symbol] :> Simp[(2/(f*(a + b)*Sqrt[c + d]))*EllipticPi[ 
2*(b/(a + b)), (1/2)*(e - Pi/2 + f*x), 2*(d/(c + d))], x] /; FreeQ[{a, b, c 
, d, e, f}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 
0] && GtQ[c + d, 0]
 

rule 3439
Int[(csc[(e_.) + (f_.)*(x_)]*(g_.))^(p_.)*((a_.) + (b_.)*sin[(e_.) + (f_.)* 
(x_)])^(m_.)*((c_) + (d_.)*sin[(e_.) + (f_.)*(x_)])^(n_.), x_Symbol] :> Sim 
p[g^(m + n)   Int[(g*Csc[e + f*x])^(p - m - n)*(b + a*Csc[e + f*x])^m*(d + 
c*Csc[e + f*x])^n, x], x] /; FreeQ[{a, b, c, d, e, f, g, p}, x] && NeQ[b*c 
- a*d, 0] &&  !IntegerQ[p] && IntegerQ[m] && IntegerQ[n]
 

rule 4258
Int[(csc[(c_.) + (d_.)*(x_)]*(b_.))^(n_), x_Symbol] :> Simp[(b*Csc[c + d*x] 
)^n*Sin[c + d*x]^n   Int[1/Sin[c + d*x]^n, x], x] /; FreeQ[{b, c, d}, x] && 
 EqQ[n^2, 1/4]
 

rule 4274
Int[(csc[(e_.) + (f_.)*(x_)]*(d_.))^(n_.)*(csc[(e_.) + (f_.)*(x_)]*(b_.) + 
(a_)), x_Symbol] :> Simp[a   Int[(d*Csc[e + f*x])^n, x], x] + Simp[b/d   In 
t[(d*Csc[e + f*x])^(n + 1), x], x] /; FreeQ[{a, b, d, e, f, n}, x]
 

rule 4336
Int[(csc[(e_.) + (f_.)*(x_)]*(d_.))^(3/2)/(csc[(e_.) + (f_.)*(x_)]*(b_.) + 
(a_)), x_Symbol] :> Simp[d*Sqrt[d*Sin[e + f*x]]*Sqrt[d*Csc[e + f*x]]   Int[ 
1/(Sqrt[d*Sin[e + f*x]]*(b + a*Sin[e + f*x])), x], x] /; FreeQ[{a, b, d, e, 
 f}, x] && NeQ[a^2 - b^2, 0]
 

rule 4517
Int[(csc[(e_.) + (f_.)*(x_)]*(d_.))^(n_)*(csc[(e_.) + (f_.)*(x_)]*(b_.) + ( 
a_))^(m_)*(csc[(e_.) + (f_.)*(x_)]*(B_.) + (A_)), x_Symbol] :> Simp[a*d^2*( 
A*b - a*B)*Cot[e + f*x]*(a + b*Csc[e + f*x])^(m + 1)*((d*Csc[e + f*x])^(n - 
 2)/(b*f*(m + 1)*(a^2 - b^2))), x] - Simp[d/(b*(m + 1)*(a^2 - b^2))   Int[( 
a + b*Csc[e + f*x])^(m + 1)*(d*Csc[e + f*x])^(n - 2)*Simp[a*d*(A*b - a*B)*( 
n - 2) + b*d*(A*b - a*B)*(m + 1)*Csc[e + f*x] - (a*A*b*d*(m + n) - d*B*(a^2 
*(n - 1) + b^2*(m + 1)))*Csc[e + f*x]^2, x], x], x] /; FreeQ[{a, b, d, e, f 
, A, B}, x] && NeQ[A*b - a*B, 0] && NeQ[a^2 - b^2, 0] && LtQ[m, -1] && GtQ[ 
n, 1]
 

rule 4594
Int[((A_.) + csc[(e_.) + (f_.)*(x_)]*(B_.) + csc[(e_.) + (f_.)*(x_)]^2*(C_. 
))/(Sqrt[csc[(e_.) + (f_.)*(x_)]*(d_.)]*(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a 
_))), x_Symbol] :> Simp[(A*b^2 - a*b*B + a^2*C)/(a^2*d^2)   Int[(d*Csc[e + 
f*x])^(3/2)/(a + b*Csc[e + f*x]), x], x] + Simp[1/a^2   Int[(a*A - (A*b - a 
*B)*Csc[e + f*x])/Sqrt[d*Csc[e + f*x]], x], x] /; FreeQ[{a, b, d, e, f, A, 
B, C}, x] && NeQ[a^2 - b^2, 0]
 
Maple [B] (verified)

Leaf count of result is larger than twice the leaf count of optimal. \(720\) vs. \(2(251)=502\).

Time = 6.51 (sec) , antiderivative size = 721, normalized size of antiderivative = 2.77

method result size
default \(-\frac {\sqrt {-\left (-2 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}+1\right ) \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}}\, \left (-\frac {4 B \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {-2 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}+1}\, \operatorname {EllipticPi}\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), -\frac {2 b}{a -b}, \sqrt {2}\right )}{\left (-2 a b +2 b^{2}\right ) \sqrt {-2 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{4}+\sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}}}+\frac {2 \left (A b -B a \right ) \left (-\frac {b^{2} \cos \left (\frac {d x}{2}+\frac {c}{2}\right ) \sqrt {-2 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{4}+\sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}}}{a \left (a^{2}-b^{2}\right ) \left (2 b \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}+a -b \right )}-\frac {\sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {-2 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}+1}\, \operatorname {EllipticF}\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right )}{2 a \left (a +b \right ) \sqrt {-2 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{4}+\sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}}}-\frac {b \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {-2 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}+1}\, \operatorname {EllipticF}\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right )}{2 \left (a^{2}-b^{2}\right ) a \sqrt {-2 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{4}+\sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}}}+\frac {b \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {-2 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}+1}\, \operatorname {EllipticE}\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right )}{2 \left (a^{2}-b^{2}\right ) a \sqrt {-2 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{4}+\sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}}}-\frac {3 a b \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {-2 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}+1}\, \operatorname {EllipticPi}\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), -\frac {2 b}{a -b}, \sqrt {2}\right )}{\left (a^{2}-b^{2}\right ) \left (-2 a b +2 b^{2}\right ) \sqrt {-2 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{4}+\sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}}}+\frac {b^{3} \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {-2 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}+1}\, \operatorname {EllipticPi}\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), -\frac {2 b}{a -b}, \sqrt {2}\right )}{a \left (a^{2}-b^{2}\right ) \left (-2 a b +2 b^{2}\right ) \sqrt {-2 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{4}+\sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}}}\right )}{b}\right )}{\sin \left (\frac {d x}{2}+\frac {c}{2}\right ) \sqrt {2 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-1}\, d}\) \(721\)

Input:

int((A+B*cos(d*x+c))*sec(d*x+c)^(1/2)/(a+cos(d*x+c)*b)^2,x,method=_RETURNV 
ERBOSE)
 

Output:

-(-(-2*cos(1/2*d*x+1/2*c)^2+1)*sin(1/2*d*x+1/2*c)^2)^(1/2)*(-4*B/(-2*a*b+2 
*b^2)*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(-2*cos(1/2*d*x+1/2*c)^2+1)^(1/2)/(-2*s 
in(1/2*d*x+1/2*c)^4+sin(1/2*d*x+1/2*c)^2)^(1/2)*EllipticPi(cos(1/2*d*x+1/2 
*c),-2*b/(a-b),2^(1/2))+2*(A*b-B*a)/b*(-b^2/a/(a^2-b^2)*cos(1/2*d*x+1/2*c) 
*(-2*sin(1/2*d*x+1/2*c)^4+sin(1/2*d*x+1/2*c)^2)^(1/2)/(2*b*cos(1/2*d*x+1/2 
*c)^2+a-b)-1/2/a/(a+b)*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(-2*cos(1/2*d*x+1/2*c) 
^2+1)^(1/2)/(-2*sin(1/2*d*x+1/2*c)^4+sin(1/2*d*x+1/2*c)^2)^(1/2)*EllipticF 
(cos(1/2*d*x+1/2*c),2^(1/2))-1/2*b/(a^2-b^2)/a*(sin(1/2*d*x+1/2*c)^2)^(1/2 
)*(-2*cos(1/2*d*x+1/2*c)^2+1)^(1/2)/(-2*sin(1/2*d*x+1/2*c)^4+sin(1/2*d*x+1 
/2*c)^2)^(1/2)*EllipticF(cos(1/2*d*x+1/2*c),2^(1/2))+1/2*b/(a^2-b^2)/a*(si 
n(1/2*d*x+1/2*c)^2)^(1/2)*(-2*cos(1/2*d*x+1/2*c)^2+1)^(1/2)/(-2*sin(1/2*d* 
x+1/2*c)^4+sin(1/2*d*x+1/2*c)^2)^(1/2)*EllipticE(cos(1/2*d*x+1/2*c),2^(1/2 
))-3*a/(a^2-b^2)/(-2*a*b+2*b^2)*b*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(-2*cos(1/2 
*d*x+1/2*c)^2+1)^(1/2)/(-2*sin(1/2*d*x+1/2*c)^4+sin(1/2*d*x+1/2*c)^2)^(1/2 
)*EllipticPi(cos(1/2*d*x+1/2*c),-2*b/(a-b),2^(1/2))+1/a/(a^2-b^2)/(-2*a*b+ 
2*b^2)*b^3*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(-2*cos(1/2*d*x+1/2*c)^2+1)^(1/2)/ 
(-2*sin(1/2*d*x+1/2*c)^4+sin(1/2*d*x+1/2*c)^2)^(1/2)*EllipticPi(cos(1/2*d* 
x+1/2*c),-2*b/(a-b),2^(1/2))))/sin(1/2*d*x+1/2*c)/(2*cos(1/2*d*x+1/2*c)^2- 
1)^(1/2)/d
 

Fricas [F(-1)]

Timed out. \[ \int \frac {(A+B \cos (c+d x)) \sqrt {\sec (c+d x)}}{(a+b \cos (c+d x))^2} \, dx=\text {Timed out} \] Input:

integrate((A+B*cos(d*x+c))*sec(d*x+c)^(1/2)/(a+b*cos(d*x+c))^2,x, algorith 
m="fricas")
 

Output:

Timed out
 

Sympy [F]

\[ \int \frac {(A+B \cos (c+d x)) \sqrt {\sec (c+d x)}}{(a+b \cos (c+d x))^2} \, dx=\int \frac {\left (A + B \cos {\left (c + d x \right )}\right ) \sqrt {\sec {\left (c + d x \right )}}}{\left (a + b \cos {\left (c + d x \right )}\right )^{2}}\, dx \] Input:

integrate((A+B*cos(d*x+c))*sec(d*x+c)**(1/2)/(a+b*cos(d*x+c))**2,x)
                                                                                    
                                                                                    
 

Output:

Integral((A + B*cos(c + d*x))*sqrt(sec(c + d*x))/(a + b*cos(c + d*x))**2, 
x)
 

Maxima [F]

\[ \int \frac {(A+B \cos (c+d x)) \sqrt {\sec (c+d x)}}{(a+b \cos (c+d x))^2} \, dx=\int { \frac {{\left (B \cos \left (d x + c\right ) + A\right )} \sqrt {\sec \left (d x + c\right )}}{{\left (b \cos \left (d x + c\right ) + a\right )}^{2}} \,d x } \] Input:

integrate((A+B*cos(d*x+c))*sec(d*x+c)^(1/2)/(a+b*cos(d*x+c))^2,x, algorith 
m="maxima")
 

Output:

integrate((B*cos(d*x + c) + A)*sqrt(sec(d*x + c))/(b*cos(d*x + c) + a)^2, 
x)
 

Giac [F]

\[ \int \frac {(A+B \cos (c+d x)) \sqrt {\sec (c+d x)}}{(a+b \cos (c+d x))^2} \, dx=\int { \frac {{\left (B \cos \left (d x + c\right ) + A\right )} \sqrt {\sec \left (d x + c\right )}}{{\left (b \cos \left (d x + c\right ) + a\right )}^{2}} \,d x } \] Input:

integrate((A+B*cos(d*x+c))*sec(d*x+c)^(1/2)/(a+b*cos(d*x+c))^2,x, algorith 
m="giac")
 

Output:

integrate((B*cos(d*x + c) + A)*sqrt(sec(d*x + c))/(b*cos(d*x + c) + a)^2, 
x)
 

Mupad [F(-1)]

Timed out. \[ \int \frac {(A+B \cos (c+d x)) \sqrt {\sec (c+d x)}}{(a+b \cos (c+d x))^2} \, dx=\int \frac {\left (A+B\,\cos \left (c+d\,x\right )\right )\,\sqrt {\frac {1}{\cos \left (c+d\,x\right )}}}{{\left (a+b\,\cos \left (c+d\,x\right )\right )}^2} \,d x \] Input:

int(((A + B*cos(c + d*x))*(1/cos(c + d*x))^(1/2))/(a + b*cos(c + d*x))^2,x 
)
 

Output:

int(((A + B*cos(c + d*x))*(1/cos(c + d*x))^(1/2))/(a + b*cos(c + d*x))^2, 
x)
 

Reduce [F]

\[ \int \frac {(A+B \cos (c+d x)) \sqrt {\sec (c+d x)}}{(a+b \cos (c+d x))^2} \, dx=\int \frac {\sqrt {\sec \left (d x +c \right )}}{\cos \left (d x +c \right ) b +a}d x \] Input:

int((A+B*cos(d*x+c))*sec(d*x+c)^(1/2)/(a+b*cos(d*x+c))^2,x)
 

Output:

int(sqrt(sec(c + d*x))/(cos(c + d*x)*b + a),x)